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Abstract
Host compromise is one of the most serious security

problems for operating systems today. Existing integrity
protection models for operating systems are difficult to
use; on the other hand, the most available integrity pro-
tection models only provide heuristic approaches without
strong guarantees.

This paper presents SecGuard, a secure and high-
available integrity protection model for operating sys-
tems. To ensure the security of systems, SecGuard pro-
vides formal guarantees that operating systems are secu-
rity under three threats: network-based threat, IPC com-
munication threat, and contaminative file threat. On the
other hand, we introduces some novel mechanisms to
ensure high-available of the model. For instance, Sec-
Guard leverages the information of the existing discre-
tionary access control mechanism to initialize integrity
labels for subjects and objects in the systems. Moreover,
we describe the implementation of SecGuard for Linux
using Linux Security Modules framework, and show it
has low overhead and effectively achieve security and
high-availability for operating systems.

1 Introduction

As the scale of global Internet increases, the threat from
remote network becomes the norm rather than the ex-
ception. For instance, computer worms can propagate
by first compromising vulnerable hosts, and then prop-
agate to other hosts. Compromised hosts may be or-
ganized under an uniform command and control infras-
tructure, forming botnets [9], [17]. Botnets can be used
for launching attacks such as decoying, spam E-mail and
distributed denial of service (DDoS). Most existing de-
signs against such network-based attacks rely on the net-
work level using valuable technologies such as firewalls
and network intrusion detection systems. However, in
order to address the above problems effectively, we have

to seek the key cause of these threats — the vulnerabil-
ity of end hosts [23, 30, 13, 19, 32, 20, 26, 21, 10]. The
study in [12] indicated that two key reasons why there
are some vulnerability in the end hosts are: (1) software
running on the hosts are buggy, and (2) the discretionary
access control mechanism in operating systems is insuf-
ficient for defend against network-based attacks [29].

Generally, previous studies on making operating sys-
tems more security mainly focus on making use of
mandatory access control (MAC). The existing MAC
models, e.g., DTE [4, 5], Janus [8], Security Enhanced
Linux (SELinux) [3], Apparmor [1, 6], systrace [15],
and Linux Intrusion Detection System (LIDS) [2], are
very complex to configure and difficult to use. For in-
stance, there are too much different classes of objects in
SELinux, and this is very difficult to configure for nor-
mal users; moreover, after configuring such MAC mod-
els, some existing applications will not be able to run
and many common practices for administering the com-
puter system will become impossible. On the other hand,
there has also been some work on how to design high-
available MAC models, e.g., LOMAC [7] and UMIP
[12]. However, these studies only provide heuristic ap-
proaches without hard guarantees. Furthermore, these
models are evaluated only against synthetic attacks, and
they also need to make some strong assumptions. For
example, UMIP model allows the remote system admin-
istration through secure shell daemon (sshd) to be com-
pletely trustworthy (Completely trustworthy means the
integrity level of process can not drop). However, in fact,
the attackers can successfully exploit bugs in such dae-
mon program, and then take over the system. In sum-
mary, it is still an open question how to design a high-
available MAC model to protect the integrity of operat-
ing systems [24], [25], [31], [28], [27], [16].
Our Goal and Approach: This paper aims to answer
the following question:

Is it possible to design a high-available integrity pro-
tection model which does not only protect the integrity
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of computer systems without complex configuration, but
also provides strong provable guarantees?

The fundamental insight answering this question is
that the existing discretionary access control (DAC) in-
formation (such as current authority of process and DAC
list in the operating system) can be used to generate
mandatory integrity protection mechanisms, so this en-
sures the model high-available (Users need not to face
the complex configuration tasks and existing applications
can still be used under our model). Furthermore, we
provide formal guarantees to proof the security of our
model.
Our Contributions and Results: This paper presents
SecGuard, a secure and high-available integrity protec-
tion model for operating systems. SecGuard targets three
threats in systems: network-based threat, IPC communi-
cation threat, and contaminative file threat. SecGuard has
the following salient features:

• SecGuard secures operating systems from three
threats: network-based threat, IPC communication
threat, and contaminative file threat.

