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Abstract 

Peer-to-Peer (P2P) content sharing systems have experienced an explosive growth, and 
now dominate large fractions of both the Internet users and traffic volume. However, due to 
the self-organization and self-maintenance nature of P2P overlay networks, these systems are 
vulnerable to the content pollution, where attackers aggressively inject a large quantity of 
polluted content into the systems. Such polluted content could largely reduce the availability 
of the original authentic content, thus enormously shattering genuine users' confidence in the 
P2P content sharing systems. 

In this report, we present a survey and comparison of various models on defending against 
content pollution. We categorize the various schemes into some groups and discuss the 
application-level model performance of each group. At end of the report, we present some 
future aspects on defending against content pollution; moreover, some important and useful 
evaluation results are in the report. 
 
1. Introduction 

Peer-to-Peer (P2P) content sharing systems, such as KaZaa [21] and BitTorrent [22], and 
today’s cloud systems [44, 45, 46, 47, 48, 49] are one of the most important services in 
today’s Internet, particular in terms of shared resources, participating users, and traffic 
volume [11]. From the first infrastructures (Napster system), P2P content sharing systems 
rapidly evolved to become a cost-effective platform to legally share and distribute terabytes 
of music, movies and software [43]. 

As the consequence of this popularity, P2P content sharing systems have been target of 
several opportunistic and malicious user behavioral patterns. Some typical attacks towards to 
the P2P content sharing systems are: Sybil attacks [14], P2P Worms [41] and content 
pollution [1, 6, 7].  
l Sybil Attacks: In a typical sybil attack, a malicious user obtains multiple fake identities 

and pretends to be multiple, distinct nodes in the system. By controlling a large fraction of 
the nodes in the system, the malicious user is able to “out vote” the honest users in 
collaborative tasks such as Byzantine failure defenses. 

l P2P Worms: This is a new type of worms that leverage the popular P2P overlay 
applications pose a very serious threat to the Internet. Generally, the P2P worms can be 
grouped into two categories: passive P2P worms and active P2P worms. The passive P2P 
worm attack is launched either by copying such worms into a few P2P hosts’ shared folders 
with attractive names, or by participating into the overlay and responding to queries with the 
index information of worms. Unable to identify the worm content items, participating P2P 
hosts download these worms unsuspected into their own shared folders, from which others 
may download later without knowing that these are worms, thus passively contributing to 
the propagation of worms. 



l P2P Content Pollution: The active polluter tampers with the content of a specific file, 
thus rendering it useless, and makes it available in the content sharing systems with the 
same metadata of the original unpolluted file. Unsuspecting users end up downloading the 
polluted content, thus consuming resources with unwanted traffic. Moreover, they tend to 
leave downloaded polluted content items in their shared folders [15], thus passively 
contributing to the dissemination of pollution in the systems. The lack of robustness of 
current P2P content sharing systems to this type of malicious behavior is evidenced by 
recent reports of as much as 80% of the copies of popular files in KaZaa being polluted [1]. 
Therefore, there is a need for cost-effective solutions to isolate active polluters, while 
motivating users to remove the polluted content they download, thus minimizing passive 
pollution dissemination.  

In this report, we only focus on the content pollution in P2P content sharing systems. A 
number of efforts towards reducing pollution dissemination are available in the literatures. 
Some previous works focused on modeling and analyzing the dissemination for different 
pollution mechanisms [6, 11, 17, 18]. Others have given general ideas on how to reduce 
pollution [1, 15, 18, 59]. Practical solutions that have been actually implemented are 
presented in [3, 5, 8, 19, 20, 60], although a comprehensive evaluation of their trade-offs is 
still required. 

The rest of this report is organized as follows. Section 2 discusses pollution definition in 
P2P content sharing systems. Section 3 describes the existing representative mechanisms on 
defending against content pollution and analyzes their availability in the current P2P content 
sharing systems. Section 4 will present the conclusions and future work. 
 
2. Content Pollution in P2P Content Sharing Systems 

The first evidences of content pollution in P2P content sharing systems appeared in a 
measurement study by J. Liang et al., which reported that up to 80% of the copies of popular 
files in KaZaA were polluted [1]. Content pollution and its implication on content 
availability are also further analyzed in [15]. 

