
Securing Peer-to-Peer Content Sharing Systems through Detecting
Pollution Behaviors

Eric Chang
Yale University

Abstract

Peer-to-Peer (P2P) content sharing systems have experienced an explosive growth, and
now dominate large fractions of both the Internet users and traffic volume. However, due to
the self-organization and self-maintenance nature of P2P overlay networks, these systems are
vulnerable to the content pollution, where attackers aggressively inject a large quantity of
polluted content into the systems. Such polluted content could largely reduce the availability
of the original authentic content, thus enormously shattering genuine users' confidence in the
P2P content sharing systems.

In this report, we present a survey and comparison of various models on defending against
content pollution. We categorize the various schemes into some groups and discuss the
application-level model performance of each group. At end of the report, we present some
future aspects on defending against content pollution; moreover, some important and useful
evaluation results are in the report.

1. Introduction

Peer-to-Peer (P2P) content sharing systems, such as KaZaa [21] and BitTorrent [22], and
today’s cloud systems [44, 45, 46, 47, 48, 49] are one of the most important services in
today’s Internet, particular in terms of shared resources, participating users, and traffic
volume [11]. From the first infrastructures (Napster system), P2P content sharing systems
rapidly evolved to become a cost-effective platform to legally share and distribute terabytes
of music, movies and software [43].

As the consequence of this popularity, P2P content sharing systems have been target of
several opportunistic and malicious user behavioral patterns. Some typical attacks towards to
the P2P content sharing systems are: Sybil attacks [14], P2P Worms [41] and content
pollution [1, 6, 7].
l Sybil Attacks: In a typical sybil attack, a malicious user obtains multiple fake identities

and pretends to be multiple, distinct nodes in the system. By controlling a large fraction of
the nodes in the system, the malicious user is able to “out vote” the honest users in
collaborative tasks such as Byzantine failure defenses.

l P2P Worms: This is a new type of worms that leverage the popular P2P overlay
applications pose a very serious threat to the Internet. Generally, the P2P worms can be
grouped into two categories: passive P2P worms and active P2P worms. The passive P2P
worm attack is launched either by copying such worms into a few P2P hosts’ shared folders
with attractive names, or by participating into the overlay and responding to queries with the
index information of worms. Unable to identify the worm content items, participating P2P
hosts download these worms unsuspected into their own shared folders, from which others
may download later without knowing that these are worms, thus passively contributing to
the propagation of worms.

l P2P Content Pollution: The active polluter tampers with the content of a specific file,
thus rendering it useless, and makes it available in the content sharing systems with the
same metadata of the original unpolluted file. Unsuspecting users end up downloading the
polluted content, thus consuming resources with unwanted traffic. Moreover, they tend to
leave downloaded polluted content items in their shared folders [15], thus passively
contributing to the dissemination of pollution in the systems. The lack of robustness of
current P2P content sharing systems to this type of malicious behavior is evidenced by
recent reports of as much as 80% of the copies of popular files in KaZaa being polluted [1].
Therefore, there is a need for cost-effective solutions to isolate active polluters, while
motivating users to remove the polluted content they download, thus minimizing passive
pollution dissemination.

In this report, we only focus on the content pollution in P2P content sharing systems. A
number of efforts towards reducing pollution dissemination are available in the literatures.
Some previous works focused on modeling and analyzing the dissemination for different
pollution mechanisms [6, 11, 17, 18]. Others have given general ideas on how to reduce
pollution [1, 15, 18, 59]. Practical solutions that have been actually implemented are
presented in [3, 5, 8, 19, 20, 60], although a comprehensive evaluation of their trade-offs is
still required.

The rest of this report is organized as follows. Section 2 discusses pollution definition in
P2P content sharing systems. Section 3 describes the existing representative mechanisms on
defending against content pollution and analyzes their availability in the current P2P content
sharing systems. Section 4 will present the conclusions and future work.

2. Content Pollution in P2P Content Sharing Systems

The first evidences of content pollution in P2P content sharing systems appeared in a
measurement study by J. Liang et al., which reported that up to 80% of the copies of popular
files in KaZaA were polluted [1]. Content pollution and its implication on content
availability are also further analyzed in [15].

Since these first studies, there have been several efforts towards addressing the
content pollution problem. One group of studies characterized three basic mechanisms
through which pollution can be introduced and disseminated in current systems:

l Decoy insertion consists of inserting a polluted version of a content item with the
same metadata of the original file but a different identifier [1].

l Identifier corruption, a much more pervasive mechanism [6], consists of exploiting
weaknesses of current techniques for generation identifiers to insert corrupted objects
with the same object (i.e., version) identifier of an unpolluted one.

l Index poisoning [7] consists of inserting bogus records in P2P indices, making the
system fail to locate an existing content item.

Due to existing research works mainly focused on decoy insertion and identifier
corruption, we introduce these two attacks particularly:

Decoy Insertion is a common sabotage mechanism used in P2P content sharing systems
where corrupted versions of a particular content item are inserted into the network in
order to make it difficult for users to find an uncorrupted version of that content [50,
51]. The corrupted content that is inserted, which we call a decoy, contains the same

metadata as the polluted content. Usually, when a user searches for a content item, the
program in the P2P content sharing systems groups the available copies into different
versions, and presents the versions with the largest numbers of copies to the user. If
users do not remove polluted content items as soon as they are downloaded, the decoys
inserted into the system may be copied many times, making it difficult to find non-
polluted content.

