

Tools For Thought
The History and Future of Mind-Expanding

Technology

by Howard Rheingold

1995

a revised edition of Tools for Thought is available from MIT Press,
including a revised chapter with 1999 interviews of Doug Engelbart, Bob

Taylor, Alan Kay, Brenda Laurel, and Avron Barr.

Tools for Thought ©1985 howard rheingold, all rights reserved worldwide.

http://www.rheingold.com/howard
http://mitpress.mit.edu/book-home.tcl?isbn=0262681153

Dedicated To Nathan Rheingold,
who gave me the most important thing a man can ever give his son: an example.

 1

Tools for Thought is an exercise in retrospective futurism; that is, I wrote it in the early
1980s, attempting to look at what the mid 1990s would be like. My odyssey started when
I discovered Xerox PARC and Doug Engelbart and realized that all the journalists who
had descended upon Silicon Valley were missing the real story. Yes, the tales of
teenagers inventing new industries in their garages were good stories. But the idea of the
personal computer did not spring full-blown from the mind of Steve Jobs. Indeed, the
idea that people could use computers to amplify thought and communication, as tools for
intellectual work and social activity, was not an invention of the mainstream computer
industry nor orthodox computer science, nor even homebrew computerists. If it wasn't for
people like J.C.R. Licklider, Doug Engelbart, Bob Taylor, Alan Kay, it wouldn't have
happened. But their work was rooted in older, equally eccentric, equally visionary, work,
so I went back to piece together how Boole and Babbage and Turing and von Neumann --
especially von Neumann - created the foundations that the later toolbuilders stood upon
to create the future we live in today. You can't understand where mind-amplifying
technology is going unless you understand where it came from.

This book would not have been conceived and could not have been written without the
generous and patient assistance of many people. My heartfelt thanks to Rita Aero, Avron
Barr, John Brockman, Donald Day, Robert Eckhardt, Doug Engelbart, Brenda Lauel,
Howard Levine, Judith Maas, Geraldine Rheingold, Alan Rinzler, Charles Silver,
Marshall Smith, Bob Taylor, David Rodman, and Gloria Warner. And thanks to Alan
Turner, who originally prepared my words for web publication.

 2

http://www.rheingold.com/texts/tft/7.html
http://www.rheingold.com/texts/tft/9.html
http://www.rheingold.com/texts/tft/10.html
http://www.rheingold.com/texts/tft/11.html
http://www.rheingold.com/texts/tft/4.html

Contents

Chapter One: The Computer Revolution Hasn't Happened Yet

Chapter Two: The First Programmer Was a Lady

Chapter Three: The First Hacker and his Imaginary Machine

Chapter Four: Johnny Builds Bombs and Johnny Builds Brains

Chapter Five: Ex-Prodigies and Antiaircraft Guns

Chapter Six: Inside Information

Chapter Seven: Machines to Think With

Chapter Eight: Witness to History: The Mascot of Project Mac

Chapter Nine: The Loneliness of a Long-Distance Thinker

Chapter Ten: The New Old Boys from the ARPAnet

Chapter Eleven: The Birth of the Fantasy Amplifier

Chapter Twelve: Brenda and the Future Squad

Chapter Thirteen: Knowledge Engineers and Epistemological Entrepreneurs

Chapter Fourteen: Xanadu, Network Culture, and Beyond

Footnotes

 3

http://www.rheingold.com/texts/tft/1.html
http://www.rheingold.com/texts/tft/2.html
http://www.rheingold.com/texts/tft/3.html
http://www.rheingold.com/texts/tft/4.html
http://www.rheingold.com/texts/tft/5.html
http://www.rheingold.com/texts/tft/6.html
http://www.rheingold.com/texts/tft/7.html
http://www.rheingold.com/texts/tft/8.html
http://www.rheingold.com/texts/tft/9.html
http://www.rheingold.com/texts/tft/10.html
http://www.rheingold.com/texts/tft/11.html
http://www.rheingold.com/texts/tft/12.html
http://www.rheingold.com/texts/tft/13.html
http://www.rheingold.com/texts/tft/14.html
http://www.rheingold.com/texts/tft/footnotes.html

Chapter One:
The Computer Revolution Hasn't Happened Yet
South of San Francisco and north of Silicon Valley, near the place where the pines on the
horizon give way to the live oaks and radiotelescopes, an unlikely subculture has been
creating a new medium for human thought. When mass-production models of present
prototypes reach our homes, offices, and schools, our lives are going to change
dramatically.

The first of these mind-amplifying machines will be descendants of the devices now
known as personal computers, but they will resemble today's information processing
technology no more than a television resembles a fifteenth-century printing press. They
aren't available yet, but they will be here soon. Before today's first-graders graduate from
high school, hundreds of millions of people around the world will join together to create
new kinds of human communities, making use of a tool that a small number of thinkers
and tinkerers dreamed into being over the past century.

Nobody knows whether this will turn out to be the best or the worst thing the human race
has done for itself, because the outcome of this empowerment will depend in large part
on how we react to it and what we choose to do with it. The human mind is not going to
be replaced by a machine, at least not in the foreseeable future, but there is little doubt
that the worldwide availability of fantasy amplifiers, intellectual toolkits, and
interactive electronic communities will change the way people think, learn, and
communicate.

It looks as if this latest technology-triggered transformation of society could have even
more intense impact than the last time human thought was augmented, five hundred years
ago, when the Western world learned to read. Less than a century after the invention of
movable type, the literate community in Europe had grown from a privileged minority to
a substantial portion of the population. People's lives changed radically and rapidly, not
because of printing machinery, but because of what that invention made it possible for
people to know. Books were just the vehicles by which the ideas escaped from the private
libraries of the elite and circulated among the population.

The true value of books emerged from the community they made possible, an intellectual
community that is still alive all over the world. The printed page has been a medium for
the propagation of ideas about chemistry and poetry, evolution and revolution,
democracy and psychology, technology and industry, and many other notions beyond the
ken of the people who invented movable type and started cranking out Bibles.

Because mass production of sophisticated electronic devices can lag ten years or more
behind the state of the art in research prototypes, the first effects of the astonishing
achievements in computer science since 1960 have only begun to enter our lives. Word
processors, video games, educational software, and computer graphics were unknown

 4

http://www.rheingold.com/vc/book

terms to most people only ten years ago, but today they are the names for billion-dollar
industries. And the experts agree that the most startling developments are yet to come.

A few of the pioneers of personal computing who still work in the computer industry can
remember the birth and the dream, when the notion of personal computing was an
obscure heresy in the ranks of the computing priesthood. Thirty years ago, the
overwhelming majority of the people who designed, manufactured, programmed, and
used computers subscribed to a single idea about the proper (and possible) place of
computers in society: "computers are mysterious devices meant to be used in
mathematical calculations." Period. Computer technology was believed to be too
fragile, valuable, and complicated for nonspecialists.

In 1950 you could count the people who took exception to this dogma on the fingers of
one hand. The dissenting point of view shared by those few people involved in a different
way of thinking about how computers might be used. The dissenters shared a vision of
personal computing in which computers would be used to enhance the most creative
aspects of human intelligence--for everybody, not just the technocognoscenti.

Those who questioned the dogma of data processing agreed that computers can help us
calculate, but they also suspected that if the devices could be made more interactive,
these tools might help us to speculate, build and study models, choose between
alternatives, and search for meaningful patterns in collections of information. They
wondered whether this newborn device might become a communication medium as well
as a calculating machine.

These heretical computer theorists proposed that if human knowledge is indeed power,
then a device that can help us transform information into knowledge should be the basis
for a very powerful technology. While most scientists and engineers remained in awe of
the giant adding machines, this minority insisted on thinking about how computers might
be used to assist the operation of human minds in nonmathematical ways.

Tools for Thought focuses on the ideas of a few of the people who have been instrumental
in creating yesterday's, today's, and tomorrow's human-computer technology. Several key
figures in the history of computation lived and died centuries or decades ago. I call these
people, renowned in scientific circles but less known to the public, the patriarchs. Other
co-creators of personal computer technology are still at work today, continuing to explore
the frontiers of mind-machine interaction. I call them the pioneers.

The youngest generation, the ones who are exploring the cognitive domains we will all
soon experience, I call the Infonauts. It is too early to tell what history will think of the
newer ideas, but we're going to take a look at some of the things the latest inner-space
explorers are thinking, in hopes of catching some clues to what (and how) everybody will
be thinking in the near future.

As we shall see, the future limits of this technology are not in the hardware but in our
minds. The digital computer is based upon a theoretical discovery known as "the

 5

universal machine," which is not actually a tangible device but a mathematical
description of a machine capable of simulating the actions of any other machine. Once
you have created a general-purpose machine that can imitate any other machine, the
future development of the tool depends only on what tasks you can think to do with it.
For the immediate future, the issue of whether machines can become intelligent is less
important than learning to deal with a device that can become whatever we clearly
imagine it to be.

The pivotal difference between today's personal computers and tomorrow's intelligent
devices will have less to do with their hardware than their software-- the instructions
people create to control the operations of the computing machinery. A program is what
tells the general-purpose machine to imitate a specific kind of machine. Just as the
hardware basis for computing has evolved from relays to vacuum tubes to transistors to
integrated circuits, the programs have evolved as well. When information processing
grows into knowledge processing, the true personal computer will reach
beyond hardware and connect with a vaster source of power than that of
electronic microcircuitry--the power of human minds working in concert.

The nature of the world we create in the closing years of the twentieth century will be
determined to a significant degree by our attitudes toward this new category of tool.
Many of us who were educated in the pre-computer era shall be learning new skills. The
college class of 1999 is already on its way. It is important that we realize today that those
skills of tomorrow will have little to do with how to operate computers and a great deal to
do with how to use augmented intellects, enhanced communications, and amplified
imaginations.

Forget about "computer literacy" or obfuscating technical jargon, for these aberrations
will disappear when the machines and their programs grow more intelligent. The reason
for building a personal computer in the first place was to enable people to do what people
do best by using machines to do what machines do best. Many people are afraid of
today's computers because they have been told that these machines are smarter than they
are--a deception that is reinforced by the rituals that novices have been forced to undergo
in order to use computers. In fact, the burden of communication should be on the
machine. A computer that is difficult to use is a computer that's too dumb to
understand what you want.