• SecGuard is a high-available MAC model, and it is
easier to be configured and used than the existing
MAC models.

• SecGuard provides formal guarantees; therefore,
the security of the model can be ensured in theory.

• SecGuard has been implemented as a prototype pro-
tection system in Linux, and we present some rep-
resentative designs and evaluations.

Outline: The rest of this paper is organized as fol-
lows. The security targets, assumptions and threat sce-
narios will be described in Section 2. The details of Sec-
Guard will be discussed in Section 3. Section 4 shows
the formal definitions and guarantees of SecGuard. Our
implementation of SecGuard and its evaluations will be
presented in Section 5. Finally, we conclude in Section
6.

2 Security Targets, Assumptions and
Threat Scenarios

Targets of Integrity Protection: SecGuard aims at pro-
tecting the integrity of operating systems. However, due
to the various concepts in the integrity protection (Many
definitions on integrity protection given by security ex-
perts are different), we firstly define the targets of in-
tegrity protected by SecGuard in order to avoid ambi-
guity in the following sections.

The study in [11] indicated that the threats of integrity
confronted by operating system are mainly from three
aspects:

1. The data is modified maliciously by attackers in the
information transmission;

2. Due to confronting the hardware errors or applica-
tion bugs, the data is modified during the informa-
tion transmission;

3. The data is maliciously modified by malicious code
such as Trojan horse.

The targets of integrity protection of SecGuard are (1)
and (3). Therefore, for SecGuard, there are two cases
that system data can be modified: one is the data directly
modified by the processes in systems, and another one is
malicious code modifies the data owned by process af-
ter this process accesses the objects contaminated by the
malicious code. Note that the object denotes computer
system resources (e.g., file).
Assumptions: We assume that network server and
client programs contain bugs and can be exploited if the
attacker is able to feed input to them. We assume that
users may make careless mistakes in their actions, e.g.,
downloading a malicious program from the Internet and
running it. However, we assume that the attacker does
not have physical access to the host to be protected. Sec-
Guard aims at ensuring that under most attacks, the at-
tacker can only get limited privileges (not root informa-
tion) and cannot compromise the operating system in-
tegrity.
Threat Scenarios: Due to aiming at protecting the op-
erating system integrity against network-based attacks,
SecGuard will confront threat from network. Moreover,
we also need to consider what a process receives Inter-
Process Communications (IPC) from another local pro-
cess, since those IPCs can be used to send free-formed
data to make integrity contamination. Finally, we should
consider the threat from those contaminative files. In
summary, SecGuard needs to consider three threat sce-
narios:

• Network-based Threat: Because the applications
of system may contain some bugs, the attackers can
make use of the network to plant malicious code
into our host. Although the attackers will not launch
the active attack, careless users may also download
the malicious code into their local hosts from inse-
cure network.

• IPC Communication Threat: When two processes
communicate with each other, one process will read
the IPC object owned by the other process. How-
ever, the IPC object may contain the malicious code
which can destroy the integrity of systems.

• Contaminative File Threat: The most common way
to destroy the integrity of system is one particular
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process may read the system objects carrying mali-
cious code, and thus the data owned by this process
can be modify by the malicious code.

3 SecGuard Model

In this section, we discuss all the details of SecGuard.
Because we have implemented the SecGuard model as a
prototype protection system for Linux using the Linux
Security Module (LSM) framework [22], the descrip-
tions of the SecGuard model in this section is based on
our design for Linux. Meanwhile, we believe that our
model can be applied to other UNIX variants with minor
changes.