Identifier Corruption is a much more pervasive attack for P2P content sharing systems.
In P2P content sharing systems, when client starts sharing a content item, a unique ID is
associated with the content item. This ID allows applications to identify the content
items that the clients share. Moreover, when a user receives the result of a search, the
P2P client groups results with the same ID, so that a file can be downloaded from
multiple sources simultaneously. This ID is generated by applying a hash function to
the file content, and each system uses a different algorithm to create it. P2P content
sharing systems assume that a version ID generated using the hash function is unique.
However, it is possible to have two different files with the same ID. Some of the
common used algorithms generate the version ID based only on parts of the content. In
this context, a malicious peer can make changes on the parts of the content which are
not used by the algorithm to generate the version ID, creating different content items
with the same version IDs. When a user requests this content, it will receive a list of
versions of that content, each one with a distinct version ID and a certain number of
copies. Then, the user chooses a version, downloading pieces of different copies. If a
downloaded piece is a corrupted part from the changed file, the entire download content
will be corrupted. The hash corruption is the name we give to this technique to pollute
content items.

Other studies have proposed analytical models, based on systems of differential
equations and fluid modeling, to represent the pollution dissemination process [11, 18].
The impact of giving incentives to users to remove their polluted objects and of
inserting polluted torrents into BitTorrent/Supernova is analyzed in [17] and [6],
respectively.

3. Related Works Discussion

Recently, many reputation models have been proposed to address the problem of
content pollution in P2P content sharing systems [42]. In general, these reputation models
can be grouped into three categories: peer-based models, object-based models and
hybrid models. In peer-based reputation models, e.g., EigenTrust [8], PeerTrust [9],
DynamicTrust [23] and Scrubber [3], genuine users collectively identify malicious
behaviors especially content pollution by calculating a reputation rank for each user,
and then isolate these polluters from system. However, the studies in [24, 25] implied
that these peer-based models are insufficient to defend against the content pollution
attack. In object-based reputation models, e.g., Credence [24], genuine users determine
the object authenticity through secure tabulation and management of endorsements from
other users. Aiming at combining the benefits of both peer-based and object-based
models, several hybrid reputation models, e.g., XRep [5], X2Rep [4] and extended
Scrubber [2], have been further presented. Nevertheless, due to the fact that most of the
participating users in P2P sharing systems are rational in seeking to maximize their
individual utilities, the reputation models are greatly penalized by the lack of reliable
user cooperation.

Peer-based Reputation models

There has been some research on the peer-based reputation models from Aberer and
Depotovic [16] introduced the first reputation management system for P2P content
sharing systems. However, their trust metric simply summarizes the complaints a peer
receives and content items and is very sensitive to the skewed distribution of the
community and misbehaviors of peers.

P2PRep [26] proposed by Cornelli et al. is a P2P protocol where servants can keep
track of information about the reputation of other peers and share them with others.
Their focus is to provide a protocol complementing existing P2P protocols, as
demonstrated on top of Gnutella. However, there are no formalized trust metric and no
experimental results in the paper validating their approach.

EigenTrust [8] proposed by Kamvar et al. is a representative peer-based reputation
model. Their algorithm also focuses on the Gnutella like P2P content sharing systems and
the main idea of theirs is to calculate a single performance reputation score for each
peer, reflecting their past behavior in pair wise interactions. They want to base
EigenTrust approach on the notion of transitive trust and addressed the collusion
problem by assuming there are some peers in the network that can be pre-trusted. While
the algorithm showed promising results against a variety of threat models, in my
opinion, the pre-trusted peers may not be available in all cases and a more general
approach is needed. Another shortcoming of their model is that the implementation of
the algorithm is very complex and requires strong coordination and synchronization of
peers.

PeerTrust [9] identifies five important trust factors and merges them into a general trust
metric to quantify and assess the trustworthiness of peers, where a peer’s
trustworthiness is defined by an evaluation of the peer in terms of the level of
reputation it receives in providing services to other peers. But their model solves the
problems both malicious and good by the symmetry trend line. In other words, the
sensitivities of PeerTrust do not depend on the number of accumulated experiences. The
sensitivity of PeerTrust is the same for positive and negative changes, contradicting the
principle of quick drop and lent raise of trust. Moreover, metric of PeerTrust can not
penalize the oscillatory behavior of a malicious peer. Another critical problem of
PeerTrust is that five parameters are headachy for input.

DynamicTrust [23] can be seen as the extend PeerTrust model. The metric of model is
based on three factors: the short term reputation, the long term reputation and the
penalty factors. The short term reputation is sensitive to fresh experiences and can
quickly react to sudden misbehaving peers. The long term reputation equally weights
the old and new experiences, assuring that lone term behavior will still be accounted for
despite the possible short temporary excesses. Finally, the penalty factory is a measure
of all the reputation that has been misused by a peer and has the role of inhibiting the
oscillatory behavior. However, DynamicTrust also has several shortcomings: (1) Due to
algorithm is very complex, the implement of the model become a problem; (2) It is too
strict that the peer’s reputation is the minimum of short term reputation and long term
reputation; (3) Peer-based penalty factory is not a good solution for collusion attack.