If the predictions of some of the people in this book continue to be accurate, our whole
environment will suddenly take on a kind of intelligence of its own sometime between
now and the turn of the century. Fifteen years from now, there will be a microchip in
your telephone receiver with more computing power than all the technology the Defense
Department can buy today. All the written knowledge in the world will be one of the
items to be found in every schoolchild's pocket.

The computer of the twenty-first century will be everywhere, for better or for
worse, and a more appropriate prophet than Orwell for this eventuality might well be

 6

Marshall McLuhan. If McLuhan was right about the medium being the message, what
will it mean when the entire environment becomes the medium? If such development
does occur as predicted, it will probably turn out differently from even the wildest
"computerized household" scenarios of the recent past.

The possibility of accurately predicting the social impact of any new technology is
questionable, to say the least. At the beginning of the twentieth century, it was impossible
for average people or even the most knowledgeable scientists to envision what life would
be like for their grandchildren, who we now know would sit down in front of little boxes
and watch events happening at that moment on the other side of the world.

Today, only a few people are thinking seriously about what to do with a living room wall
that can tell you anything you want to know, simulate anything you want to see, connect
you with any person or group of people you want to communicate with, and even help
you find out what it is when you aren't entirely sure. In the 1990s it might be possible for
people to "think as no human being has ever thought" and for computers to "process data
in a way not approached by the information-handling machines we know today," as
J.C.R. Licklider, one of the most influential pioneers, predicted in 1960, a quarter of a
century before the hardware would begin to catch up with his ideas.

The earliest predictions about the impact of computing machinery occurred quite a bit
earlier than 1960. The first electronic computers were invented by a few individuals, who
often worked alone, during World War II. Before the actual inventors of the 1940s were
the software patriarchs of the 1840s. And before them, thousands of years ago, the efforts
of thinkers from many different cultures to find better ways to use symbols as tools led to
the invention of mathematics and logic. It was these formal systems for manipulating
symbols that eventually led to computation. Links in what we can now see as a
continuous chain of thought were created by a series of Greek philosophers, British
logicians, Hungarian mathematicians, and American inventors.

Most of the patriarchs had little in common with each other, socially or intellectually, but
in some ways they were very much alike. It isn't surprising that they were exceptionally
intelligent, but what is unusual is that they all seem to have been preoccupied with the
power of their own minds. For sheer intellectual adventure, many intelligent people
pursue the secrets of the stars, the mysteries of life, the myriad ways to use knowledge to
accomplish practical goals. But what the software ancestors sought to create were
tools to amplify the power of their own brains--machines to take over what they
saw as the more mechanical aspects of thought.

Perhaps as an occupational hazard of this dangerously self-reflective enterprise, or as a
result of being extraordinary people in restrictive social environments, the personalities of
these patriarchs (and matriarchs) of computation reveal a common streak of eccentricity,
ranging from the mildly unorthodox to the downright strange.

• Charles Babbage and Ada, Countess of Lovelace, lived in the London of
Dickens and Prince Albert (and knew them both). A hundred years before some of

 7

http://www.rheingold.com/texts/tft/7.html
http://www.rheingold.com/texts/tft/2.html

the best minds in the world used the resources of a nation to build a digital
computer, these two eccentric inventor-mathematicians dreamed of building their
"Analytical Engine." He constructed a partial prototype and she used it, with
notorious lack of success, in a scheme to win a fortune at the horse races. Despite
their apparent failures, Babbage was the first true computer designer, and Ada
was history's first programmer.

• George Boole invented a mathematical tool for future computer-builders--an
"algebra of logic" that was used nearly a hundred years later to link the process of
human reason to the operations of machines. The idea came to him in a flash of
inspiration when he was walking across a meadow one day, at the age of
seventeen, but it took him twenty years to teach himself enough mathematics to
write The Laws of Thought.

Although Boole's lifework was to translate his inspiration into an algebraic
system, he continued to be so impressed with the suddenness and force of the
revelation that hit him that day in the meadow that he also wrote extensively
about the powers of the unconscious mind. After his death Boole's widow turned
these ideas into a kind of human potential cult, a hundred years before the "me
decade."

• Alan Turing solved one of the most crucial mathematical problems of the
modern era at the age of twenty-four, creating the theoretical basis for
computation in the process. Then he became the top code-breaker in the world--
when he wasn't bicycling around wearing a gas mask or running twenty miles
with an alarm clock tied around his waist. If it hadn't been for the success of
Turing's top-secret wartime mission, the Allies might have lost World War II.
After the war, he created the field of artificial intelligence and laid down the
foundations of the art and science of programming.

He was notoriously disheveled, socially withdrawn, sometimes loud and abrasive,
and even his friends thought that he carried nonconformity to weird extremes. At
the age of forty-two, he committed suicide, hounded cruelly by the same
government he helped save.

• John von Neumann spoke five languages and knew dirty limericks in all of
them. His colleagues, famous thinkers in their own right, all agreed that the
operations of Johnny's mind were too deep and far too fast to be entirely human.
He was one of history's most brilliant physicists, logicians, and mathematicians,
as well as the software genius who invented the first electronic digital computer.

John von Neumann was the center of the group who created the "stored program"
concept that made truly powerful computers possible, and he specified a template
that is still used to design almost all computers--the "von Neumann architecture."
When he died, the Secretaries of Defense, the Army, Air Force, and Navy and the
Joint Chiefs of staff were all gathered around his bed, attentive to his last gasps of
technical and policy advice.

 8

http://www.rheingold.com/texts/tft/2.html#boole
http://www.rheingold.com/texts/tft/3.html
http://www.rheingold.com/texts/tft/4.html

• Norbert Wiener, raised to be a prodigy, graduated from Tufts at fourteen, earned
his Ph.D. from Harvard at eighteen, and studied with Bertrand Russell at nineteen.
Wiener had a different kind of personality than his contemporary and colleague,
von Neumann. Although involved in the early years of computers, he eventually
refused to take part in research that could lead to the construction of weapons.
Scarcely less brilliant than von Neumann, Wiener was vain, sometimes paranoid,
and not known to be the life of the party, but he made important connections
between computers, living organisms, and the fundamental laws of the physical
universe. He guarded his ideas and feuded with other scientists, writing
unpublished novels about mathematicians who did him wrong.

Wiener's conception of cybernetics was partially derived from "pure" scientific
work in mathematics, biology, and neurophysiology, and partially derived from
the grimly applied science of designing automatic antiaircraft guns. Cybernetics
was about the nature of control and communication systems in animals, humans,
and machines.

• Claude Shannon, another lone-wolf genius, is still known to his neighbors in
Cambridge, Massachusetts, for his skill at riding a motorcycle. In 1937, as a
twenty-one-year-old graduate student, he showed that Boole's logical algebra was
the perfect tool for analyzing the complex networks of switching circuits used in
telephone systems and, later, in computers. During the war and afterward,
Shannon established the mathematical foundation of information theory. Together
with cybernetics, this collection of theorems about information and
communication created a new way to understand people and machines--and
established information as a cosmic fundamental, along with energy and matter.

The software patriarchs came from wildly different backgrounds. Then as now, computer
geniuses were often regarded as "odd" by those around them, and their reasons for
wanting to invent computing devices seem to have been as varied as their personalities.
Something about the notion of a universal machine enticed mathematicians and
philosophers, logicians and code-breakers, whiz kids and bomb-builders. Even
today, the worlds of computer research and the software business bring together
an unlikely mixture of entrepreneurs and evangelists, futurians and utopians,
cultists, obsessives, geniuses, pranksters, and fast-buck artists.

Despite their outward diversity, the computer patriarchs of a hundred years ago and the
cyberneticians if the World War II era appear to have shared at least one characteristic
with each other and with software pioneers and infonauts of more recent vintage. In
recent years, the public has become more aware of a subculture that sprouted in
Cambridge and Palo Alto and quietly spread through a national network of fluorescent-lit
campus computer centers for the past two decades--the mostly young, mostly male, often
brilliant, sometimes bizarre "hackers," or self-confessed compulsive programmers.
Sociologists and psychologists of the 1980s are only beginning to speculate about the
deeper motivation for this obsession, but any later-day hacker will admit that the
most fascinating thing in his own life is his own mind, and tell you that he

 9

http://www.rheingold.com/texts/tft/5.html
http://www.rheingold.com/texts/tft/6.html

regards intense, prolonged interaction with a computer program as a
particularly satisfying kind of dialogue with his own thoughts.

A little touch of the hacker mentality seems to have affected all of the major players in
this story. From what we know today about the patriarchs and pioneers, they all appear to
have pursued a vision of a new way to use their minds. Each of them was trying to create
a mental lever. Each of them contributed indispensable components of the device that
was eventually assembled. But none of them encompassed it all.

The history of computation became increasingly complex as it progressed from the
patriarchs to the pioneers. At the beginning, many of the earliest computer scientists
didn't know that their ideas would end up in a kind of machine. Almost all of them
worked in isolation. Because of their isolation from one another, the common intellectual
ancestors of the modern computer are relatively easy to discern in retrospect. But since
the 1950s, with the proliferation of researchers and teams of researchers in academic,
industrial, and military institutions, the branches of the history have become tangled and
too numerous to describe exhaustively. Since the 1950s, it has become increasingly
difficult to assign credit for computer breakthroughs to individual inventors.

Although individual contributors to the past two or three decades of computer research
development have been abundant, the people who have been able to see some kind of
overall direction to the fast, fragmented progress of recent years have been sparse. Just as
the earliest logicians and mathematicians didn't know their thoughts would end up as a
part of a machine, the vast majority of the engineers and programmers of the 1960s were
unaware that their machines had anything to do with human thought. The latter day
computer pioneers in the middle chapters of this book were among the few who played
central roles in the development of personal computing. Like their predecessors, these
people tried to create a kind of mental lever. Unlike most of their predecessors, they were
also trying to design a tool that the entire population might use.