3.1 The Integrity Labels of SecGuard
SecGuard assigns subjects with two integrity labels (Nor-
mally, subjects denote processes in the system). Two la-
bels are important integrity label of subject, s i(s), and
current integrity label of subject, s c(s), respectively.
Both of s i(s) and s c(s) have two levels (values): high
or low. Meanwhile, SecGuard also assigns objects (Nor-
mally, objects denote system resources such as files) with
two integrity labels. They are important integrity label
of object, o i(o), and current integrity label of object,
o c(o), respectively. The same as s i(s) and s c(s), both
of o i(o) and o c(o) have two levels: high or low. Note
that we define important integrity level as the level of im-
portant integrity label, and define current integrity level
as the level of current integrity label.

Why SecGuard assigns both subjects and objects two
integrity labels? The same as existing MAC models,
current integrity label is mainly used for the mandatory
access control policy of SecGuard. The purpose of in-
troducing important integrity label is in order to assign
the identity for both subjects and objects, and this la-
bel can be used to record the authorities both of subjects
and objects in the system. For instance, when adminis-
trator would like to raise the current integrity level for
some processes, he needs to refer to the important in-
tegrity level of these processes, since we think, for the
process whose important integrity level is low, its current
integrity level can not be raised (This will be mentioned
in Section 3.3). Therefore, we say the important integrity
label is the identity for both subjects and objects.

How to initialize the levels of integrity labels for sub-
jects and objects? In SecGuard, only the important in-
tegrity levels of root processes (system-level processes)
are high; meanwhile, their current integrity levels are
high in the startup. Normal processes’ important in-
tegrity levels should be set low, and their current in-
tegrity levels are also low. When a process (subject) is
created, it will inherit both the important integrity level

Algorithm 1: Initialization Algorithm

1 for each ob ject(i) in DAC do
2 if the other-bits(9-bits) of ob ject(i) is writable

then
3 ob ject(i).s i← low;
4 ob ject(i).s c← low;
5 continue;
6 if the group-bits(9-bits) of ob ject(i) is writable

then
7 for each user( j) in group of ob ject(i) do
8 if user( j).s i = low && user( j).s c = low

then
9 ob ject(i).s i← low;

10 ob ject(i).s c← low;
11 break;
12 continue;
13 if the user-bits(9-bits) of ob ject(i) is writable

then
14 ob ject(i).s i← ob ject(i).owner.s i;
15 ob ject(i).s c← ob ject(i).owner.s c;

and current integrity level from its parent process. In
sub-process’s life cycle, its important integrity level can
not be changed. On the other hand, the current integrity
level of subject can be changed dynamically according to
the security policy of SecGuard model (The detail men-
tioned in Section 3.3). We will discuss the initialization
scheme for objects in Section 3.2.

3.2 SecGuard Initialization Algorithm
SecGuard proposes a novel Initialization Algorithm for
objects in the system. The algorithm can utilize the ex-
isting DAC information of system to initialize the config-
uration of integrity level for objects. Note that we only
pay attention to the 9-bits mechanism for DAC, and the
current DAC enhanced by ACL mechanism is not our
consideration, since the information provided by ACL
mechanism is not used by Initialization Algorithm.

To elaborate the Initialization Algorithm clearly, we
present the meanings of symbols of algorithm in Table
1. The Initialization Algorithm encompasses three key
steps to initialize the configuration of integrity level for
objects in the system.

Step 1: The algorithm checks the other-bit of 9-bits of
each object in the system. For the object whose other-bit
is writable, both the important integrity level and current
integrity level of the object are set to low. The object
whose integrity level does not be changed enters Step2.
For example, there are two object O1 and O2 in the sys-
tem. If the other-bit of 9-bits of O1 is writable, both the
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Table 1: The Definitions of Symbols of Initialization Algorithm

Symbols Meaning
DAC DAC information list of system

other−bits(9−bits) the 7th, 8th, and 9th bits of 9-bits for DAC authority
group−bits(9−bits) the 4th, 5th, and 6th bits of 9-bits for DAC authority
user−bits(9−bits) the 1st, 2nd, and 3rd bits of 9-bits for DAC authority

ob ject(i).s i the important integrity level of ob ject(i)
ob ject(i).s c the current integrity level of ob ject(i)
user( j).s i the important integrity level of user( j)
user( j).s c the current integrity level of user( j)

ob ject(i).owner.s i the important integrity level of the user who is the owner of ob ject(i)
ob ject(i).owner.s c the current integrity level of the user who is the owner of ob ject(i)

important integrity level and current integrity level of O1
are set to low and low. If the other-bit of 9-bits of O2 is
not writable, O2 enters Step2.