Scrubber [3] peer-based reputation system is designed to identify and isolate malicious
peers that actively disseminate polluted content. It also allows the rehabilitation of
passive polluters (i.e., peers that share polluted content by negligence), by giving them
an incentive to remove polluted content they have downloaded. Scrubber assigns each

peer a reputation value, and the value is built from two components, namely, Individual
Experience and Peer Testimonial. The Individual Experience represents the direct trust
relationship between two peers, and can be calculated by penalty and reward. The same
as DynamicTrust, in Scrubber, Individual Experience decrease faster than they increase.
Even if a peer builds up a good reputation, it will quickly decrease once the peer starts
acting maliciously. The Peer Testimonial on a peer captures the network opinion.
Periodically, each peer sends a Testimonial Query to a number of randomly selected
known peers to retrieve their Individual Experience with respect to the other peers. This
information is used, before each new download, to update the Peer Testimonial of peer
on each other peers as algorithms for Scrubber model. Before and after each download,
peer updates the local reputation of each other peers using sum of changeable weights
of Individual Experience and Peer Testimonial. Comparing with Credence [24],
Scrubber has a much faster convergence to a competitive efficiency. But Scrubber can
not defend collusion attack; especially the number of malicious peers is more than half
of total peers. The same as other peer-based reputation systems, Scrubber cannot solve
the content pollution completely.

Due to naturally shortcoming of the peer-based reputation models are insufficient to defend
against the content pollution, next, we will mainly discuss the object-based and hybrid models
that Credence [24], XRep [5], X2Rep [4] and extended Scrubber [2].

From XRep, X2Rep to Credence

XRep [5] is a notable reputation-based trust management system that can be
straightforwardly piggybacked onto the Gnutella P2P content sharing protocol. XRep
defines a secure protocol for the exchange of reputation information using the same
message passing mechanisms as used in standard Gnutella Query and QueryHit
exchanges. Thus, to provide XRep functionality, current Gnutella implementations
require only modest modifications.

In XRep reputation information is associated with both peers and resources. XRep requires
resources and peers to be uniquely identifiable. This is achieved by using the digest of a
resource’s content as the resourceid, and the digest of the public key of a peer as the peerid.
Using a cryptographic hash function ensures that the resources and the peers are uniquely
identifiable.

When considering a content item download in Gnutella, the user selects the resource that
best satisfies the request (using information such as the standard resource metadata string and
offers connection speed). To assist the user in making the download decision, the network is
‘polled’ for any available reputation information on that resource and the peers that offer it.
Poll messages are broadcast in the same way as Gnutella Query messages. All peers maintain
repositories of their experiences (both good and bad) of resources they have downloaded and
the peers with whom they have interacted. When a peer receives a Poll message, it checks its
repositories for matching resource and peer identifiers. If it has some information to offer, it
generates a set of binary votes based on its experiences, and returns them to the enquirer as a
PollReply message.

The resource and peer votes are then processed and combined to produce a single value to
the user as a reputation value for the download under consideration. Based on this reputation
value, the user can make a decision whether or not to initiate a download.

Prior to the download, the offering peer for whom the highest peer reputation value was
calculated is contacted directly to verify that it has really offered the target resource. This
exchange is known as the Best Peer Check. The phases of XRep protocol is as follow:

Phase 1. A minor change to the Gnutella Query exchange is required; the resource identifier
is added to the resource information contained in the ResultSet of the QueryHit message. This
allows the polling peer to uniquely identify each offered resource.

Phase 2. The poll message consists of the identifier of the resource under consideration and
the set of peers that offer it. Also included is a public key Pkpoll for which only the polling
peer knows the private key. This may be a persistent key pair or a pair generated on the fly for
each poll. Voting peers return their votes for some or all of the entities listed in the Poll
message together with their IP address. The message is encrypted with Pkpoll to ensure
confidentiality.

Phase 3. Once a set of votes are received, the polling peer must try to ensure the reliability of
the votes and the honesty of the voters. The polling peer attempts this by carrying out the
following steps.

� Decrypt each PollReply message and detect any tampering that may have taken place.

� Group votes from voters that are from the same IP network.

� Select a portion of peers from each group send a TrueVote challenge, from which the
poller expects to receive a TrueVoteReply. This ensures that at least some of the votes are
from genuine peers and not merely spoofed votes from non-existent IP addresses.

Phase 4. At stage the polling peer has evaluated trust for all the entities under consideration.
The poller now carries out one further phase to ensure that the peer with the best trust
evaluation exists and actually offers the resource. It is important for two reasons:

� A malicious peer is prevented from ‘hijacking’ the identity (peerid) of a reputable peer.

� If it can be established that the resource has a good reputation and is offered by a peer with
a good reputation, then it is possible to download that resource from any offerer and be
assured that the resource is reliable. This can be considered as a load balancing technique.

The XRep protocol attempts to ensure the reliability of votes and protect against votes
originating from colluding peers. The method of latter is by identifying voting cliques
through clustering the votes that are provided by votes with the same network portion of their
IP address. Such a correlation between colluding peers and IP addresses is tenuous [4]. XRep
provides some safeguards against ID Stealth attacks. These attacks take place when a
malicious peer ‘hijacks’ the identity (peerid) of a reputable peer in order to deceive another
peer into a malicious download. In such cases, the downloading peer believes it is interacting
a peer with a good reputation. XRep provides safeguards against this attack in the Best Peer
Check message exchange. Prior to downloading a resource, the downloading peer challenges
the offering peer as to whether it really does offer the resource under consideration. The
offering peer sends a response that is signed using its private key, and also supplies its public
key. The downloading peer can be certain of the identity of the offering peer, firstly by
verifying the signature of the message, and secondly by taking a cryptographic hash of the
provided public key and comparing it against the peerid of the offering peer. If all verification
is successful the downloading peer can initiate the download.