Since these first studies, there have been several efforts towards addressing the 
content pollution problem. One group of studies characterized three basic mechanisms 
through which pollution can be introduced and disseminated in current systems:  

l Decoy insertion consists of inserting a polluted version of a content item with the 
same metadata of the original file but a different identifier [1].  

l Identifier corruption, a much more pervasive mechanism [6], consists of exploiting 
weaknesses of current techniques for generation identifiers to insert corrupted objects 
with the same object (i.e., version) identifier of an unpolluted one.  

l Index poisoning [7] consists of inserting bogus records in P2P indices, making the 
system fail to locate an existing content item. 

Due to existing research works mainly focused on decoy insertion and identifier 
corruption, we introduce these two attacks particularly: 

 
Decoy Insertion is a common sabotage mechanism used in P2P content sharing systems 
where corrupted versions of a particular content item are inserted into the network in 
order to make it difficult for users to find an uncorrupted version of that content [50, 
51]. The corrupted content that is inserted, which we call a decoy, contains the same 



metadata as the polluted content. Usually, when a user searches for a content item, the 
program in the P2P content sharing systems groups the available copies into different 
versions, and presents the versions with the largest numbers of copies to the user. If 
users do not remove polluted content items as soon as they are downloaded, the decoys 
inserted into the system may be copied many times, making it difficult to find non-
polluted content. 
 
Identifier Corruption is a much more pervasive attack for P2P content sharing systems. 
In P2P content sharing systems, when client starts sharing a content item, a unique ID is 
associated with the content item. This ID allows applications to identify the content 
items that the clients share. Moreover, when a user receives the result of a search, the 
P2P client groups results with the same ID, so that a file can be downloaded from 
multiple sources simultaneously. This ID is generated by applying a hash function to 
the file content, and each system uses a different algorithm to create it. P2P content 
sharing systems assume that a version ID generated using the hash function is unique. 
However, it is possible to have two different files with the same ID. Some of the 
common used algorithms generate the version ID based only on parts of the content. In 
this context, a malicious peer can make changes on the parts of the content which are 
not used by the algorithm to generate the version ID, creating different content items 
with the same version IDs. When a user requests this content, it will receive a list of 
versions of that content, each one with a distinct version ID and a certain number of 
copies. Then, the user chooses a version, downloading pieces of different copies. If a 
downloaded piece is a corrupted part from the changed file, the entire download content 
will be corrupted. The hash corruption is the name we give to this technique to pollute 
content items. 

Other studies have proposed analytical models, based on systems of differential 
equations and fluid modeling, to represent the pollution dissemination process [11, 18]. 
The impact of giving incentives to users to remove their polluted objects and of 
inserting polluted torrents into BitTorrent/Supernova is analyzed in [17] and [6], 
respectively. 
 
3. Related Works Discussion 

Recently, many reputation models have been proposed to address the problem of 
content pollution in P2P content sharing systems [42]. In general, these reputation models 
can be grouped into three categories: peer-based models, object-based models and 
hybrid models. In peer-based reputation models, e.g., EigenTrust [8], PeerTrust [9], 
DynamicTrust [23] and Scrubber [3], genuine users collectively identify malicious 
behaviors especially content pollution by calculating a reputation rank for each user, 
and then isolate these polluters from system. However, the studies in [24, 25] implied 
that these peer-based models are insufficient to defend against the content pollution 
attack. In object-based reputation models, e.g., Credence [24], genuine users determine 
the object authenticity through secure tabulation and management of endorsements from 
other users. Aiming at combining the benefits of both peer-based and object-based 
models, several hybrid reputation models, e.g., XRep [5], X2Rep [4] and extended 
Scrubber [2], have been further presented. Nevertheless, due to the fact that most of the 
participating users in P2P sharing systems are rational in seeking to maximize their 
individual utilities, the reputation models are greatly penalized by the lack of reliable 
user cooperation. 



Peer-based Reputation models 

There has been some research on the peer-based reputation models from Aberer and 
Depotovic [16] introduced the first reputation management system for P2P content 
sharing systems. However, their trust metric simply summarizes the complaints a peer 
receives and content items and is very sensitive to the skewed distribution of the 
community and misbehaviors of peers.  