Step 2: The algorithm searches all users of the user
group of the each object which enters this step, and if
there is a user whose important integrity level and cur-
rent integrity level are both low, both the important in-
tegrity level and current integrity level of this object are
set to low. The object whose integrity level does not be
set enters Step 3. For example, there is object O in the
system, and user U is the user in O’s user group. If both
the important integrity level and current integrity level of
U are low, both the important integrity level and current
integrity level of O are set to low; otherwise, O enters
Step3.

Step 3: In this step, the algorithm sets both the im-
portant integrity level and current integrity level of the
object, which enters this step, according to both the im-
portant integrity level and current integrity level of the
owner of the object. For example, in the Step3, there
are object O and its owner user U in the system. If both
the important integrity level and current integrity level
of U are high and low respectively, both the important
integrity level and current integrity level of O are set to
high and low respectively.

The above three steps show the executing process of
Initialization Algorithm. Algorithm 1 presents the details
of Initialization Algorithm.

3.3 Security Policies of SecGuard

The Policies of Access/Read/Write: In SecGuard,
when a subject accesses an object or communicates with
a subject, the accessed object or subject must be in avail-
able state; If a subject can read an object, the current
integrity level of the subject must dominate the current
integrity level of the object and the important integrity
level of the subject must dominate the important integrity
level of the object; If a subject can modify an object, the

Current Integrity

High

Current Integrity

Low

The Integrity Rules for 

Level-changed of Subject: 

(a) Receive from Network;

(b) Communicate with 

Low-integrity Subject;

(c) Read a Low-integrity Object.

(b)
(a) (c)

Figure 1: Security Policies of SecGuard

current integrity level of the subject must dominate the
important integrity level of the object.

As shown in Fig. 1: (1) When a subject receives
the traffic from network, the subject drops its current in-
tegrity level to low; (2) After a subject whose current in-
tegrity level is high communicates with a subject whose
current integrity level is low, the former drops its current
integrity level to low; (3) When a subject whose current
integrity level is high reads an object whose current in-
tegrity level is low, the subject drops its current integrity
level to low.
Partially Trusted Subject: To ensure the availability
of the SecGuard model, we introduce the concept of par-
tially trusted subject. Both the important integrity level
and current integrity level of partially trusted subject are
high, and it can keep both the integrity level constant dur-
ing its access, read or write. In other words, the partially
trusted subject can violate the security policies of the
SecGuard. Meanwhile, the partially trusted subject can
upgrade the current integrity level (from low to high) of
subject whose important integrity level is high. The rea-
son of allowing the partially trusted subject to upgrade
current integrity level is that, after one subject (e.g., both
the important integrity level and current integrity level of
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the subject are high) drops its integrity level, it may not
execute some operations which could be operated in the
past by this subject. The conditions of partially trusted
subject upgrading the current integrity level of subject
are that the important integrity level of the subject up-
graded is high, and its current integrity level is low. The
others are not in the scope of upgrading.

4 Formal Guarantees for SecGuard

SecGuard provides strong provable guarantees. In this
section, we use formal methods to prove the security of
SecGuard. Table 2 shows the definitions of constants
and the states of SecGuard model, and the following sec-
tions present the invariants of SecGuard, the constraints
of SecGuard, and proof of SecGuard.