There are three basic strategies that can be employed by a single malicious peer or a group
(collusion) of malicious peers with the intention of circumventing or degrading the reputation
system in order to continue to share malicious resources unchallenged. We outline these
strategies in the following:

Strategy A: This strategy is the simplest way for a malicious peer to share malicious resources.
The peer actively participates in the network by offering good resources. However,
occasionally the malicious peer will offer malicious resources. The malicious peer must
carefully monitor the amount of good and bad resources it supplies in order to maintain a
network-wide reputation that is sufficiently high for other peers to deem it trustable.

Strategy B: In this strategy a malicious agent attempts to degrade the quality of the reputation
system by generating spurious votes when polled. The principal objective of this strategy may
either be to simply degrade the correctness of reputation values to the point where these
information are no longer trustable, or to attempt to increase the peer’s relative standing by
voting positively for itself and negatively for all others.

Strategy C: This strategy shares a similar objective with Strategy B. The principal
differentiator is that more effort and resources are required on the part of the malicious peer(s)
and such activity is harder to counteract by the reputation system. A group of peers
systematically vote positively for each other whilst sharing malicious resources. Each peer in
the group may also share some good resources in order to enhance its own reputation. The
difficultly in detection of this strategy results from the evaluating peer receiving what appears
to be a set of valid votes sent by real peers.

Due to above problems of XRep, X2Rep is designed to address the weaknesses of XRep
protocol.

X2Rep [4] is an enhanced trust semantics algorithm that can be seamlessly incorporated into
the XRep protocol. The contribution of X2Rep is that the algorithm provides substantial
improvements against the weaknesses of XRep using extensive simulations. X2Rep gives
more expressive power to peers to express their opinion about resources that they have
downloaded and the peers that have downloaded from, and allows collusions of malicious
peers to use a range of strategies and use the reputation to protect against these attacks. Due to
the XRep protocol uses a complex process of challenge and response messages to ensure that
a vote is supplied by a ‘real’ peer, the X2Rep eliminate this complexity by employing
extensive vote generation and evaluation system that make use of voter credibility
information. In X2Rep, voter credibility is an additional piece of information that helps an
evaluating peer to determine the trustworthiness of a voter’s vote through the evaluation of
the voter’s previous voting activity. X2Rep can be divided by four logical parts: (1) Local
Reputation Repository; (2) Voting; (3) Evaluating Ratings for Downloads and (4) Updating
State on a Peer. The principle of each part is as follow:

Local Reputation Repository: Each peer will store data expressing its experiences with peers
and resources that it has interacted with. For each downloaded resource, a pair can be stored
with an identification of the resource ID and a real value between 0 (poor or malicious) and 1
(good), that is a measure of satisfaction of the peer with the resource. For each peer Pj that Pi
has interacted with, Pi maintains a vector of length n storing its past n experiences with that
peer. The peer Experience Vector vij is denoted by vij = (Pj, (qij,1, qij,2, qij,3, ..., qij,n)) where qij,k,

k = 1, …, n are real values between 0 (poor or malicious) and 1 (good). On completion of
each transaction with the peer Pj, Pi evaluates the transaction and generates a number that
reflects his satisfaction and appends it to the end of the Experience Vector associated with
peer Pj. The vector stores the results of the most recent n experiences and so as new
experiences are appended the oldest ones are removed. During the initialization phase all data
items will be set to zero.

Voting: In X2Rep, voting can be divided two categories that Resource Vote and Peer Vote.
The former means that vote of Pi for a resource with resource ID. This allows the polling peer
to learn precisely how the voting peer rated the resource. Peer Vote is that voting for a peer
uses the content of the Experience Vector associated with that peer. This information will be
used to generate a vote that is a number in the interval [0, 1]. The method of Peer Vote is very
easy that calculate the average value of Experience Vector between two peers.

Evaluating Ratings for Downloads: After a specified time period, the polling peer will have
received zero or more PollReply messages. The peer now must convert these votes into an
evaluation for a possible transaction. X2Rep presents a parameter called credibility cij that is
given by the peer Pi for the peer Pj that has provided votes in previous transactions and will
be stored in the Local Credibility Repository of the peer Pi. Credibility cij is a real number in
the interval [0, 1] and is initialized to zero for an unknown peer. Credibility values will be
used to adjust peers’ votes to either peer vote or resource vote for the current download. A
peer Pi that sent a resource vote uik to polling peer Pk, and the polling peer will reply his vote
uk as 1 or 0. Pi can calculate the uk = ukckj and store this value as resource vote of polling peer
Pk. After collecting all vote, peer Pi can calculate the Resource Trust Value RT = ∑uk. A peer
Pi, that sent a peer vote vij about offering peer Pj to peer Pl , will have the Adjusted Peer Vote
vij as: vij = vijcli. Peer Trust Value PT = ∑vij. The final trust value presented to the user will be
a combination of the resource and peer trust values. The simplest approach would be to find
the average of the two values. Users can use trust categories combined with other criteria, for
example accepted level of risk, to make the final decision.

Updating State on a Peer: After the completion of a transaction, the state information of the
downloading peer must be update. This includes the following.