P2PRep [26] proposed by Cornelli et al. is a P2P protocol where servants can keep 
track of information about the reputation of other peers and share them with others. 
Their focus is to provide a protocol complementing existing P2P protocols, as 
demonstrated on top of Gnutella. However, there are no formalized trust metric and no 
experimental results in the paper validating their approach. 

EigenTrust [8] proposed by Kamvar et al. is a representative peer-based reputation 
model. Their algorithm also focuses on the Gnutella like P2P content sharing systems and 
the main idea of theirs is to calculate a single performance reputation score for each 
peer, reflecting their past behavior in pair wise interactions. They want to base 
EigenTrust approach on the notion of transitive trust and addressed the collusion 
problem by assuming there are some peers in the network that can be pre-trusted. While 
the algorithm showed promising results against a variety of threat models, in my 
opinion, the pre-trusted peers may not be available in all cases and a more general 
approach is needed. Another shortcoming of their model is that the implementation of 
the algorithm is very complex and requires strong coordination and synchronization of 
peers. 

PeerTrust [9] identifies five important trust factors and merges them into a general trust 
metric to quantify and assess the trustworthiness of peers, where a peer’s 
trustworthiness is defined by an evaluation of the peer in terms of the level of 
reputation it receives in providing services to other peers. But their model solves the 
problems both malicious and good by the symmetry trend line. In other words, the 
sensitivities of PeerTrust do not depend on the number of accumulated experiences. The 
sensitivity of PeerTrust is the same for positive and negative changes, contradicting the 
principle of quick drop and lent raise of trust. Moreover, metric of PeerTrust can not 
penalize the oscillatory behavior of a malicious peer. Another critical problem of 
PeerTrust is that five parameters are headachy for input. 

DynamicTrust [23] can be seen as the extend PeerTrust model. The metric of model is 
based on three factors: the short term reputation, the long term reputation and the 
penalty factors. The short term reputation is sensitive to fresh experiences and can 
quickly react to sudden misbehaving peers. The long term reputation equally weights 
the old and new experiences, assuring that lone term behavior will still be accounted for 
despite the possible short temporary excesses. Finally, the penalty factory is a measure 
of all the reputation that has been misused by a peer and has the role of inhibiting the 
oscillatory behavior. However, DynamicTrust also has several shortcomings: (1) Due to 
algorithm is very complex, the implement of the model become a problem; (2) It is too 
strict that the peer’s reputation is the minimum of short term reputation and long term 
reputation; (3) Peer-based penalty factory is not a good solution for collusion attack. 

Scrubber [3] peer-based reputation system is designed to identify and isolate malicious 
peers that actively disseminate polluted content. It also allows the rehabilitation of 
passive polluters (i.e., peers that share polluted content by negligence), by giving them 
an incentive to remove polluted content they have downloaded. Scrubber assigns each 



peer a reputation value, and the value is built from two components, namely, Individual 
Experience and Peer Testimonial. The Individual Experience represents the direct trust 
relationship between two peers, and can be calculated by penalty and reward. The same 
as DynamicTrust, in Scrubber, Individual Experience decrease faster than they increase. 
Even if a peer builds up a good reputation, it will quickly decrease once the peer starts 
acting maliciously. The Peer Testimonial on a peer captures the network opinion. 
Periodically, each peer sends a Testimonial Query to a number of randomly selected 
known peers to retrieve their Individual Experience with respect to the other peers. This 
information is used, before each new download, to update the Peer Testimonial of peer 
on each other peers as algorithms for Scrubber model. Before and after each download, 
peer updates the local reputation of each other peers using sum of changeable weights 
of Individual Experience and Peer Testimonial. Comparing with Credence [24], 
Scrubber has a much faster convergence to a competitive efficiency. But Scrubber can 
not defend collusion attack; especially the number of malicious peers is more than half 
of total peers. The same as other peer-based reputation systems, Scrubber cannot solve 
the content pollution completely. 