4.1 The Invariants of SecGuard
SecGuard C1 (Usable Property): A subject is usable, if
it can access other objects or subjects:
∀o ∈ O,∀s,s1 ∈ S,(s,o,x) ∨ (s,s1,x) ∈ b ⇒

(Uo(o),Us(s))∨ (Us(s1),Us(s)).
Where, (s,o,x) is a specific state of system. The def-

inition of general state of system, (V,R×D,τ,ν0), is in
the study [18]. Due to the space constraints, we do not
show the details of formal symbols of system (Details
shown in the study [18]).
SecGuard C2 (Simple Security Property): A subject can
read an object, if subject’s important integrity level and
current integrity level dominate the important integrity
level and current integrity level of the object respectively:
∀o∈O,∀s∈ S,(s,o,o)∈ b⇒ s i(s)�o i(o)∧s c(s)�

o c(o).
SecGuard C3 (*-Security Property): The operation (in-
cluding observe, signal, modify, and copy) between sub-
ject and object/subject are defined as follows:

• (s1,s2, i) ∈ b ⇒ ((s i(s1) � s i(s2)) ∧ (s c(s1) �
s c(s2))) ∨ ((s c(s1) = s c(s2)) ∧ (s i(s2) �

s i(s1)));

• (s,o) ∈ M(o) ⇒ (s i(s) � o i(o)) ∧ (s c(s) �

o c(o));

• (s,m) ∈M(o)⇒ s c(s)�o i(o);

• (s,c) ∈M(o)∧network(o)⇒ s c(s)�o i(o).

SecGuard C4 (Discretionary Security Property): The
DAC of SecGuard model is defined as follows:
(s,o,x) ∈ b⇒ (o,s,x) ∈M.

SecGuard C5 (Integrity Control Property): In any con-
dition, the integrity control policies of SecGuard are as
follows:

• ∀s ∈ S,s i(s)� s c(s);

• ∀o ∈ O,o i(o)�o c(o).

4.2 The Constraints of SecGuard
SecGuard CT1(IntegrityLevelDynamicRules):

1. If (s,o) ∈ M(o) and s is not partially trusted sub-
ject, according to SecGuard C3, both s and o sat-
isfy: s i(s)� o i(o)∧ s c(s)� o c(o). When s ob-
serves o, the integrity levels are changed as fol-
lows: b∗ = b∪ (s,o,o),o i∗(o) = o i(o),o c∗(o) =
o c(o),s i∗(s) = s i(s),s c∗(s) = o c(o);

2. If (s,c) ∈ M(o) ∧ network(o) and s is not a par-
tially trusted subject, according to SecGuard C3,
s and o satisfy: s c(s)� o i(o). When s down-
loads o from network to local, the integrity levels
are changed as follows: b∗ = b∪ (s,o,c),o i∗(o) =
o i(o),o c∗(o) = o c(o),s i∗(s) = s i(s),s c∗(s) =
o c(o);

3. If (s1,s2, i) ∈ b and s is not a partially trusted
subject, according to SecGuard C3, s1 and s2 sat-
isfy: ((s i(s1) � s i(s2)) ∧ (s c(s1) � s c(s2))) ∨
((s c(s1) = s c(s2))∧ (s i(s2)� s i(s1)))

(a) If (s1,s2, i) ∈ b ∧ ((s i(s1) � s i(s2)) ∧
(s c(s1) � s c(s2))), then b∗ =
b ∪ (s1,s2, i),s i∗(s1) = s i(s1),s i∗(s2) =
s i(s2),s c∗(s1) = s c(s1),s c∗(s2) = s c(s2);

(b) If (s1,s2, i) ∈ b ∧ ((s c(s1) =
s c(s2)) ∧ (s i(s2) � s i(s1))), then
b∗= b∪(s1,s2, i),s i∗(s1)= s i(s1),s i∗(s2)=
s i(s2),s c∗(s1) = s c(s1),s c∗(s2) = s c(s1).