� Updating the downloading peer’s Local Reputation Repository with peer and resource
evaluation values.

��For each peer that provided a vote:

l If the voting peer Pi provided an accurate vote ci = ci + 0.05.

l If the voting peer Pi provided an inaccurate vote ci = 0.

In my opinion, reducing ci to zero for a single inaccurate vote may seem harsh. In
fact, peer can control the trust value according to experience vector. Another
shortcoming, resource trust and peer trust should have to be valuable information,
however in X2Rep, they are calculated or combined very hash. But I think we can get
several important enlights from X2Rep, for example, peer vote and experience vector.
These information can be used of calculating some better results.

Credence [24], which is the best paper of NSDI’06, introduces a decentralized
distributed system, where users assign reputations to the objects they download

regarding their authenticity. It is based on a distributed vote gathering protocol for
disseminating the object reputations in the network, and on a correlation scheme which
gives more weight to votes from like-minded peers.

The system works as follows. Before peer A downloads an object o, it issues a vote-
gather in the network to collect votes about o, providing o’s identifier. Collected votes
are either -1, if the voter considers o polluted, or +1, otherwise. The object reputation is
computed, weighting each vote by the relationship A has had with the vote owner.

The relationship between two peers, expressed by the correlation of their voting
histories, captures whether they tend to vote identically (positive correlation), inversely
(negative correlation) or whether their voting histories are uncorrelated. The correlation
between peers A and B is computed as)1)(1(/)(),(baababpBA −−−=θ , where a (b) is the
fraction of positive votes given by A (B) in the past, and p the fraction where both peers
vote positively. When computing the reputation of an object, peer A weights the vote
from peer B by r(A, B), which is equal to),(BAθ if |),(BAθ | >= 0.5, and 0 otherwise (i.e.,
A and B disregard each other’s votes if they have uncorrelated voting histories). After
collecting a set of votes for an object, the client verifies the signature and key
certificate on each of the votes, then aggregates the set into a single reputation estimate
to present to the user. Simply tabulating the available votes using un-weighted
averaging would be prone to manipulation, as attackers could simply flood the network
with votes. Instead, each Credence client computes a trust metric for each vote, and
uses weighted averaging to compute an estimate of the object’s overall reputation. The
object reputation is interpreted as a personalized estimate of the authenticity of the
object, and can be used to make a more informed decision to accept or reject the object.

Each peer stores all collected votes in a local vote database. All strong correlations
(i.e., |),(BAθ | >= 0.5) are also stored in a local correlation table, which is periodically
updated. But pairwise correlations cannot robustly evaluate the relationship between a
client and peers having only a few interests in common with the client. Credence
overcomes this limitation by allowing clients to leverage the correlations discovered by
their peers, effectively expanding their horizon along paths of correlated peers.
Credence incorporates a notion of transitive correlation which enables strong
correlations between this peer and a more distant peer, to be combined into an estimate
of the relationship between the client and distant peer. Transitive correlations are
computed by building and maintaining a local model of the pairwise trust relationships
between peers in the network, then periodically executing a flow-based algorithm on
the resulting trust graph. Nodes in the trust graph represent peers in the network, and a
weighted edge between nodes represents one peer’s correlation estimate for another.
Initially, a client populates the trust graph using locally computed correlations from its
local vote database. The remainder of the graph is built using a gossip protocol, where
each client randomly selects peers in the network and exchanges locally computed
correlation coefficients. The selection of these gossip partners is biased towards peers
with known positive correlations to preferentially expand the most useful parts of the
graph. So, votes from peers distantly connected in the graph can used to approximate
the votes of peers more closely connected, by emulating the weighted voting
computation at each step along the path. Considering expensive of calculating the so
large graph, Credence also periodically runs the gossip protocol. As a simplification
and optimization in implementation of the Credence, each client periodically computes
only a single maximum weight path to every other peer in its local graph, where path
weight is the product of weights along edges. The calculation is constrained to use

paths where negative weights appear only on the last edge in the path, since a client
cannot trust a negatively correlated peer to provide useful judgments about correlations
to more distant peers. The resulting transitive correlations are cached for later use in
weighting votes when a local correlation is not available.

Credence is a novel object-based reputation framework, but there are several shortcomings
existing in it. In my opinion, the mainly future works about it are as follow:

l If there is a new peer joins the networks, the correlation between it and the other peers will
be built after downloading several content items and these operations can create some
pollution for the peer and the whole networks.

l Credence proposes two strategies about auditing to protect the reliability of its local trust
graph against peers that lie about correlations when exchanging information. But the
auditing is not implemented in the deployed version of the Credence software, and whether
we can research a novel metric to protect the authenticity of exchanging information.

l There are some another factor can be considered in the model, such as time, social and so
on. If some of above factors can be introduced in Credence or the other model, the
correlation trustiness will be get a better value.

l Collusion attacks can be defend by Credence, but if there are several disguised malicious
peers who make trouble in the system. So can we design a new method to defend disguised
peers.

l Credence present an object-based reputation framework to address decoy insertion,
however, it cannot defend identifier corruption attack. Can we research a new method to
help Credence to address the corruption attack [55].