Where the original software patriarchs solved various problems in the creation of the first
computers, the personal computer pioneers struggled with equally vexing problems
involved in using computers to create leverage for human intellect, the way wheels and
dynamos create leverage for human muscles. Where the patriarchs were out to create
computation, the pioneers sought to transform it:

• J.C.R. Licklider, an experimental psychologist at MIT who became the director
of the Information Processing Techniques Office of the U.S. Defense
Department's Advanced Research Projects Agency (ARPA), was the one man
whose vision enabled hundreds of other like-minded computer designers to pursue
a whole new direction in hardware and software development. In the early 1960s,
the researchers funded by Licklider's programs reconstructed computer science on
a new and higher level, through an approach known as time-sharing.

Although their sponsorship was military, the people Licklider hired or supported
were working toward a transformation that he and they believed to be social as

 10

http://www.rheingold.com/texts/tft/7.html

well as technological. Licklider saw the new breed of interactive computers his
project directors were creating as the first step toward an entirely new kind of
human communication capability.

• Doug Engelbart started thinking about building a thought-amplifying device
back when Harry Truman was President, and he has spent the last thirty years
stubbornly pursuing his original vision of building a system for augmenting
human intellect. At one point in the late 1960s, Engelbart and his crew of
infonauts demonstrated to the assembled cream of computer scientists and
engineers how the devices most people then used for performing calculations or
keeping track of statistics could be used to enhance the most creative human
activities.

His former students have gone on to form a disproportionate part of the upper
echelons of today's personal computer designers. Partially because of the myopia
of his contemporaries, and partially because of his almost obsessive insistence on
maintaining the purity of his original vision, most of Engelbart's innovations have
yet to be adapted by the computer orthodoxy.

• Robert Taylor, at the age of thirty-three, became the director of the ARPA office
created by Licklider, thus launching his career in a new and much-needed field--
the shaping of large-scale, long term, human-computer research campaigns. He
became a "people collector," looking for those computer researchers whose ideas
might have been ignored by the orthodoxy, but whose projects promised to boost
the state of computer systems by orders of magnitude.

• Alan Kay was one of television's original quiz kids. He learned to read at the age
of two and a half, barely managed to avoid being thrown out of school and the Air
Force, and ended up as a graduate student at one of the most important centers of
ARPA research. In the 1970s, Kay was one of the guiding software spirits of
PARC's Alto project (the first true personal computer) and the chief architect of
Smalltalk, a new kind of computer language. He started the 1980s as a director of
Atari Corporation's long-term research effort, and in 1984 he left Atari to become
a "research fellow" for Apple Corporation.

Along with his hard-won credentials as one of the rare original thinkers who is
able to implement his thoughts via the craft of software design, Kay also has a
reputation as a lifelong insubordinate. Since the first time he was thrown out of a
classroom for knowing more than the teacher, Kay's avowed goal has been to
build a "fantasy amplifier" that anyone with an imagination could use to
explore the world of knowledge on their own, a "dynamic medium for
creative thought" that could be as useful and thought-provocative to
children in kindergarten as it would be to scientists in a research
laboratory.

Licklider, Engelbart, Taylor, and Kay are still at work, confident that many more of us
will experience the same thrill that has kept them going all these years--what Licklider,

 11

http://www.rheingold.com/texts/tft/9.html
http://www.rheingold.com/texts/tft/10.html
http://www.rheingold.com/texts/tft/11.html

still at MIT, calls the "religious conversion" to interactive computing. Engelbart works
for Tymshare Corporation, marketing his "Augment" system to information workers.
Taylor is setting up another computer systems research center, this time under the
auspices of the Digital Equipment Corporation, and is collecting people once again, this
time for a research effort that will bring computing into the twenty-first century. Kay, at
Atari, continued to steer toward the fantasy amplifier, despite the fact that their mother
company was often described in the news media as "seriously troubled." It is fair to
assume that he will continue to work toward the same goal in his new association with
Steve Jobs, chairman of Apple and a computer visionary of a more entrepreneurial bent.

The pioneers, although they are still at work, are not the final characters in the story of
the computer quest. The next generations of innovators are already at work, and some of
them are surprisingly young. Computer trailblazers in the past tended to make their marks
early in life--a trend that seems to be continuing in the present. Kay, the former quiz kid,
is now in his early forties. Taylor is in his early fifties, Engelbart in his late fifties, and
Licklider in his sixties. Today, younger men and, increasingly, younger women, have
begun to take over the field professionally, while even younger generations are now
living in their own versions of the future for fun, profit, and thrills.

The ones I call the "infonauts" are the older brothers and sisters of the adolescent hackers
you read about in the papers. Most of them are in their twenties and thirties. They work
for themselves or for some research institution or software house, and represent the first
members of the McLuhan generation to use the technology invented by the von Neumann
generation as tools to extend their imagination. From the science of designing what they
call the "user interface"--where mind meets machine--to the art of building educational
microworlds, the infonauts have been using their new medium to create the mass-media
version we will use fifteen years from now.

• Avron Barr is a knowledge engineer who helps build the special computer
programs known as expert systems that are apparently able to acquire knowledge
from human experts and transfer it to other humans. These systems are now used
experimentally to help physicians diagnose diseases, as well as commercially to
help geologists locate mineral deposits and to aid chemists in identifying new
compounds.

Although philosophers debate whether such programs truly "understand" what
they are doing, and psychologists point out the huge gap between the narrowly
defined kind of expertise involved in geology or diagnosis and the much more
general "world knowledge" that all humans have, there is no denying that expert
systems are valuable commodities. Avron Barr believes that they will evolve into
more than expensive encyclopedias for specialists. In his mid-thirties and just
starting his career in an infant technology, he dreams of creating an expert
assistant in the art of helping people agree with one another.

• Brenda Laurel, also in her mid-thirties, is an artist whose medium exists at the
boundary of Kay's and Barr's and Engelbart's specialties. Her goal is to design

 12

http://www.rheingold.com/texts/tft/13.html
http://www.rheingold.com/texts/tft/12.html

new methods of play, learning, and artistic expression into computer-based
technologies. Like Barr, she believes that the applications of her research point
toward more extensive social effects than just another success in the software
market.

Brenda wants to use an expert system that knows what playwrights, composers,
librarians, animators, artists, and dramatic critics know, to create a world of sights
and sounds in which people can learn about flying a spaceship or surviving in the
desert or being a blue whale by experiencing space-desert-whale simulated
microworlds in person.

• Ted Nelson is a dropout, gadfly, and self-proclaimed genius who self-published
Computer Lib, the best-selling underground manifesto of the microcomputer
revolution. His dream of a new kind of publishing medium and continuously
updated world-library threatens to become the world's longest software project.
He's wild and woolly, imaginative and hyperactive, has problems holding jobs
and getting along with colleagues, and was the secret inspiration to all those sub-
teenage kids who lashed together homebrew computers or homemade programs a
few years back and are now the ruling moguls of the microcomputer industry.

Time will tell whether he is a prophet too far ahead of his time, or just a persistent
crackpot, but there is no doubt that he has contributed a rare touch of humor to the
often too-serious world of computing. How can you not love somebody who says
"they should have called it an oogabooga box instead of a computer"?

Despite their differences in background and personality, the computer patriarchs,
software pioneers, and the newest breed of infonauts seem to share a distant focus on a
future that they are certain the rest of us will see as clearly as they do--as soon as they
turn what they see in their mind's eye into something we can hold in our hands. What did
they see? What will happen when their visions materialize in our homes? And what do
contemporary visionaries see in store for us next?

 13

http://www.rheingold.com/texts/tft/14.html

Chapter Two:
The First Programmer Was a Lady
Over a hundred years before a monstrous array of vacuum tubes surged into history in an
overheated room in Pennsylvania, a properly attired Victorian Gentleman demonstrated
an elegant little mechanism of wood and brass in a London drawing room. One of the
ladies attending this demonstration brought along the daughter of a friend. She was a
teenager with long dark hair, a talent for mathematics, and a weakness for wagering on
horse races. When she took a close look at the device and realized what this older
gentleman was trying to do, she surprised them all by joining him in an enterprise that
might have altered history, had they succeeded.

Charles Babbage and his accomplice, Lady Lovelace, came very close to inventing the
computer more than a century before American engineers produced ENIAC. The story of
the "Analytical Engine" is a tale of two extraordinarily gifted and ill-fated British
eccentrics whose biographies might have been fabrications of Babbage's friend
Charles Dickens, if Dickens had been a science-fiction writer. Like many
contemporary software characters, these computer pioneers of the Victorian age attracted
as much attention with their unorthodox personal lives as they did with their inventions.

One of Babbage's biographies is entitled Irascible Genius.. He was indeed a genius, to
judge by what he planned to achieve as well as what he did achieve. His irascibility was
notorious. Babbage was thoroughly British, stubbornly eccentric, tenaciously visionary,
sometimes scatterbrained, and quite wealthy until he sank his fortune into his dream of
building a calculating engine.

Babbage invented the cowcatcher--that metal device on the front of steam locomotives
that sweeps errant cattle out of the way. He also devised a means of analyzing entire
industries, a method for studying complex systems that became the foundation of the
field of operational research a hundred years later. When he applied his new method of
analysis to a study of the printing trade, his publishers were so offended that they refused
to accept any more of his books.

Undaunted, he applied his new method to the analysis of the postal system of his day, and
proved that the cost of accepting and assigning a value to every piece of mail according
to the distance it had to travel was far more expensive than the cost of transporting it. The
British Post Office boosted its capabilities instantly and economically by charging a flat
rate, independent of the distance each piece had to travel--the "penny post" that persists
around the world to this day.

Babbage devised the first speedometer for railroads, and he published the first
comprehensive treatise on actuarial theory (thus helping to create the insurance industry).
He invented and solved ciphers and made skeleton keys for "unpickable locks"--an
interest in cryptanalysis that he shared with later computer builders. He was the first to

 14

http://www.cbi.umn.edu/
http://www.cs.yale.edu/HTML/YALE/CS/HyPlans/tap/ada-lovelace.html
http://www.rheingold.com/texts/tft/4.html

propose that the weather of past years could be discovered by observing cycles of tree
rings. And he was passionate about more than a few crackpot ideas that history has since
proved to be nothing more than crackpot ideas.