4. If (s,m) ∈ M(o), according to SecGuard C3, s and
o satisfy: s c(s)�o i(o), the state of model remains
constant.

Because we introduce the concept of partially trusted
subject, two integrity levels of the partially trusted sub-
ject can remain constant in the course of accessing object
of different integrity levels.
SecGuard CT2(DiscretionaryAccessControl): A subject
access an object, if it has the discretionary access right
of the object:
∀s ∈ S,∀o ∈ O,x ∈ OPERAT ION,(s,o,x) ∈ b∗− b∧

¬IPC(o)⇒ (s,x) ∈M(o).
SecGuard CT3 (Create and Remove of Subject):

The condition of creating subject is:
∀s ∈ S,U∗s (s) ∧ ¬Us(s) ⇒ create cast(s) = TCB ∨

s c(create cast(s)) � s c(s) ∧ s i(create cast(s)) �

s i(s).
The condition of removing subject is:
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Table 2: The Definitions of Constants and States

Constant and State Meaning
SUBJECT subject constant
OBJECT object constant

OPERAT ION operation constant
LEV EL integrity levels constant
BOOL Bool constant

S the set of subject
O the set of object
I the set of integrity labels
� more-than-or-equal relationship on I
� more-than relationship on I
M the permission of access control
o the operation that a subject observes an object
i the operation that a subject signals to another subject
m the operation that a subject modifies an object
c the operation that a subject copies an object

Predicate and Function Meaning
create cast(o),o ∈ O create object o

return the subject that creates o
create cast(s),s ∈ S create subject s

return the subject that creates s
delete cast(o),o ∈ O remove object o

return the subject that removes o
delete cast(s),s ∈ S remove subject s

return the subject that removes s
network(o):O→ BOOL the object o comes from network

IPC(o):O→ BOOL the object o is IPC object
Uo:O→ BOOL object o is usable
Us:S→ BOOL subject s is usable

b⊆ S×O×OPERAT ION
∪S×S×OPERAT ION the condition of access currently
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∀s ∈ S,U∗s (s) ∧ ¬Us(s) ⇒ delete cast(s) = TCB ∨
s c(delete cast(s)) � s c(s) ∧ s i(delete cast(s)) �

s i(s).
SecGuard CT4 (Create and Remove of Object): If an ob-
ject is not IPC, the condition of creating this object is:
∀o ∈ O,∃s ∈ S, [(¬Uo(o) ∧ U∗o (o)) ∨ (Uo(o) ∧

¬U∗o (o))]∧¬IPC(o)⇒ s i(s)�o c(o).
If an object is unusable and it is IPC, it can only be

created by TCB:
∀o∈O,¬Uo(o)∧U∗o (o)∧ IPC(o)⇒ delete cast(o) =

TCB.
If an object is usable and it is IPC, the condition of re-

moving this object should satisfy that the subject which
removes this object is TCB or the important integrity
level of subject which removes this object is not lower
than the current integrity level of the object removed:
∀o∈O, IPC(o)∧¬Uo(o)∧U∗o (o)⇒ delete cast(o) =

TCB∨ (∃s ∈ S∧ s i(s)�o c(o)).
Next, we will proof some important theorems for Sec-

Guard model; however, due to the space constraints, here
we only present two representative proofs.

4.3 The Proofs of SecGuard
Theorem 1: If o1 and o2 are both objects and s is not a
partially trusted subject, and (s,o1,o) ∈ b,(s,o2,m) ∈ b.
The invariant and constraint of the model should satisfy:
o i(o1)�o i(o2).
Proof :
∵ (s,o1,o) ∈ b
∴ s c(s)�o c(o1) (SecGuard C3)
∴ s c∗(s) = o c(o1) (SecGuard CT1)
∵ (s,o2,m) ∈ b
∴ s c∗(s)�o i(o2) (SecGuard C3)
∵ s c∗(s) = o c(o1)
∴ o c(o1)�o i(o2) (Transitivity)
∴ o i(o1)�o i(o2) (SecGuard C5)