Extended Scrubber [2] is built on the previous work of [3] and [24]. The design of the new
hybrid peer and object reputation system is motivated by the improvement of Scrubber,
because Scrubber is not always able to clean polluted objects shared by peers, despite a quick
convergence. Credence, on the contrary, converges much more slowly, but is eventually able
to isolate all polluted objects. So the authors of Scrubber combine the works of Scrubber [3]
and Credence [24] to create the new hybrid reputation system – Extended Scrubber. The
hybrid system has two key components, the object reputation and peer reputation. As in
Credence, the object reputation is built from peer votes on the object authenticity. Before
downloading an object o, peer i issues an Object Voting Query to collect votes on object o.
The vote Vj(o) of peer j on object o can be either -1 or +1. Peer i then calculates the reputation
of object o, Ri(o) as :

∑
∑

∈

∈
=

)(

)(

)(

)()(

)(

oi

oi

Nj ji

Nj jioj

oi R

RV
R

The formula is very easy to understand. Extended Scrubber calculates the object reputation
from peer i to object o using the reputation from peer i to peer j who votes the object o as the
weights of vote of peer j on object o. So the reputation of peer i to object o means a weighted
averaging calculating of the vote of peer to object.

The peer reputation component is an extension of Scrubber. It is also built from Individual
Experiences and Peer Testimonials. Peer Testimonials formula is the same as the one in
Scrubber but Individual Experience is introduced penalty factor both of polluter and liar.

After calculating both Individual Experiences and Peer Testimonials, the peer reputation will
be used to compute the object reputation.

Through the experiments of Extended Scrubber, we can find the Extended Scrubber is
better than Credence on defending decoy insertion and address the identifier corruption attack
that Credence cannot defend. Comparing the effectiveness against Credence system,
Extended Scrubber performs better. We can summarize the advantages of Extended Scrubber
that: (1) Extended Scrubber converges much faster to a maximum efficiency than the other
systems, even under collusion and Sybil attacks; (2) Extended Scrubber is less sensitive to
parameter setting than Scrubber, providing cost-effectiveness for various configurations and
(3) Even in very uncooperative and unreliable communities, Extended Scrubber is still able to
restrain pollution dissemination, but the others, such as Credence and Scrubber, cannot do so.

Of course, Extended Scrubber has several shortcomings: (1) Under traitor attack, the model
cannot work as usual; (2) Due to lack of incentive metric, the capability of implementation of
Extended Scrubber cannot be predicted; (3) The penalty of entity is inadequate, under badly
collusion attack, Extended Scrubber system cannot perform as well.

Table3.1 presents comparing between a few representative reputation models.

Table 3.1 Comparing between Models

 EignTrust PeerTrust Credence Extended
Scrubber

X2Rep

Introduced
Time

2003 2004 2006 2007 2004

Type Peer-Based Peer-Based Object-Based Hybrid Hybrid

Main

Principle

Iterative

Calculation of
Relationship

Matrix

Peers’ Behaviors

Capturing as
Input Factors

Coincidence of

Experiences of
the Same Files
Downloaded

Using Peers’

Reputations as the
Weights of Object

Reputation
Computing

Combining both Peers’

Reputations Calculated
by Average of

Experience and Objects
Reputation Calculated

by Votes

Collusion
Defense

low low high high medium

Research
Goal

malicious users malicious users decoy insertion content pollution decoy insertion

Users
Feedback

Yes no yes yes yes

Improvement New Metric
[27]

DynamicTrust
[23]

Extended
Scrubber [2]

None Credence [24]

P2P Topology Gnutella Gnutella Gnutella and
Structure

Gnutella and
Structure

Gnutella and Structure

In this section, we summarize the whole reputation models to defend malicious behaviors
especially content pollution attacks. The next section we will present some conclusions and
future work.

4. Conclusions and Future Work

Content pollution in P2P content sharing systems has become a serious problem, and
several metrics are introduced to combating the problems. In the report, we summarize the
existing reputation-based representative models for defending content pollution, and both

advantages and shortcomings have been presented for every model. Through researching for
these reputation models, we find that the metrics that are on peer-based reputation are not
enough to defend content pollution, but object-based reputation model is a little roughness. So
the future work will focus on the research of hybrid reputation model.

In my opinion, the future work of content pollution defending can be the aspects as follow:

l Find a novel object-based reputation framework to defend both decoy insertion and
identifier corruption. The metrics will be referenced by existing theories that trusted
recommending. Of course, the new model must be better and easier than Credence.

l Adapt some spam-defense mechanisms [50, 52, 53, 54, 56, 57, 58] into cloud spam
detection and P2P network area.

l Hybrid models will be a future work on defending content pollution. From Extended
Scrubber, we haven’t found how effective it can address identifier corruption. So a
effectively and reliability framework based on hybrid reputation model will be a good
topic on solving the content pollution.

l Incentive mechanism is the critical metric for addressing the problem of content
pollution, and as we know, there are few incentive mechanisms on defending this
problem. How can design a reliability incentive mechanism to address the problem
will be a good future work.

l Some shortcomings introduced in the report should have been addressed in future
work; this kind of improvement work will create the new reputation model.

References
[1] J. Liang, R. Kumar, Y. Xi, and K. Ross. Pollution in P2P File Sharing Systems. In INFOCOM, 2005.
[2] C. Costa and J. Almeida. Reputation Systems for Fighting Pollution in Peer-to-Peer File Sharing Systems. In

IEEE P2P, 2007.
[3] C. Costa, V. Soares, J. Almeida and V. Almeida. Fighting Pollution Dissemination in Peer-to-Peer Networks.