His human relationships were as erratic as his intellectual adventures, to judge from the
number of lifelong public feuds Babbage was known to have engaged in. Along with his
running battles with the Royal Societies, Babbage carried on a long polemic against
organ-grinders and street musicians. Babbage would write letters to editors about street
noise, and half the organ-grinders in London took to serenading under Babbage's window
when they were in their cups. One biographer, B. V. Bowden, noted that "It was the
tragedy of the man that, although his imagination and vision were unbounded, his
judgment by no means matched them, and his impatience made him intolerant of those
who failed to sympathize with his projects."

Babbage dabbled in half a dozen sciences and traveled with a portable
laboratory. He was also a supreme nit-picker, sharp-eyed and cranky, known to write
outraged letters to publishers of mathematical tables, upbraiding them for obscure
inaccuracies he had uncovered in the pursuit of his own calculations. A mistake in
navigational table, after all, was a matter of life and death for a seafarer. And a mistake in
a table of logarithms could seriously impede the work of a great mind such as his own.

His nit-picking indirectly led Babbage to invent the ancestor of today's computers. As a
mathematician and astronomer of no small repute, he resented the time he had to spend
poring over logarithm tables, culling all the errors he knew were being perpetuated upon
him by "elderly Cornish Clergymen, who lived on seven figure logarithms, did all their
work by hand, and were only too apt to make mistakes."

Babbage left a cranky memoir entitled Passages from the Life of a Philosopher--a work
described by computer pioneer Herman Goldstine as "a set of papers ranging from the
sublime to the ridiculous, from profundities to nonsense in plain bad taste. Indeed much
of Babbage's career is of this sort. It is a wonder that he had as many good and loyal
friends when his behavior was so peculiar."

In Passages, Babbage noted this about the original inspiration for his computing
machines:

The earliest idea that I can trace in my own mind of calculating arithmetical tables by machinery rose in
this manner: One evening I was sitting in the rooms of the Analytical society at Cambridge, my head
leaning forward on the table in a kind of dreamy mood, with a Table of logarithms lying open before me.
Another member, coming into the room, and seeing me half asleep, called out, "Well, Babbage, what are
you dreaming about?" To which I replied, "I am thinking that all these Tables (pointing to the logarithms)
might be calculated by machinery."

In 1822, Babbage triumphantly demonstrated at the Royal Astronomical Society a small
working model of a machine, consisting of cogs and wheels and shafts. The device was
capable of performing polynomial equations by calculating successive differences

 15

between sets of numbers. He was awarded the society's first gold medal for the paper that
accompanied the presentation.

In that paper, Babbage described his plans for a much more ambitious "Difference
Engine." In 1823, the British government awarded him the first of many grants that were
to continue sporadically and controversially for years to come. Babbage hired a master
machinist, set up shop on his estate, and began to learn at first hand how far ahead of his
epoch's technological capabilities his dreams were running.

The Difference Engine commissioned by the British government was quite a bit larger
and more complex than the model demonstrated before the Royal Astronomical Society.
But the toolmaking art of the time was not yet up to the level of precision demanded by
Babbage's design. Work continued for years, unsuccessfully. The triumphal
demonstration at the beginning of his enterprise looked as if it had been the high point of
Babbage's career, followed by stubborn and prolonged decline. The British government
finally gave up financing the scheme.

Babbage, never one to shy away from conflict with unbelievers over one of his cherished
ideas, feuded over the Difference Engine with the government and with his
contemporaries, many of whom began to make sport of mad old Charley Babbage. While
he was struggling to prove them all wrong, he conceived an idea for an even more
ambitious invention. Babbage, already ridiculously deep in one visionary development
project, began to dream up another one. In 1833 he came up with something far more
complex than the device he had failed to build in years of expensive effort.

If one could construct a machine for performing one kind of calculation, Babbage
reasoned, would it be possible to construct a machine capable of performing any kind of
calculation? Instead of building many small machines to perform different kinds of
calculation, would it be possible to make the parts of one large machine perform different
tasks at different times, by changing the order in which the parts interact?

Babbage had stumbled upon the idea of a universal calculating machine, an idea
that was to have momentous consequences when Alan Turing--another brilliant, eccentric
British mathematician who was tragically ahead of his time--considered it again in the
1930s. Babbage called his hypothetical master calculator the "Analytical Engine." The
same internal parts were to be made to perform different calculations, through the use of
different "patterns of action" to reconfigure the order in which the parts were to move for
each calculation. A detailed plan was made, and redrawn, and redrawn once again.

The central unit was the "mill," a calculating engine capable of adding numbers to an
accuracy of 50 decimal places, with speed and reliability guaranteed to lay the Cornish
clergymen calculators to rest. Up to one thousand different 50-digit numbers could be
stored for later reference in the memory unit Babbage called the "store." To display the
result, Babbage designed the first automated typesetter.

 16

Numbers could be put into the store from the mill or from the punched-card input system
Babbage adapted from French weaving machines. In addition, cards could be used to
enter numbers into the mill and specify the calculations to be performed on the numbers
as well. By using the cards properly, the mill could be instructed to temporarily place the
results in the store, then return the stored numbers to the mill for later procedures. The
final component of the Analytical Engine was a card-reading device that was, in effect, a
control and decision-making unit.

A working model was eventually built by Babbage's son. Babbage himself never lived to
see the Analytical Engine. Toward the end of his life, a visitor found that Babbage had
filled nearly all the rooms of his large house with abandoned models of his engine. As
soon as it looked as if one means of constructing his device might actually work--
Babbage thought of a new and better way of doing it.

The four subassemblies of the Analytical Engine functioned very much like analogous
units in modern computing machinery. The mill was the analog of the central processing
unit of a digital computer and the store was the memory device. Twentieth-century
programmers would recognize the printer as a standard output device. It was the input
device and the control unit, however, that made it possible to move beyond calculation
toward true computation.

The input portion of the Analytical Engine was an important milestone in the
history of programming. Babbage borrowed the idea of punched-card programming
from the French inventor Jacquard, who had triggered a revolution on the textile industry
by inventing a mechanical method of weaving patterns in cloth. The weaving machines
used arrays of metal rods to automatically pull threads into position. To create patterns,
Jacquard's device interposed a stiff card, with holes punched in it, between the rods and
the threads. The card was designed to block some of the rods from reaching the thread on
each pass; the holes in the card allowed only certain rods to carry threads into the loom.
Each time the shuttle was thrown, a new card would appear in the path of the rods. Thus,
once the directions for specific woven patterns were translated into patterns of holes
punched into cards, and the cards were arranged in the proper order to present to the card
reading device, the cloth patterns could be preprogrammed and the entire weaving
process could be automated.

These cards struck Babbage as the key to automated calculation. Here was a tangible
means of controlling those frustratingly abstract "patterns of action": Babbage put the
step-by-step instructions for complicated calculations into a coded series of holes
punched into the sets of cards that would change the way the mill worked at each step.
Arrange the correctly coded cards in the right way, and you've replaced a platoon of
elderly Cornish gentlemen. Change the cards, and you replace an entire army of them.

During his crusade to build the devices that he saw in his mind's eye but was somehow
never able to materialize in wood and brass, Babbage met a woman who was to become
his companion, colleague, conspirator, and defender. She saw immediately what Babbage
intended to do with his Analytical Engine, and she helped him construct the software for

 17

it. Her work with Babbage and the essays she wrote about the possibilities of the engine
established Augusta Ada Byron, Countess of Lovelace, as a patron saint if not a founding
parent of the art and science of programming.

Ada's father was none other than Lord Byron, the most scandalous character of his day.
His separation from Ada's mother was one of the most widely reported domestic episodes
of the era, and Ada never saw her father after she was one month old. Byron wrote
poignant passages about Ada in some of his poetry, and she asked to be buried next to
him--probably to spite her mother, who outlived her. Ada's mother, portrayed by
biographers as a vain and overbearing Victorian figure, thought a daily dose of a
laudanum-laced "tonic" would be the perfect cure for her beautiful, outspoken daughter's
nonconforming behavior, and thus forced an addiction on her!

Ada exhibited her mathematical talents early in life. One of her family's closest friends
was Augustus De Morgan, the famous British Logician. She was well tutored, but always
seemed to thirst for more knowledge than her tutors could provide. Ada actively sought
the perfect mentor, whom she thought she found in a contemporary of her mother's--
Charles Babbage.

Mrs. De Morgan was present at the historic occasion when the young Ada Byron was
first shown a working model of the Difference Engine, during a demonstration Babbage
held for Lady Byron's friends. In her memoirs, Mrs. De Morgan remembered the effect
the contraption had on Augusta Ada: "While the rest of the party gazed at this beautiful
invention with the same sort of expression and feeling that some savages are said to have
shown on first seeing a looking glass or hearing a gun, Miss Byron, young as she was,
understood its working and saw the great beauty of the invention."

Such parlor demonstrations of mechanical devices were in vogue among the British upper
classes during the Industrial Revolution. While her elders tittered and gossiped and failed
to understand the difference between this calculator and the various water pumps they
had observed at other demonstrations, young Ada began to knowledgeably poke and
probe various parts of the mechanism, thus becoming the first computer whiz kid.

Ada was one of the few to recognize that the Difference Engine was altogether a different
sort of device than the mechanical calculators of the past. Whereas previous devices
were analog (performing calculation by means of measurement), Babbage's
was digital (performing calculation by means of counting). More importantly,
Babbage's design combined arithmetic and logical functions. (Babbage eventually
discovered the new work on the "algebra of Logic" by De Morgan's friend George Boole-
-but, by then, it was too late for Ada.)

Ada, who had been tutored by De Morgan, the foremost logician of his time, had ideas of
her own about the possibilities of what one might do with such devices. Of Ada's gift for
this new type of partially mathematical, partially logical exercise, Babbage himself noted:
"She seems to understand it better than I do, and is far, far better at explaining it."

 18

http://library.utoronto.ca/www/utel/rp/authors/byron.html
http://www.shu.edu/projects/reals/history/demorgan.html

At the age of nineteen, Ada married Lord King, Baron of Lovelace. Her husband was also
something of a mathematician, although his talents were far inferior to those of his wife.
The young countess Lovelace continued her mathematical and computational partnership
with Babbage, resolutely supporting what she knew to be a solid idea, at a time when
less-foresighted members of the British establishment dismissed Babbage as a crank.