Due to naturally shortcoming of the peer-based reputation models are insufficient to defend 
against the content pollution, next, we will mainly discuss the object-based and hybrid models 
that Credence [24], XRep [5], X2Rep [4] and extended Scrubber [2]. 

 

From XRep, X2Rep to Credence 

XRep [5] is a notable reputation-based trust management system that can be 
straightforwardly piggybacked onto the Gnutella P2P content sharing protocol. XRep 
defines a secure protocol for the exchange of reputation information using the same 
message passing mechanisms as used in standard Gnutella Query and QueryHit 
exchanges. Thus, to provide XRep functionality, current Gnutella implementations 
require only modest modifications. 

In XRep reputation information is associated with both peers and resources. XRep requires 
resources and peers to be uniquely identifiable. This is achieved by using the digest of a 
resource’s content as the resourceid, and the digest of the public key of a peer as the peerid. 
Using a cryptographic hash function ensures that the resources and the peers are uniquely 
identifiable.  

When considering a content item download in Gnutella, the user selects the resource that 
best satisfies the request (using information such as the standard resource metadata string and 
offers connection speed). To assist the user in making the download decision, the network is 
‘polled’ for any available reputation information on that resource and the peers that offer it. 
Poll messages are broadcast in the same way as Gnutella Query messages. All peers maintain 
repositories of their experiences (both good and bad) of resources they have downloaded and 
the peers with whom they have interacted. When a peer receives a Poll message, it checks its 
repositories for matching resource and peer identifiers. If it has some information to offer, it 
generates a set of binary votes based on its experiences, and returns them to the enquirer as a 
PollReply message. 

The resource and peer votes are then processed and combined to produce a single value to 
the user as a reputation value for the download under consideration. Based on this reputation 
value, the user can make a decision whether or not to initiate a download. 



Prior to the download, the offering peer for whom the highest peer reputation value was 
calculated is contacted directly to verify that it has really offered the target resource. This 
exchange is known as the Best Peer Check. The phases of XRep protocol is as follow: 

Phase 1. A minor change to the Gnutella Query exchange is required; the resource identifier 
is added to the resource information contained in the ResultSet of the QueryHit message. This 
allows the polling peer to uniquely identify each offered resource. 

Phase 2. The poll message consists of the identifier of the resource under consideration and 
the set of peers that offer it. Also included is a public key Pkpoll for which only the polling 
peer knows the private key. This may be a persistent key pair or a pair generated on the fly for 
each poll. Voting peers return their votes for some or all of the entities listed in the Poll 
message together with their IP address. The message is encrypted with Pkpoll to ensure 
confidentiality. 

Phase 3. Once a set of votes are received, the polling peer must try to ensure the reliability of 
the votes and the honesty of the voters. The polling peer attempts this by carrying out the 
following steps. 

� Decrypt each PollReply message and detect any tampering that may have taken place. 

� Group votes from voters that are from the same IP network. 

� Select a portion of peers from each group send a TrueVote challenge, from which the 
poller expects to receive a TrueVoteReply. This ensures that at least some of the votes are 
from genuine peers and not merely spoofed votes from non-existent IP addresses. 

Phase 4. At stage the polling peer has evaluated trust for all the entities under consideration. 
The poller now carries out one further phase to ensure that the peer with the best trust 
evaluation exists and actually offers the resource. It is important for two reasons: 

� A malicious peer is prevented from ‘hijacking’ the identity (peerid) of a reputable peer. 

� If it can be established that the resource has a good reputation and is offered by a peer with 
a good reputation, then it is possible to download that resource from any offerer and be 
assured that the resource is reliable. This can be considered as a load balancing technique. 

The XRep protocol attempts to ensure the reliability of votes and protect against votes 
originating from colluding peers. The method of latter is by identifying voting cliques 
through clustering the votes that are provided by votes with the same network portion of their 
IP address. Such a correlation between colluding peers and IP addresses is tenuous [4]. XRep 
provides some safeguards against ID Stealth attacks. These attacks take place when a 
malicious peer ‘hijacks’ the identity (peerid) of a reputable peer in order to deceive another 
peer into a malicious download. In such cases, the downloading peer believes it is interacting 
a peer with a good reputation. XRep provides safeguards against this attack in the Best Peer 
Check message exchange. Prior to downloading a resource, the downloading peer challenges 
the offering peer as to whether it really does offer the resource under consideration. The 
offering peer sends a response that is signed using its private key, and also supplies its public 
key. The downloading peer can be certain of the identity of the offering peer, firstly by 
verifying the signature of the message, and secondly by taking a cryptographic hash of the 
provided public key and comparing it against the peerid of the offering peer. If all verification 
is successful the downloading peer can initiate the download. 