In ACM SAC, 2007.
[4] N. Curtis, R. Safavi-Naini and W. Susilo. X2Rep: Enhanced Trust Semantics for the XRep Protocol. In ACNS,

2004.
[5] E. Damiani, S. Vimercati, S. Paraboschi, P. Samarati and F. Violante. A Reputation-Based Approach for

Choosing Reliable Resources in Peer-to-Peer Networks. In ACM Conference on Computer and
Communications Security, 2002.

[6] F. Benevenuto, C. Costa, M. Vasconcelos, V. Almeida, J. Almeida and M. Mowbray. Impact of Peer
Incentives on the Dissemination of Polluted Content. In ACM SAC, 2006.

[7] J. Liang, N. Naoumov and K. Ross. The Index Poisoning Attack in P2P File-Sharing Systems. In IEEE
INFOCOM, 2006.

[8] S. Kamvar, M. Schlosser and H. Carcia-Molina. The EigenTrust Algorithm for Reputation Management in P2P
Networks. In WWW, 2003.

[9] L. Xiong and L. Liu. PeerTrust: Supporting Reputation-Based Trust for Peer-to-Peer Electronic Communities.
IEEE Trans. Knowl. Data Eng., 2004.

[10] I. Stoica, R. Morris, D. Karger, F. Kaashoek and H. Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications. In SIGCOMM, 2001.

[11] R. Kumar, D. Yao, A. Bagchi, K. Ross and D. Rubenstein. Fluid Modeling of Pollution Proliferation in P2P
Networks. In ACM SIGMETRICS, 2006.

[12] E. Adar and B. Huberman. Free Riding on Gnutella. First Monday, 2000.
[13] M. Feldman, K. Lai, I. Stocia and J. Chuang. Robust Incentive Techniques for Peer-to-Peer Networks. In

ACM Conf. on Electronic Commerce, 2004.
[14] J. Douceur. The Sybil Attack. In IPTPS, 2002.
[15] N. Christin, A. Weigend and J. Chuang. Content Availability, Pollution and Poisoning in File Sharing Peer-

to-Peer Networks. In ACM Conf. on Electronic Commerce, 2005.
[16] K. Aberer and Z. Despotovic. Managing Trust in a Peer-2-Peer Information System. In International Conf on

Information and Knowledge Management, 2001.
[17] J. Pouwelse, P. Garbacki, D. Epema and H. Sips. The BitTorrent P2P File-Sharing System: Measurements

and Analysis. In IPTPS, 2005.
[18] R. Thommes and M. Coates. Epidemiological Modeling of Peer-to-Peer Viruses and Pollution. In IEEE

Infocom, 2006.
[19] J. Liang, N. Naoumov and K. Ross. Efficient Blacklisting and Pollution-Level Estimation in P2P File-Sharing

Systems. In AINTEC, 2005.
[20] K. Walsh and E. Sirer. Fighting Peer-to-Peer Spam and Decoys with Object Reputation. In Economics of P2P

Systems, 2005.
[21] KaZaa. http://www.fasttrack.com
[22] BitTorrent. http://www.bittorrent.com
[23] C. Duma and N. Shahmehri. Dynamic Trust Metrics for Peer-to-Peer System. In Workshop on Database and

Expert Systems Applications, 2005.
[24] K. Walsh and E. Sirer. Experience with an Object Reputation System for Peer-to-Peer Filesharing. In NSDI,

2006.
[25] D. Dumitriu, E. Knightly, A. Kuzmanovic, I. Stoica and W. Zwaenepoel. Denial-of-Service Resilience in

Peer-to-Peer File Sharing Systems. In SIGMETRICS, 2005.
[26] F. Cornelli, E. Damiani, S. Di Vimercati, S. Paraboschi and P. Samarati. Choosing Reputable Servents in a

P2P Network. In WWW, 2002.
[27] D. Donato, M. Paniccia, M. Selis, C. Castillo, G. Cortese and S. Leonardi. New Metrics for Reputation

Management in P2P Networks. In AIRWeb’07, 2007.

[28] N. Borisov. Computational Puzzles as Sybil Defenses. In Peer-to-Peer Computing, pages 171–176, 2006.
[29] R. Chen, W. Guo, L. Tang, J. Hu, and Z. Chen. Scalable Byzantine Fault Tolerant Public Key Authentication

for Peer-to-Peer Networks. In Euro-Par, pages 601–610, 2008.
[30] P. Gauthier, B. Bershad, and S. D. Gribble. Dealing with Cheaters in Anonymous Peer-to-PPer Networks. In

Technical Report of University of Washington, 2004.
[31] J. M. Kleinberg. The small-world phenomenon: an algorithm perspective. In STOC, 2000.
[32] J. Liang, N. Naoumov, and K. W. Ross. Efficient Blacklisting and Pollution-Level Estimation in P2P File-

Sharing Systems. In AINTEC, 2005.
[33] A. Mislove, M. Marcon, P. K. Gummadi, P. Druschel, and B. Bhattacharjee. Measurement and analysis of

online social networks. In Internet Measurement Comference, 2007.
[34] B. Parno, D. Wendlandt, E. Shi, A. Perrig, B. M. Maggs, and Y.-C. Hu. Portcullis: protecting connection

setup from denial-of-capability attacks. In SIGCOMM, pages 289–300, 2007.
[35] J. Pouwelse, P. Garbacki, J.Wang, A. Bakker, J. Yang, A. Iosup, D. Epema, M. Reinders, M. van Steen, and