Babbage toured the Continent in 1840, lecturing on the subject of the device he never
succeeded in building. In Italy, a certain Count Menabrea in Italy took extensive notes at
one of the lectures and published them in Paris. Ada translated the notes from French to
English and composed an addendum which was more than twice as long as the text she
had translated. When Babbage read the material, he urged Ada to publish her notes in
their entirety.

Lady Lovelace's published notes are still understandable today and are particularly
meaningful to programmers, who can see how truly far ahead of their contemporaries
were the Analytical Engineers. Professor B. H. Newman in the Mathematical Gazette has
written that her observations "show her to have fully understood the principles of
a programmed computer a century before its time."

Ada was especially intrigued by the mathematical implications of the punched pasteboard
cards that were to be used to feed data and equations to Babbage's devices. Ada's Essay,
entitled "Observations on Mr. Babbage's Analytical Engine," includes more than one
prophetic passage, unheeded by most of her contemporaries, but which have grown in
significance with the passage of a century:

The distinctive characteristic of the Analytical Engine, and that which has rendered it possible to endow
mechanism with such extensive faculties as bid fair to make this engine the extensive right hand of algebra,
is the introduction into it of the principle which Jacquard devised for regulating, by means of punched
cards, the most complicated patters in the fabrication of brocaded stuffs. It is in this that the distinction
between the two engines lies. Nothing of the sort exists in the Difference Engine. We may say most aptly
that the Analytical Engine weaves algebraical patterns just as the Jacquard loom weaves flowers and
leaves. . . .

The bounds of arithmetic were, however, outstepped the moment the idea of applying cards had occurred;
and the Analytical Engine does not occupy common ground with mere "calculating machines." It holds a
position wholly its own; and the considerations it suggests are most interesting in their nature. In enabling
mechanism to combine together general symbols, in successions of unlimited variety and extent, a uniting
link is established between the operations of matter and the abstract mental processes of the most abstract
branch of mathematical science. A new, a vast and a powerful language is developed for the future use of
analysis, in which to wield its truths so that these may become of more speedy and accurate practical
application for the purposes of mankind than the means hitherto in our possession have rendered possible.
Thus not only the mental and the material, but the theoretical and the practical in the mathematical world,
are brought into intimate connexion with each other. We are not aware of its being on record that anything
partaking of the nature of what is so well designated the Analytical Engine has been hitherto proposed, or
even thought of, as a practical possibility, any more than the idea of a thinking or a reasoning machine.

As a Mathematician, Ada was excited about the possibility of automating laborious
calculations. But she was far more interested in the principles underlying the

 19

programming of these devices. Had she not died so young, it is possible that Ada could
have advanced the nineteenth-century state of the art to the threshold of true computation.

Even thought the Engine was yet to be built, Ada experimented with writing sequences of
instructions. She noted the value of several particular tricks in this new art, tricks that are
still essential to modern computer languages--subroutines, loops and jumps. If your
object is to weave a complex calculation out of subcalculations, some of which may be
repeated many times, it is tedious to rewrite a sequence of a dozen or a hundred
instructions over and over, Why not just store copies of often-used calculations, or
subroutines, in a "library" of procedures for later use? Then your program can "call" for
the subroutine from the library automatically, when your calculation requires it. Such
libraries of subprocedures are now a part of virtually every high-level programming
language.

Analytical Engines and digital computers are very good at doing things over and over
many times, very quickly. By inventing an instruction that backs up the card-reading
device to a specified previous card, so that the sequence of instructions can be executed a
number of times, Ada created the loop--perhaps the most fundamental procedure
in every contemporary programming language.

It was the conditional jump that brought Ada's gifts as a logician into play. She came up
with yet another instruction for manipulating the card-reader, but instead of backing up
and repeating a sequence of cards, this instruction enabled the card-reader to jump to
another card in any part of the sequence, if a specific condition was satisfied. The
addition of that little "if" to the formerly purely arithmetic list of operations meant that
the program could do more than calculate. In a primitive but potentially meaningful way,
the Engine could now make decisions.

She also noted that machines might someday be built with capabilities far beyond those
possible with Victorian era technology, and speculated about the possibility of whether
such machines could ever achieve intelligence. Her argument against artificial
intelligence, set forth in her "Observations," was immortalized almost a century later by
another software prophet, Alan Turing, who dubbed her line of argument "Lady
Lovelace's Objection." It is an opinion that is still frequently heard in debates about
machine intelligence: "The Analytical Engine," Ada wrote, "has no pretensions whatever
to originate anything. It can do whatever we know how to order it to perform."

It is not known how and when Ada became involved in her clandestine and
disastrous gambling ventures. No evidence has ever been produced that Babbage had
anything to do with introducing Ada to what was to be her lifelong secret vice. For a
time, Lord Lovelace shared Ada's obsession, but after incurring significant losses he
stopped. She continued, clandestinely.

Babbage became deeply involved in Ada's gambling toward the end of her life. For her
part, Ada helped Babbage in more than one scheme to raise money to construct the
Analytical Engine. It was a curious mixture of vice, high intellectual adventure, and

 20

bizarre entrepreneurship. They built a tic-tac-toe machine, but gave up on it as a
moneymaking venture when an adviser assured them that P. T. Barnum's General Tom
Thumb had sewn up the market for traveling novelties. Ironically, although Babbage's
game-playing machines were commercial failures, his theoretical approach created a
foundation for the future science of game theory, scooping even that twentieth-century
genius John von Neumann by about a hundred years.

It was Charley and Ada's attempt to develop an infallible system for betting on the ponies
that brought Ada to the sorry pass of twice pawning her husband's family jewels, without
his knowledge, to pay off blackmailing bookies. At one point, Ada and Babbage--never
one to turn down a crazy scheme--used the existing small scale working model of the
Difference Engine to perform the calculations required by their complex handicapping
scheme. The calculations were based on sound approaches to the theory of handicapping,
but as the artificial intelligentsia were to learn over a century later, even the best
modeling programs have trouble handling truly complex systems. They lost big. To make
matters worse, when she compounded her losses Ada had to turn to her mother, who was
not the most forgiving soul, to borrow the money to redeem the Lovelace jewels before
her husband could learn of their absence.

Ada died of cancer at the age of thirty-six. Babbage outlived her by decades, but without
Ada's advice, support, and sometimes stern guidance, he was not able to complete his
long-dreamed-of Analytical Engine. Because the toolmaking art of his day was not up to
the tolerance demanded by his designs, Babbage pioneered the use of diamond-tipped
tools in precision-lathing. In order to systematize the production of components for his
Engine, he devised methods to mass-manufacture interchangeable parts and wrote a
classic treatise on what has since become known as "mass production."

Babbage wrote books of varying degrees of coherence, made breakthroughs in some
sciences and failed in others, gave brilliant and renowned dinner parties with guests like
Charles Darwin, and seems to have ended up totally embittered. Bowden noted that
"Shortly before Babbage died he told a friend that he could not remember a single
completely happy day in his life: 'He spoke as if he hated mankind in general,
Englishmen in particular, and the English Government and Organ Grinders most of all.'"

While Ada Lovelace has been unofficially known to the inner circles of programmers
since the 1950s, when card-punched batch-processing was not altogether different from
Ada's kind of programming, she has been relatively unknown outside those circles until
recently. In the 1970s, the U.S. Department of defense officially named its
"superlanguage" after her.

George Boole

Although it came too late to assist in the original design of the Analytical Engine, yet
another discovery that was to later become essential to the construction of computers was
made by a contemporary of Babbage and Lovelace. The creation of an algebra of

 21

symbolic logic was the work of another mathematical prodigy and British individualist,
but one who worked and lived in a different world, far away from the parlors of upper-
class London.

A seventeen-year-old Englishman by the name of George Boole was struck by an
astonishing revelation while walking across a meadow one day in 1832. The idea came so
suddenly, and made such a deep impact on his life, that it led Boole to make pioneering if
obscure speculations about a heretofore unsuspected human facility that he called "the
unconscious." Boole's contribution to human knowledge was not to be in the field of
psychology, however, but in a field of his own devising. As Bertrand Russell remarked
seventy years later, Boole invented pure mathematics.

Although he had only recently begun to study mathematics, the teenage George Boole
suddenly saw a way to capture some of the power of human reason in the form of an
algebra. And Boole's equations actually worked when they were applied to logical
problems. But there was a problem, and it wasn't in Boole's concept. The problem, at the
time, was that nobody cared. Partly because he was from the wrong social class, and
partly because most mathematicians of his time knew very little about logic, Boole's
eventual articulation of this insight didn't cause much commotion when he published it.
His revelation was largely ignored for generations after his death.

When the different parts of computer technology converged unexpectedly a hundred
years later, electrical engineers needed mathematical tools to make sense of the
complicated machinery they were inventing. The networks of switches they created were
electrical circuits whose behavior could be described and predicted by precise equations.
Because patterns of electrical pulses were now used to enclose logical operations like
"and," "or," and the all important "if," as well as the calculator's usual fare of "plus,"
"minus," "multiply," and "divide," there arose a need for equations to describe the logical
properties of computer circuits.

Ideally, the same set of mathematical tools would work for both electrical and logical
operations. The problem of the late 1930s was that nobody knew of any mathematical
operations that had the power to describe both logical and electrical networks. Then the
right kind of mind looked in the right place. An exceptionably astute graduate student at
MIT named Claude Shannon, who later invented information theory, found Boole's
algebra to be exactly what the engineers were looking for.

Without Boole, a poverty-stricken, self-taught mathematics teacher who was born the
same year as Ada, the critical link between logic and mathematics might never have been
accomplished. While the Analytical Engine was an inspiring attempt, it had remarkably
little effect on the later thinkers who created modern computers. Without Boolean
algebra, however, however, computer technology might never have progressed to the
electronic speeds where truly interesting computation becomes possible.