There are three basic strategies that can be employed by a single malicious peer or a group 
(collusion) of malicious peers with the intention of circumventing or degrading the reputation 
system in order to continue to share malicious resources unchallenged. We outline these 
strategies in the following: 

Strategy A: This strategy is the simplest way for a malicious peer to share malicious resources. 
The peer actively participates in the network by offering good resources. However, 
occasionally the malicious peer will offer malicious resources. The malicious peer must 
carefully monitor the amount of good and bad resources it supplies in order to maintain a 
network-wide reputation that is sufficiently high for other peers to deem it trustable. 

Strategy B: In this strategy a malicious agent attempts to degrade the quality of the reputation 
system by generating spurious votes when polled. The principal objective of this strategy may 
either be to simply degrade the correctness of reputation values to the point where these 
information are no longer trustable, or to attempt to increase the peer’s relative standing by 
voting positively for itself and negatively for all others. 

Strategy C: This strategy shares a similar objective with Strategy B. The principal 
differentiator is that more effort and resources are required on the part of the malicious peer(s) 
and such activity is harder to counteract by the reputation system. A group of peers 
systematically vote positively for each other whilst sharing malicious resources. Each peer in 
the group may also share some good resources in order to enhance its own reputation. The 
difficultly in detection of this strategy results from the evaluating peer receiving what appears 
to be a set of valid votes sent by real peers. 

Due to above problems of XRep, X2Rep is designed to address the weaknesses of XRep 
protocol. 

 

X2Rep [4] is an enhanced trust semantics algorithm that can be seamlessly incorporated into 
the XRep protocol. The contribution of X2Rep is that the algorithm provides substantial 
improvements against the weaknesses of XRep using extensive simulations. X2Rep gives 
more expressive power to peers to express their opinion about resources that they have 
downloaded and the peers that have downloaded from, and allows collusions of malicious 
peers to use a range of strategies and use the reputation to protect against these attacks. Due to 
the XRep protocol uses a complex process of challenge and response messages to ensure that 
a vote is supplied by a ‘real’ peer, the X2Rep eliminate this complexity by employing 
extensive vote generation and evaluation system that make use of voter credibility 
information. In X2Rep, voter credibility is an additional piece of information that helps an 
evaluating peer to determine the trustworthiness of a voter’s vote through the evaluation of 
the voter’s previous voting activity. X2Rep can be divided by four logical parts: (1) Local 
Reputation Repository; (2) Voting; (3) Evaluating Ratings for Downloads and (4) Updating 
State on a Peer. The principle of each part is as follow: 

Local Reputation Repository: Each peer will store data expressing its experiences with peers 
and resources that it has interacted with. For each downloaded resource, a pair can be stored 
with an identification of the resource ID and a real value between 0 (poor or malicious) and 1 
(good), that is a measure of satisfaction of the peer with the resource. For each peer Pj that Pi 
has interacted with, Pi maintains a vector of length n storing its past n experiences with that 
peer. The peer Experience Vector vij is denoted by vij = (Pj, (qij,1, qij,2, qij,3, ..., qij,n)) where qij,k, 



k = 1, …, n are real values between 0 (poor or malicious) and 1 (good). On completion of 
each transaction with the peer Pj, Pi evaluates the transaction and generates a number that 
reflects his satisfaction and appends it to the end of the Experience Vector associated with 
peer Pj. The vector stores the results of the most recent n experiences and so as new 
experiences are appended the oldest ones are removed. During the initialization phase all data 
items will be set to zero. 