H. Sips. Tribler: A Social-based Peer-to-Peer System. In IPTPS, 2006.
[36] P. Resnick, K. Kuwabara, R. Zeckhauser, and E. Friedman. Reputation systems. In Communications of the

ACM, 2000.
[37] H. Rowaihy, W. Enck, P. McDaniel, and T. L. Porta. Limiting Sybil Attacks in Structured P2P Networks. In

INFOCOM, pages 2596–2600, 2007.
[38] N. Tran, B. Min, J. Li, and L. Subramanian. Sybil-Resilient Online Content Voting. In NSDI, 2009.
[39] H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao. SybilLimit: A Near-Optimal Social Network Defense

against Sybil Attacks. In IEEE Symposium on Security and Privacy, pages 3–17, 2008.
[40] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman. SybilGuard: defending against sybil attacks via social

networks. In SIGCOMM, pages 267–278, 2006.
[41] L. Zhou, L. Zhang, F. McSherry, N. Immorlica, M. Costa and S. Chien. A First Look at Peer-to-Peer Worms:

Threats and Defenses. In IPTPS’ 05.
[42] Yonggang Wang, Ennan Zhai, Jian-bin Hu, and Zhong Chen. Claper: Recommend classical papers to
 beginners. In FSKD, August 2010.
[43] Ennan Zhai, Ruichuan Chen, Zhuhua Cai, Long Zhang, Huiping Sun, Eng Keong Lua, Sihan Qing, Liyong

Tang, and Zhong Chen. Sorcery: Could we make P2P content sharing systems robust to de- ceivers? In 9th
P2P, September 2009.

[44] Ennan Zhai, Ruichuan Chen, David Isaac Wolinsky, and Bryan Ford. An untold story of redundant clouds:
Making your service deployment truly reliable. In 9th HotDep, November 2013.

[45] Ennan Zhai, Ruichuan Chen, David Isaac Wolinsky, and Bryan Ford. Heading off correlated fail- ures
through Independence-as-a-service. In 11th OSDI, October 2014.

[46] Ennan Zhai, Liang Gu, and Yumei Hai. A risk- evaluation assisted system for service selection. In ICWS,
July 2015.

[47] Ennan Zhai, Huiping Sun, Sihan Qing, and Zhong Chen. Sorcery: Overcoming deceptive votes in P2P content
sharing systems. Peer-to-Peer Networking and Applications, 4(2):178–191, 2011.

[48] Ennan Zhai, David Isaac Wolinsky, Hongda Xiao, Hongqiang Liu, Xueyuan Su, and Bryan Ford. Auditing
the Structural Reliability of the Clouds. Technical Report YALEU/DCS/TR-1479, Department of Computer
Science, Yale University, 2013. Available at http://www.cs.yale. edu/homes/zhai-ennan/sra.pdf.

[49] Ming Zhong, Kai Shen, and Joel I. Seiferas. Repli- cation degree customization for high availability. In
EuroSys, pages 55–68, 2008.

[50] Bo Liu, Ennan Zhai, Huiping Sun, Yelu Chen and Zhong Chen. Filtering spam in social tagging system with
dynamic behavior analysis. In ASONAM, Jul 2009.

[51] Thierry Titcheu Chekam, Ennan Zhai, Zhenhua Li, Yong Cui, and Kui Ren. On the synchronization
bottleneck of openstack swift-like cloud storage. In INFOCOM, 2016.

[52] Jianchun Jiang, Liping Ding, Ennan Zhai, and Ting Yu. VRank: A context-aware approach to vulnerability
scoring and ranking in SOA. In SERE, 2012.

[53] Yonggang Wang, Ennan Zhai, Eng Keong Lua, Jian-bin Hu, Zhong Chen. iSac: Intimacy based access control
for social network sites. In UIC/ATC, 2012.

[54] Ennan Zhai, Qingni Shen, Yonggang Wang, Tao Yang, Liping Ding, Sihan Qing. SecGuard: Secure and
practical integrity protection model for operating systems. In APWeb, 2011.

[55] Cong Sun, Ennan Zhai, Zhong Chen, and Jianfeng Ma. A multi-compositional enforcement on information
flow security. In ICICS, 2011.

[56] Ennan Zhai, Liping Ding, and Sihan Qing. Towards a reliable spam-proof tagging system. In SSIRI, 2011.
[57] Yonggang Wang, Ennan Zhai, Cui Cao, Yongqiang Xie, Zhaojun Wang, Jian-bin Hu, and Zhong Chen.

DSpam: Defending against spam in tagging systems via users’ reliability. In ICPADS, 2010.
[58] Ennan Zhai, Huiping Sun, Sihan Qing, and Zhong Chen. SpamClean: Towards spam-free tagging systems. In

CSE(4), 2009.
[59] Ennan Zhai, Zhenhua Li, Zhenyu Li, Fan Wu, and Guihai Chen. Resisting tag spam by leveraging implicit

user behaviors. In VLDB, 2017.
[60] Ennan Zhai, Ruichuan Chen, Eng Keong Lua, Long Zhang, Huiping Sun, Zhuhua Cai, Sihan Qing, and

Zhong Chen. SpamResist: making peer-to-peer tagging systems robust to spam. In GlobalCom, 2009.