Boole was right about the importance of his vision, although he wouldn't have known
what to do with a vacuum tube or a switching circuit if he saw one. Unlike Babbage,

 22

http://ogham.ucc.ie/gb.html

Boole was not an engineer. What Boole discovered in that meadow and worked out on
paper two decades later was destined to become the mathematical linchpin that
coupled the logical abstractions of software with the physical operations of
electronic machines.

Between them, Babbage's and Boole's inspirations can be said to characterize the two
different kinds of motivation that caused imaginatives over the centuries to try and
eventually to succeed in building a computer. On the one side are scientists and
engineers, who would always yearn for a device to take care of tedious computations for
them, freeing their thoughts for the pursuit of more interesting questions. On the other
side is the more abstract desire of the mathematical mind to capture the essence of human
reason in a set of symbols.

Ada, who immediately understood Babbage's models when she saw them, and who was
tutored by De Morgan, the one man in the world best equipped to understand Boole, was
the first person to speculate at any length about the operations of machines capable of
performing logical as well as numerical operations. Boole's work was not published until
after Lady Lovelace died. Had Ada lived but a few years longer, her powerful intuitive
grasp of the principles of programming would have been immeasurably enhanced by the
use of Boolean algebra.

Babbage and Lovelace were British aristocrats during the height of the Empire. Despite
the derision heaped on Babbage in some quarters for his often-peculiar public behavior,
he counted the Duke of Wellington, Charles Dickens, and Prince Albert among his
friends. Ada had access to the best tutors, the finest laboratory equipment, and the latest
books. They were both granted the leisure to develop their ideas and the privilege of
making fools of themselves of the Royal Society, if they desired.

Boole was the son of a petty shopkeeper, which wasn't the best route to a good scientific
education. At the age of sixteen, his family's precarious financial situation obliged Boole
to secure modest employment as a schoolteacher. Faced with the task of teaching his
students something about mathematics, and by now thoroughly Lincolnesque in his self-
educating skills, Boole set out to learn mathematics. He soon learned that it was the most
cost-effective intellectual endeavor for a man of his means, requiring no laboratory
equipment and a fairly small number of basic books. At seventeen he experienced the
inspiration that was to result in his later work, but he had much to learn about both
mathematics and logic before he was capable of presenting his discovery to the world.

At the age of twenty he discovered something that the greatest mathematicians of his time
had missed--an algebraic theory of invariance that was to become an indispensable tool
for Einstein when he formulated the theory of relativity. In 1849, after his long years as
an elementary-school teacher, Boole's mathematical publications brought him an
appointment as professor of mathematics at Queen's College, Cork, Ireland. Five years
later, he published An investigation of the laws of thought, on which are founded the
Mathematical Theories of Logic and Probabilities.

 23

http://www.ucc.ie/

Formal logic had been around since the time of the Greeks, most widely known in the
syllogistic form perfected by Aristotle, the simplified version of which most people learn
no more than: "All men are mortal. Socrates is a man. Therefore Socrates is mortal."
After thousands of years in the same form, Aristotelian logic seemed doomed to remain
on the outer boundaries of the metaphysical, never to break through into the more
concretely specified realm of the mathematical, because it was still just a matter of words.
The next level of symbolic precision was missing.

For over a thousand years, the only logic-based system that was expressible in symbols
rigorous and precise enough to be called "mathematical" had been the geometry set down
by Euclid. Just as Euclid set down the basic statements and rules of geometry in axioms
and theorems about spatial figures, Boole set down the basics of logic in algebraic
symbols. This was no minor ambition. While knowledge of geometry is a widely useful
tool for getting around the world, Boole was convinced that logic was the key to
human reason itself. He knew that he had found what every metaphysician from
Aristotle to Descartes had overlooked. In his first chapter, Boole wrote:

1. The design of the following treatise is to investigate the fundamental laws of those operations of the
mind by which reasoning is performed; to give expression to them in the symbolic language of a Calculus,
and upon this foundation to establish a science of Logic and construct its method . . . to collect from the
various elements of truth brought to view in the course of these inquiries some probable imitations
concerning the nature and constitution of the human mind. . . .

2. . . . To enable us to deduce correct inferences from given premises is not the only object of logic . . .
these studies have also an interest of another kind, derived from the light which they shed on the
intellectual powers. They instruct us concerning the mode in which language and number serve as
instrumental aids to the process of reasoning; they reveal to some degree the connexion between different
powers of our common intellect; they set before us . . . the essential standards of truth and correctness--
standards not derived from without, but deeply founded in the constitution of the human faculties . . . To
unfold the secret laws and relations of those high faculties of thought by which all beyond the merely
perceptive knowledge of the world and of ourselves is attained or matured, is an object which does not
stand in need of commendation to a rational mind.

Although his discovery had profound consequences in both pure mathematics and
electrical engineering, the most important elements of Boole's algebra of logic were
simple in principle. He used the algebra everybody learns in school as a starting point,
made several small but significant exceptions to the standard rules of algebraic
combination, and used his special version to precisely express the syllogisms of classical
logic.

The concept Boole used to connect the two heretofore different thinking tools of logic
and calculation was the idea of a mathematical system in which there were only two
quantities, which he called "the Universe" and "Nothing" and denoted by the signs 1 and
0. Although he didn't know it at the time, Boole had invented a two-state
system for quantifying logic that also happened to be a perfect method for
analyzing the logic of two-state physical devices like electrical relays or
vacuum tubes.

 24

By using the symbols and operations specified, logical propositions could be reduced to
equations, and the syllogistic conclusions could be computed according to ordinary
algebraic rules. By applying purely mathematical operations, anyone who knew Boolean
algebra could discover any conclusion that was logically contained in any set of specified
premises.

Because syllogistic logic so closely resembles the thought processes of human reasoning,
Boole was convinced that his algebra not only demonstrated a valid equivalence between
mathematics and logic, but also represented a mathematical systemization of human
thought. Since Boole's time, science has learned that the human instrument of reason is
far more complicated, ambiguous, unpredictable, and powerful that the tools of formal
logic. But mathematicians have found that Boole's mathematical logic is much more
important to the foundation of their enterprise than they first suspected. And the inventors
of the first computers learned that a simple system with only two values can weave very
sophisticated computations indeed.

The construction of a theoretical bridge between mathematics and logic had been
gloriously begun, but was far from completed by Boole's work. It remained for later
minds to discover that although it is probably not true that the human mind resembles a
machine, there is still great power to be gained by thinking about machines that resemble
the operations of the mind.

Nineteenth-century technology simply wasn't precise enough, fast enough, or powerful
enough for ideas like those of Babbage, Lovelace, and Boole to become practicalities.
The basic science and the industrial capabilities needed for making several of the most
important components of modern computers simply didn't exist. There were still
important problems that would have to be solved by the inventors rather than the
theorists.

The next important development in the history of computation, and the last important
contribution of the nineteenth century, had nothing to do with calculating tables of
logarithms or devising laws of thought. The next thinker to advance the state of the art
was Herman Hollerith, a nineteen-year-old employee of the United States Census
Office. His role would have no effect on the important theoretical foundations of
computing. Ultimately, his invention became obsolete. But his small innovation
eventually grew into the industry that later came to dominate the commercial use of
computer technology.

Hollerith made the first important American contribution to the evolution of computation
when his superior at the Census Office set him on a scheme for automating the collection
and tabulation of data. On his superior's suggestion, he worked out a system that used
cards with holes punched in them to feed information into an electrical
counting system.

The 1890 census was the point in history where the processing of data as well as the
calculation of mathematical equations became the object of automation. As it turned out,

 25

Hollerith was neither a mathematician nor a logician, but a data processor. He was
grappling, not with numerical calculation, but with the complexity of collecting, sorting,
storing, and retrieving a large number of small items in a collection of information.
Hollerith and his colleagues were unwitting forerunners of twentieth-century information
workers, because their task had to do with finding a mechanical method to keep track of
what their organization knew.

Hollerith was introduced to the task by his superior, John Shaw Billings, who had been
worrying about the rising tide of information since 1870, when he was hired by the
Census Office to develop new ways to handle large amounts of information. Since he was
in charge of the collection and tabulation of data for the 1880 and 1890 census, Billings
was acutely aware that the growing population of the nation was straining the ability of
the government to conduct the constitutionally mandated survey every ten years. In the
foreseeable future, the flood of information to be counted and sorted would take fifteen or
twenty years to tabulate!

Like the stories about the origins of other components of computers, there is some
controversy about the exact accreditation for the invention of the punched-card system.
One account by a man named Willcox, who worked with both Billings and Hollerith in
the census office stated:

While the returns of the Tenth (1881) Census were being tabulated at Washington, Billings was walking
with a companion through the office in which hundreds of clerks were engaged in laboriously transferring
items of information from the schedules to the record sheets by the slow and heartbreaking method of hand
tallying. As they were watching the clerks he said to his companion, 'There ought to be some mechanical
way of doing this job, on the principle of the Jacquard loom, whereby holes in a card can regulate the
pattern to be woven.' The seed fell on good ground. His companion was a talented young engineer in the
office who first convinced himself that the idea was practicable and then that Billings had no desire to
claim or use it.

The "talented young engineer," of course, was Hollerith, who wrote this version in 1919:

One Sunday evening at Dr. Billings' tea table, he had said to me that there ought to be a machine for doing
the purely mechanical work of tabulating population and similar statistics. We talked the matter over and I
remember . . . he thought of using cards with the description of the individual shown by notches punched in
the edge of the card. . . .After studying the problem I went back to Dr. Billings and said that I thought I
could work out a solution for the problem and asked him if he would go in with me. The Doctor said that he
was not interested any further than to see some solution of the problem worked out.

The system Hollerith put together used holes punched in designated locations on
cardboard cards to represent the demographic characteristics of each person interviewed.
Like Jacquard's and Babbage's cards, and the "player pianos" then in vogue, the holes in
Hollerith's cards were meant to allow the passage of mechanical components. Hollerith
used an electromechanical counter in which copper brushes closed certain electrical
circuits if a hole was encountered, and did not close a circuit if a hole was not present.

An electrically activated mechanism increased the running count in each category by one
unit every time the circuit for that category was closed. By adding sorting devices that
distributed cards into various bins, according to the patterns of holes and the kind of

 26

tabulation desired, Hollerith not only created the ability to keep up with large
amounts of data, but created the ability to ask new and more complicated
questions about the data. The new system was in place in time for the 1890 census.