Voting: In X2Rep, voting can be divided two categories that Resource Vote and Peer Vote. 
The former means that vote of Pi for a resource with resource ID. This allows the polling peer 
to learn precisely how the voting peer rated the resource. Peer Vote is that voting for a peer 
uses the content of the Experience Vector associated with that peer. This information will be 
used to generate a vote that is a number in the interval [0, 1]. The method of Peer Vote is very 
easy that calculate the average value of Experience Vector between two peers.  

Evaluating Ratings for Downloads: After a specified time period, the polling peer will have 
received zero or more PollReply messages. The peer now must convert these votes into an 
evaluation for a possible transaction. X2Rep presents a parameter called credibility cij that is 
given by the peer Pi for the peer Pj that has provided votes in previous transactions and will 
be stored in the Local Credibility Repository of the peer Pi. Credibility cij is a real number in 
the interval [0, 1] and is initialized to zero for an unknown peer. Credibility values will be 
used to adjust peers’ votes to either peer vote or resource vote for the current download. A 
peer Pi that sent a resource vote uik to polling peer Pk, and the polling peer will reply his vote 
uk as 1 or 0. Pi can calculate the uk = ukckj and store this value as resource vote of polling peer 
Pk. After collecting all vote, peer Pi can calculate the Resource Trust Value RT = ∑uk. A peer 
Pi, that sent a peer vote vij about offering peer Pj to peer Pl , will have the Adjusted Peer Vote 
vij as: vij = vijcli. Peer Trust Value PT = ∑vij. The final trust value presented to the user will be 
a combination of the resource and peer trust values. The simplest approach would be to find 
the average of the two values. Users can use trust categories combined with other criteria, for 
example accepted level of risk, to make the final decision. 

Updating State on a Peer: After the completion of a transaction, the state information of the 
downloading peer must be update. This includes the following. 

� Updating the downloading peer’s Local Reputation Repository with peer and resource 
evaluation values. 

��For each peer that provided a vote: 

l  If the voting peer Pi provided an accurate vote ci = ci + 0.05. 

l  If the voting peer Pi provided an inaccurate vote ci = 0. 

In my opinion, reducing ci to zero for a single inaccurate vote may seem harsh. In 
fact, peer can control the trust value according to experience vector. Another 
shortcoming, resource trust and peer trust should have to be valuable information, 
however in X2Rep, they are calculated or combined very hash. But I think we can get 
several important enlights from X2Rep, for example, peer vote and experience vector. 
These information can be used of calculating some better results. 

 

Credence [24], which is the best paper of NSDI’06, introduces a decentralized 
distributed system, where users assign reputations to the objects they download 



regarding their authenticity. It is based on a distributed vote gathering protocol for 
disseminating the object reputations in the network, and on a correlation scheme which 
gives more weight to votes from like-minded peers. 

The system works as follows. Before peer A downloads an object o, it issues a vote-
gather in the network to collect votes about o, providing o’s identifier. Collected votes 
are either -1, if the voter considers o polluted, or +1, otherwise. The object reputation is 
computed, weighting each vote by the relationship A has had with the vote owner. 

The relationship between two peers, expressed by the correlation of their voting 
histories, captures whether they tend to vote identically (positive correlation), inversely 
(negative correlation) or whether their voting histories are uncorrelated. The correlation 
between peers A and B is computed as )1)(1(/)(),( baababpBA −−−=θ  , where a (b) is the 
fraction of positive votes given by A (B) in the past, and p the fraction where both peers 
vote positively. When computing the reputation of an object, peer A weights the vote 
from peer B by r(A, B), which is equal to ),( BAθ  if | ),( BAθ | >= 0.5, and 0 otherwise (i.e., 
A and B disregard each other’s votes if they have uncorrelated voting histories). After 
collecting a set of votes for an object, the client verifies the signature and key 
certificate on each of the votes, then aggregates the set into a single reputation estimate 
to present to the user. Simply tabulating the available votes using un-weighted 
averaging would be prone to manipulation, as attackers could simply flood the network 
with votes. Instead, each Credence client computes a trust metric for each vote, and 
uses weighted averaging to compute an estimate of the object’s overall reputation. The 
object reputation is interpreted as a personalized estimate of the authenticity of the 
object, and can be used to make a more informed decision to accept or reject the object. 