Proof finished

Theorem 2 (Access Stable Proof): For the invariant and
constraint of our model, there are: (∀s ∈ S,∀o ∈ O,x ∈
{o,m}),(s,o,x) ∈ b∧ (s,o,x) ∈ b∗ ⇒ (s,o,x) although
under the new state, model satisfies both invariant and
constraint. In other words, if an access operation has not
been revoked in the new state, the access operation can
be executed all the same in the new state.
Proof : We only discuss that s is not a partially trusted
subject, since if s is a partially trusted subject, its in-
tegrity level will not be changed after access operation;
therefore, the partially trusted subject must satisfy Theo-
rem 2. We define that the initial state of current integrity
level of subject s is s c0(s), and s c1(s) is the state that
after access operation.
(1) x = o :

∵ (s,o,o) ∈ b
∴ s c0(s)� s c1(s) (SecGuard CT1)
∴ s c0(s)�o c(o) (SecGuard C3)
∴ s c1(s) = o c(o)
The model satisfies SecGuard C3 all the same in the new
state.
(2) x = m :
∵ (s,o,m) ∈ b
∴ s c1(s) = s c0(s) (SecGuard CT1)
∴ s c0(s)�o i(o) (SecGuard C3)
∴ s c1(s)�o i(o)
The model satisfies SecGuard C3 all the same in the new
state.

Proof finished

5 The Implementation of SecGuard

We have implemented the SecGuard model as a proto-
type protection system for Linux, using the Linux Se-
curity Module (LSM) framework. We have been using
the system involving the prototype in our lab for a few
months. Due to the space constraints, we only present
some representative designs and evaluations.
Implementation: The basic implementation of Sec-
Guard is as follows. Each process has two integrity la-
bels, and when the one is created, it inherits the important
integrity level from its parent process. SecGuard can not
restrict the process whose current integrity level is high;
however a low current integrity process can not perform
any sensitive operation in the system. If a process can
send a request, it must be authorized by both the DAC of
system and our SecGuard. Due to the space constraints,
we cannot present details for the implementation of Sec-
Guard.
Evaluation of High-availability: To evaluate the avail-
ability of SecGuard model, we established a server using
Fedora Core 6 with kernel version 2.6.18, and enabled
SecGuard as a security module loaded during the system
boot. The existing programs of the system have not been
affected after our security module loading, and then we
installed some commonly used applications and the sys-
tem can still provide the services to our lab for a few
months. SecGuard contributes several features of high
availability on the operating system: the novel initial-
ization algorithm, without complex integrity levels, and
existing application programs and common practices for
using can still be used under SecGuard.
Evaluation of Security: To evaluate the security of
SecGuard model, we make use of Linux Rootkit Family
(LRK) to attack our system. The LRK is a well-known
rootkit of user-mode and it can replace many system pro-
grams and introduce some new programs to build back-
doors and to hide the adversaries. LRK can be installed
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Figure 2: The performance results of lmbench 3 mea-
surements

successfully and replaces the current SSH daemon in the
system as soon as SecGuard was closed. Then, we can
connect to the server as root with the predefined pass-
word. When our SecGuard was enabled, installation is
failed and system returns a permitted error. Thus, our
system remained security under SecGuard.
Performance: We have conducted benchmarking tests
to compare performance overhead incurred by our pro-
tection system (the operating system which has installed
SecGuard). We use Lmbench 3 benchmark and the
Unixbench 4.1 benchmark suites. We believe that these
tests were used to determine the performance overhead
incurred by the protection system for different process,
file, and operations. The experimental results are given in
Table 3 and Fig. 2. We compare our result with SELinux
[3]. The performance data of SELinux is taken from [14].
For most benchmark results, the percentage overhead is
small(≤ 5%). The performance of our model is signifi-
cantly better than the data for SELinux.

6 Conclusion

This paper presents SecGuard, a novel secure and high-
available integrity protection model for operating sys-
tems. Aiming to three threats in systems: network-based
threat, IPC communication threat, and contaminative file
threat, SecGuard provides a robust defense for operat-
ing systems, and leverages information in the existing
discretionary access control mechanism to initialize in-
tegrity labels both for the processes and files in the sys-
tems. Furthermore, SecGuard provides strong guaran-
tees for the security of the model in theory. Finally, we
describe the implementation of the SecGuard for Linux
and evaluations.
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