Hollerith obtained a patent on the system that he had invented just in time to save the
nation from drowning in its own statistics. In 1882-83, he was an instructor in mechanical
engineering at the Massachusetts Institute of Technology, establishing the earliest link
between that institution and the development of computer science and technology. In
1896, Hollerith set up the "Tabulating Machine Company" to manufacture both the cards
and the card-reading machines. In 1900, Hollerith rented his equipment to the Census
Bureau for the Twelfth Census.

Some years later, Hollerith's Tabulating Machine had become an institution
known as "International Business Machines," run by a fellow named Thomas
Watson, Senior. But there were two World Wars ahead, and several more thinkers--the
most extraordinary of them all--still to come before a manufacturer of tabulating
machines and punch cards would have anything to do with true computers. The modern-
day concerns of this company--selling machines to keep track of the information that
goes along with doing business--would have to wait for some deadly serious business to
be transacted.

The War Department, not the Census Office or a business machine company, was the
mother of the digital computer, and the midwives were many--from Alan Turing's British
team who needed a special kind of computing device to crack the German code, to John
von Neumann's mathematicians at Los Alamos who were faced with the almost
insurmountable calculations involved in making the atomic bomb, to Norbert Weiner's
researchers who were inventing better and faster ways to aim antiaircraft fire, to the
project of the Army Ballistic Research Laboratory that produced the Electronic
Numerical Integrator and Calculator (ENIAC).

It would be foolish to speculate about what computers might become in the near future
without realizing where they originated in the recent past. The historical record is clear
and indisputable on this point: ballistics begat cybernetics. ENIAC, the first electronic
digital computer, was originally built in order to calculate ballistic firing tables. When
ENIAC's inventors later designed the first miniature computer, it was the BINAC, a
device small enough to fit in the nose cone of an ICBM and smart enough to navigate by
the position of the stars.

Although the first electronic digital computer was constructed in order to produce more
accurate weapons, the technology would not have been possible without at least one
important theoretical breakthrough that had nothing to do with ballistics or bombs. The
theoretical origins of computation are to be found, not in the search for more
efficient weaponry, but in the quest for more powerful and elegant symbol
systems.

 27

The first modern computer was not a machine. It wasn't even a blueprint. The digital
computer was conceived as a symbol system--the first automatic symbol
system --not as a tool or a weapon. And the person who invented it was not concerned
with ballistics or calculation, but with the nature of thought and the nature of machines.

 28

Chapter Three:
The First Hacker and His Imaginary Machine
Throughout the winter of 1936, a young Cambridge don put the finishing touches on a
highly technical paper about mathematical logic that he didn't expect more than a dozen
people around the world to understand. It was an unusual presentation, not entirely
orthodox by the rather rigid standards of his colleagues. The young man wasn't entirely
orthodox, himself. Although his speech revealed his upper-middle class origins, his
manner of dress, his erratic grooming, and his grating voice put off most of his peers. An
outsider to the loftier academic-social circles of the university, he had few friends,
preferring to spend his time at mathematics, chemistry experiments, chess puzzles, and
long runs in the countryside.

Computation, when it was finally invented, a century after Babbage, did not come in the
form of some new gadget in an inventor's workshop or a scientist's laboratory. The very
possibility of building digital computers was given to the world in the form of
an esoteric paper in a mathematics journal in 1936. Nobody realized at the time
that this peculiar discovery in the obscure field of metamathematics would
eventually lead to a world-changing technology, although the young author,
Alan Mathison Turing, knew he was on the track of machines that could
simulate the human thought processes.

That mathematics paper was a pivotal point in the cultural history of Western civilization.
The first move in the intellectual game that resulted in digital computers was also the last
move in another game that had gone on for millennia. In Egypt and Babylonia, where
systems for measuring land and forecasting the course of the stars originated, only the
priests and their chosen craftsmen were privileged to know the esoteric arts of reckoning.
During the flowering of Greek civilization into the fifth and sixth centuries B.C., these
protosciences were shaped into the mental tools known as axiomatic systems.

In an axiomatic system you start with premises that are known to be true, and rules that
are known to be valid, in order to produce new statements that are guaranteed to be true.
Conclusions can be reached by manipulating symbols according to sets of rules.
Euclidean geometry is the classic example of the kind of generally useful tools made
possible by formal axiomatic systems.

An axiomatic system is a tool for augmenting human thought. Except for rare "lightning"
calculators, people are not able to add two six-figure numbers in their head. Give
virtually all people over the age of ten a piece of paper and a pencil, however, and they'll
tell you the answer in less than a minute. The magic ingredient that makes a schoolchild
into a calculating machine is the kind of step-by-step recipe for performing a calculation
that is known as an algorithm. The reason we know such algorithms work is because they
are based on the formal system known as arithmetic, which we know to be true.

 29

http://www.wadham.ox.ac.uk/%7Eahodges/Turing.html

What Turing's paper did, and what made digital computers possible, resulted in
the millennia-long effort to reduce the various formal systems to one basic
system that underlies them all. Science--our civilization's preeminent system for
gathering and validating knowledge--was built on mathematics, which was in turn a
logical formalization of the primitive number theories of the Babylonians and the Greeks.
Computation was the unexpected result of the attempt to prove that the
mathematical truths could be reduced to logical truths.

At the same time that our civilization's methods for predicting and understanding the
universe grew powerful as the result of these intellectual systems (i.e., science,
mathematics, and logic), a few people continued to ask whether these same systems could
be reduced to their basic components. If all sciences, when they become advanced
enough, can be reduced to mathematical equations, is it possible to reduce mathematics to
the most fundamental level of logic?

Since our certainty in the completeness and consistency of our knowledge system could
depend on whether such a reduction was possible, it was very disconcerting to Western
thinkers when evidence began to appear that there were exceptions, anomalies,
paradoxes--holes in the structure of mathematics that might prevent any such grand
reduction of formal systems. Those two intellectual quests--the effort to reduce
mathematics to a fundamental, formal symbol system, and the attempt to patch up the
paradoxes that cropped up during the pursuit of that grand reduction--led directly but
unexpectedly to computation.

In the first decades of the twentieth century, mathematicians and logicians were trying to
formalize mathematics. David Hilbert and John von Neumann set down the rules of
formalism in the 1920s (as we shall see in the next chapter). Before Hilbert and von
Neumann, Alfred North Whitehead and Bertrand Russell demonstrated in their Principia
Mathematica that some aspects of human reasoning could be formally described, thus
linking this awakened interest in mathematical logic to the ideas of the long-forgotten
originator of the field, George Boole. The idea of formal systems was of particular
interest, because it appeared to bridge the abstractions of mathematics and the mysteries
of human thought.

A formal system is a rigidly defined kind of game that specifies rules for manipulating
tokens. The qualifications for making a formal system are very much like the rules for
any other game. To tell someone how to play a game, and for the set of rules to qualify as
a formal system, the same three aspects of the game must be communicated -- the nature
of the tokens, a description of the starting position (or the starting layout of the "board"),
and a listing of what moves are allowed in any given position. Chess checkers,
mathematics, and logic are examples of formal systems that satisfy these criteria. By the
1930s, the effort to reduce mathematics to logically secure foundations brought about
several attempts to treat arithmetic -- the branch of mathematics concerned with
operations on numbers -- as a formal system.

 30

In 1936, at the age of twenty-four, Alan M. Turing established himself as one
of the greatest mathematical prodigies of all time when he pointed out to his
colleagues that it was possible to perform computations in number theory by
means of a machine -- a machine that embodied the rules of a formal system.
Although the machine itself didn't exist as a working model, Turing emphasized from the
beginning that such machines could actually be built. His finding was a milestone in the
effort to formalize mathematics and, at the same time, a watershed in the history of
computation.

In his brilliant solution to one of the key metamathematical problems posed by the
formalists, Alan Turing described in precise mathematical terms how an
automatic formal system with extremely simple rules of operation could have
very powerful capabilities. An automatic formal system is a physical device which
automatically manipulates the tokens of a formal system according to the system's rules.
Turing's theoretical machine was both an example of his theory of computation and a
proof that a certain kind of computing machine could, in fact, be constructed.

When he brought mathematics and logic together in the form of a machine, Turing made
symbol-processing systems possible. He proposed that the vast majority of intellectual
problems could be converted to the form "find a number n such that . . . " Even more
important than this provocative statement connecting the abstractions of intellect with the
more concrete realm of numbers -- an implication that still inspires the efforts of artificial
intelligence researchers -- was Turing's recognition that the numbers were more
important as symbols in this case than as elements of mathematical calculations.

One of Turing's greatest insights was his understanding, from the very beginning, of
something that the majority of the computer priesthood has yet to understand -- the fact
that numbers are only one possible way of interpreting the internal states of an
automatic formal system. Babbage's "patterns of action" were now formalized with
mathematical rigor. Turing's "states" provided the crucial metaphor for bridging the
power of human cognition and the capabilities of machines.

What, Turing asked, does a human symbol processor do when performing a calculation?
He decided that mental calculations consist of operations for transforming the input
numbers into a series of intermediate states which progress from one to the next
according to a fixed set of rules, until an answer is found. Sometimes, people use pencil
and paper to keep track of the states of their calculations. The rules of mathematics
require more rigid definitions than those provided by the fussily described human states
of mind discussed by metaphysicians, so Turing concentrated on defining these states in a
way that was so clear and unambiguous that the description could be used to command
the operations of a machine.

Turing started with a precise description of a formal system, in the form of
"instruction tables" describing which moves to make for every possible
configuration of states in the system. He then proved that the description of these

 31

instructions, the steps of formal axiomatic system like logic, and the machine states that
make up the "moves" in an automatic formal system are all equivalent to one another.
Such matters as formal systems and Turing machines sound very far away from what
computers actually do, but in fact they underlie the entire technology of digital computers
-- which wasn't to come into existence until over a decade after Alan Turing published his
epochal paper.