Each peer stores all collected votes in a local vote database. All strong correlations 
(i.e., | ),( BAθ | >= 0.5) are also stored in a local correlation table, which is periodically 
updated. But pairwise correlations cannot robustly evaluate the relationship between a 
client and peers having only a few interests in common with the client. Credence 
overcomes this limitation by allowing clients to leverage the correlations discovered by 
their peers, effectively expanding their horizon along paths of correlated peers. 
Credence incorporates a notion of transitive correlation which enables strong 
correlations between this peer and a more distant peer, to be combined into an estimate 
of the relationship between the client and distant peer. Transitive correlations are 
computed by building and maintaining a local model of the pairwise trust relationships 
between peers in the network, then periodically executing a flow-based algorithm on 
the resulting trust graph. Nodes in the trust graph represent peers in the network, and a 
weighted edge between nodes represents one peer’s correlation estimate for another. 
Initially, a client populates the trust graph using locally computed correlations from its 
local vote database. The remainder of the graph is built using a gossip protocol, where 
each client randomly selects peers in the network and exchanges locally computed 
correlation coefficients. The selection of these gossip partners is biased towards peers 
with known positive correlations to preferentially expand the most useful parts of the 
graph. So, votes from peers distantly connected in the graph can used to approximate 
the votes of peers more closely connected, by emulating the weighted voting 
computation at each step along the path. Considering expensive of calculating the so 
large graph, Credence also periodically runs the gossip protocol. As a simplification 
and optimization in implementation of the Credence, each client periodically computes 
only a single maximum weight path to every other peer in its local graph, where path 
weight is the product of weights along edges. The calculation is constrained to use 



paths where negative weights appear only on the last edge in the path, since a client 
cannot trust a negatively correlated peer to provide useful judgments about correlations 
to more distant peers. The resulting transitive correlations are cached for later use in 
weighting votes when a local correlation is not available. 

Credence is a novel object-based reputation framework, but there are several shortcomings 
existing in it. In my opinion, the mainly future works about it are as follow: 

l  If there is a new peer joins the networks, the correlation between it and the other peers will 
be built after downloading several content items and these operations can create some 
pollution for the peer and the whole networks. 

l  Credence proposes two strategies about auditing to protect the reliability of its local trust 
graph against peers that lie about correlations when exchanging information. But the 
auditing is not implemented in the deployed version of the Credence software, and whether 
we can research a novel metric to protect the authenticity of exchanging information. 

l  There are some another factor can be considered in the model, such as time, social and so 
on. If some of above factors can be introduced in Credence or the other model, the 
correlation trustiness will be get a better value. 

l  Collusion attacks can be defend by Credence, but if there are several disguised malicious 
peers who make trouble in the system. So can we design a new method to defend disguised 
peers. 

l  Credence present an object-based reputation framework to address decoy insertion, 
however, it cannot defend identifier corruption attack. Can we research a new method to 
help Credence to address the corruption attack [55]. 

 

Extended Scrubber [2] is built on the previous work of [3] and [24]. The design of the new 
hybrid peer and object reputation system is motivated by the improvement of Scrubber, 
because Scrubber is not always able to clean polluted objects shared by peers, despite a quick 
convergence. Credence, on the contrary, converges much more slowly, but is eventually able 
to isolate all polluted objects. So the authors of Scrubber combine the works of Scrubber [3] 
and Credence [24] to create the new hybrid reputation system – Extended Scrubber. The 
hybrid system has two key components, the object reputation and peer reputation. As in 
Credence, the object reputation is built from peer votes on the object authenticity. Before 
downloading an object o, peer i issues an Object Voting Query to collect votes on object o. 
The vote Vj(o) of peer j on object o can be either -1 or +1. Peer i then calculates the reputation 
of object o, Ri(o) as : 

∑
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The formula is very easy to understand. Extended Scrubber calculates the object reputation 
from peer i to object o using the reputation from peer i to peer j who votes the object o as the 
weights of vote of peer j on object o. So the reputation of peer i to object o means a weighted 
averaging calculating of the vote of peer to object. 

The peer reputation component is an extension of Scrubber. It is also built from Individual 
Experiences and Peer Testimonials. Peer Testimonials formula is the same as the one in 
Scrubber but Individual Experience is introduced penalty factor both of polluter and liar. 



After calculating both Individual Experiences and Peer Testimonials, the peer reputation will 
be used to compute the object reputation.  

Through the experiments of Extended Scrubber, we can find the Extended Scrubber is 
better than Credence on defending decoy insertion and address the identifier corruption attack 
that Credence cannot defend. Comparing the effectiveness against Credence system, 
Extended Scrubber performs better. We can summarize the advantages of Extended Scrubber 
that: (1) Extended Scrubber converges much faster to a maximum efficiency than the other 
systems, even under collusion and Sybil attacks; (2) Extended Scrubber is less sensitive to 
parameter setting than Scrubber, providing cost-effectiveness for various configurations and 
(3) Even in very uncooperative and unreliable communities, Extended Scrubber is still able to 
restrain pollution dissemination, but the others, such as Credence and Scrubber, cannot do so. 

Of course, Extended Scrubber has several shortcomings: (1) Under traitor attack, the model 
cannot work as usual; (2) Due to lack of incentive metric, the capability of implementation of 
Extended Scrubber cannot be predicted; (3) The penalty of entity is inadequate, under badly 
collusion attack, Extended Scrubber system cannot perform as well. 

Table3.1 presents comparing between a few representative reputation models. 

Table 3.1 Comparing between Models 

 EignTrust PeerTrust Credence Extended 
Scrubber 

X2Rep 

Introduced 
Time 

2003 2004 2006 2007 2004 

Type Peer-Based Peer-Based Object-Based Hybrid Hybrid 

 
Main 

Principle 

Iterative 

Calculation of 
Relationship 

Matrix 

Peers’ Behaviors 

Capturing as 
Input Factors 

Coincidence of 

Experiences of 
the Same Files 
Downloaded 

Using Peers’ 

Reputations as the 
Weights of Object 

Reputation 
Computing 

Combining both Peers’ 

Reputations Calculated 
by Average of 

Experience and Objects 
Reputation Calculated 

by Votes 

Collusion 
Defense 

low low high high medium 

Research 
Goal 

malicious users malicious users decoy insertion content pollution decoy insertion 

Users 
Feedback 

Yes no yes yes yes 

Improvement New Metric 
[27] 

DynamicTrust 
[23] 

Extended 
Scrubber [2] 

None Credence [24] 

P2P Topology Gnutella Gnutella Gnutella and 
Structure 

Gnutella and 
Structure 

Gnutella and Structure 

In this section, we summarize the whole reputation models to defend malicious behaviors 
especially content pollution attacks. The next section we will present some conclusions and 
future work. 
 
4. Conclusions and Future Work 

Content pollution in P2P content sharing systems has become a serious problem, and 
several metrics are introduced to combating the problems. In the report, we summarize the 
existing reputation-based representative models for defending content pollution, and both 



advantages and shortcomings have been presented for every model. Through researching for 
these reputation models, we find that the metrics that are on peer-based reputation are not 
enough to defend content pollution, but object-based reputation model is a little roughness. So 
the future work will focus on the research of hybrid reputation model.  

In my opinion, the future work of content pollution defending can be the aspects as follow: 

l  Find a novel object-based reputation framework to defend both decoy insertion and 
identifier corruption. The metrics will be referenced by existing theories that trusted 
recommending. Of course, the new model must be better and easier than Credence. 

l Adapt some spam-defense mechanisms [50, 52, 53, 54, 56, 57, 58] into cloud spam 
detection and P2P network area. 

l  Hybrid models will be a future work on defending content pollution. From Extended 
Scrubber, we haven’t found how effective it can address identifier corruption. So a 
effectively and reliability framework based on hybrid reputation model will be a good 
topic on solving the content pollution. 

l  Incentive mechanism is the critical metric for addressing the problem of content 
pollution, and as we know, there are few incentive mechanisms on defending this 
problem. How can design a reliability incentive mechanism to address the problem 
will be a good future work. 

l  Some shortcomings introduced in the report should have been addressed in future 
work; this kind of improvement work will create the new reputation model. 
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