The process of computation was graphically depicted in Turing's paper when he asked the
reader to consider a device that can read and write simple symbols on a paper tape that is
divided into squares. The "reading/writing head" can move in either direction along the
tape, one square at a time, and a control unit that directs the actions of the head can
interpret simple instructions about reading and writing symbols in squares. The single
square that is "scanned" or "read" at each stage is known as the active square. Imagine
that new sections can be added at either end of the existing tape, so it is potentially
infinite.

Suppose the symbols are "X" and "O". Suppose that the device can erase either symbol
when it reads it in the active square and replace it with the other symbol (i.e., erase an X
and replace it with an O, and vice versa). The device also has the ability to move left or
right, one square at a time, according to instructions interpreted by the control unit. The
instructions cause a symbol to be erased, written, or left the same, depending on which
symbol is read.

Any number of games can be constructed using these rules, but they would not all
necessarily be meaningful. One of the first things Turing demonstrated was that some of
the games constructed under these rules can be very sophisticated, considering how crude
and automaton-like the primitive operations seem to be. The following example
illustrates how this game can be used to perform a simple calculation.

The rules of the game to be played by this Turing machine are simple: Given a starting
position in the form of a section of tape with some Xs and Os on it, and a starting square
indicated, the device is to perform the actions dictated by a list of instructions and follows
the succeeding instructions one at a time until it reaches an instruction that forces it to
stop. (If there is no explicit instruction in the table of instructions for a particular tape
configuration, there is nothing that the machine can do when it reaches that configuration,
so it has to stop.)

Each instruction specifies a particular action to be performed if there is a certain symbol
on the active square at the time it is read. There are four different actions; they are the
only legal moves of this game. They are:

Replace O with X.
Replace X with O.
Go one square to the right.
Go one square to the left.

 32

An example of an instruction is: "If there is an X on the active square replace it with O."
This instruction causes the machine to perform the second action listed above. In order to
create a "game," we need to make a list that specifies the number of the instruction that is
being followed at every step as well as the number of the instruction that is to be
followed next. That is like saying "The machine is now following (for example)
instruction seven, and the instruction to be followed next is (for example) instruction
eight."

Here is a series of instructions, given in coded form and the more English-like translation.
Taken together, these instructions constitute an "instruction table" or a "program" that
tells a Turing machine how to play a certain kind off game:

1X02 (Instruction #1: if an X is on the active square, replace
 it with O, then execute instruction #2.)
2OR3 (Instruction #2: if an O is on the active square, go right
 one square and then execute instruction #3.)
3XR3 (Instruction #3: if an X is on the active square, go right
 one square and then execute instruction #3;
3OR4 but if an O is on the active square, go right one square
 and then execute instruction #4.)
4XR4 (Instruction #4: if an X is on the active square, go right
 one square and then execute instruction #4;
4OX5 but if an O is on the active square, replace it with X and
 then execute instruction #5.)
5XR5 (Instruction #5: if an X is on the active square, go right
 one square and then execute instruction #5;
5OX6 but if an O is on the active square, replace it with X and
 then execute instruction #6.)
6XL6 (Instruction #6: if an X is on the active square, go left
 one square and then execute instruction #6
6OL7 but if an O is on the active square, go left one square and
 then execute instruction #7.)
7XL8 (Instruction #7: if an X is on the active square, go left
 one square and then execute instruction #8.)
8XL8 (Instruction #8: if an X is on the active square, go left
 one square and then execute instruction #8;
8OR1 but if an O is on the active square, go right one square
 and then execute instruction #1.)

Note that if there is an O on the active square in instruction #1 or #7, or if there is an X
on the active square in instruction #2, the machine will stop.

 33

In order to play the game (run the program) specified by the list of instructions, one more
thing must be provided: a starting tape configuration. For our example, let us consider a
tape with two Xs on it, bounded on both sides by an infinite string of Os. The changing
states of a single tape are depicted here as a series of tape segments, one above the other.
The active square for each denoted by a capital X or O. When the machine is started it
will try to execute the first available instruction, instruction #1. The following series of
actions will then occur:

Instruction Tape What the Machine Does
#1 ...ooXxooooooo... One (of two) Xs is erased.
#2 ...ooOxooooooo...

#3 ...oooXooooooo... Tape is scanned to the
#3 ...oooxOoooooo... right.
#4 ...oooxoOooooo...
#5 ...oooxoXooooo... Two Xs are written.
#5 ...oooxoxOoooo...
#6 ...oooxoxXoooo...

#6 ...oooxoXxoooo... Scanner returns to the
#6 ...oooxOxxoooo... other original X.
#7 ...oooXoXXoooo...
#8 ...ooOxoxxoooo...
#1 ...oooXoxxoooo...

#2 ...oooOoxxoooo... This X is erased.

#3 ...ooooOxxoooo... Scanner moves to the right
#4 ...oooooXxoooo... of the two Xs that were
#4 ...oooooxXoooo... written earlier.
#4 ...oooooxxOooo...

#5 ...oooooxxXooo... Two more Xs are written.
#5 ...oooooxxxOoo...
#6 ...oooooxxxXoo...

#6 ...oooooxxXxoo... Scanner looks for any more
#6 ...oooooxXxxoo... original Xs.
#6 ...oooooXxxxoo...
#6 ...ooooOxxxxoo...

 34

#7 ...oooOoxxxxoo... The machine stops because there is no
 instruction for #7 if O is being scanned.

This game may seem rather mechanical. The fact that it is mechanical was one of the
points Turing was trying to make. If you look at the starting position, note that there are
two adjacent Xs. Then look at the final position and note that there are four Xs. If you
were to use the same instructions, but start with a tape that had five Xs, you would wind
up with ten Xs. This list of instructions in the specification for a calculating procedure
that will double the input and display the output. It can, in fact, be done by a machine.

In essence, every Turing machine moves marks from one position on a tape to another
position on a tape, in the way the procedure outlined above moved Xs and Os from
square to square. These days, the marks can be electronic impulses in microcircuits, and
the tape can be an array of memory locations in a memory chip, but the essential idea is
the same. Turing proved that his hypothetical machine is an automated version of a
formal system specified by the starting position (the pattern of Os and Xs on the tape at
the beginning of the computation) and the rules (the instructions given by the instruction
tables). The moves of the game are the changing states of the machine that correspond to
the specified steps of the computation.

Turing then proved that for any formal system, there exists a Turing machine that
can be programmed to imitate it. This kind of general formal system with the ability
to imitate any other formal system was what Turing was getting at. These systems are
now known as "universal Turing machines." The theory was first stated in a paper with
the forbidding title "On Computable Numbers, with an application to the
Entscheidungsproblem."

The Turing Machine was a hypothetical device Turing invented on the way to settling a
critical question about the foundations of mathematics as a formalized means of thinking.
He showed that his device could solve infinitely many problems, but that there
are some problems that cannot be solved because there is no way of predicting
in advance whether or when the machine is going to stop. Here is where the
parting of the ways between metamathematics and computation occurred.

Our simple example of a doubling program took only twenty-six steps. But there is no
way of knowing whether or not other programs (which can be direct translations of
theorems in number theory) will ever stop. By proving this, Turing made an equivalent
point about all mechanical systems (i.e., systems in which the procedures are definite
enough to be carried out by a machine).

Turing and his colleagues ended the long search for a logically certain basis underlying
formal systems by making the shocking discovery that there are a number of important
features about formal systems about which we can never be certain. Formal systems, by
their very nature, have certain inherent limitations. At this point, the theory of
computation became something more than an important branch of metamathematics, as

 35

http://www.wadham.ox.ac.uk/%7Eahodges/T-machine.html

the properties of formal systems faded into the background and the properties of
machines emerged in a wholly unexpected and dramatic manner -- because at the same
time that Turing put a limit on the capabilities of formal systems, he showed
that there is indeed such a thing as a universal formal system. And that is what a
computer is, in the most basic sense.

The way the universal Turing machine imitates other Turing machines is as automatic as
the way our doubling machine multiplies the input by two. Assuming that the control unit
of the device is capable of interpreting simple instructions -- something that had been a
matter for toolmakers, not mathematicians since Babbage's time -- it is possible to encode
a more complex list of instructions describing various Turing machines and put them
onto the input tape, along with the starting position.

Just as the instructions followed by the machine can be stated in English (or German or
French, etc.), or in an abbreviated form like "7XL8," they can be encoded in an even
more primitive form. A code can be devised, using the same Xs and Os, that can uniquely
represent every instruction and instruction table (program). Both the instructions and the
data can be put onto the same tape. A universal Turing machine can then scan that coded
tape and perform the function specified in the code (doubling the number on the data
portion of the tape, in our example).

This code can be interpreted by a machine, a machine that automatically manipulates the
tokens, given a list of instructions and a starting configuration. When the machine stops,
you read the tape and you get the output of the program. In this case, you put the number
you want to double in the starting configuration, and then let the machine metaphorically
clank away one square at a time, erasing and writing Os or Xs. When the machine stops,
you count the Xs in the final tape configuration.

The list of instructions is what turns the universal Turing machine into the doubling
machine. Mechanically, there is no difference between the two machines. The particular
instructions described by the code are what the universal Turing machine operates upon.
If you can describe, in similarly codable instructions, a machine for tripling, or extracting
square roots, or performing differential equations, then your basic, dumb old universal
Turing machine can imitate your tripling machine or square root machine.

That ability to imitate other machines is what led to computers. The numbers (or
Xs and Os) on the tape aren't that important. They are only symbols for states of a
process -- markers in a "doubling game." The list of instructions (the program) is what
enables the machine to double the input number. The instructions, not the symbols that
keep track of the way they are carried out -- the rules, not the markers -- are what make
the Turing machine work. Universal Turing machines are primarily symbol manipulators.
And digital computers are universal Turing machines.

It isn't easy to think of the rules of a game as a kind of machine. The task is somewhat
easier if you think about "mechanical processes" that are so clearly and specifically
defined that a machine can perform them by referring to an instruction table. All

 36

universal Turing machines are functionally identical devices for following the
program specified by an instruction table. The instruction tables can differ, and
they can turn the universal Turing machine into many different kinds of
machine. For this reason, the programs are sometimes called "virtual
machines."

The distinction between a universal Turing machine and the many different Turing
machines it is able to imitate is a direct analogy to digital computers. Like universal
Turing machines, all digital computers are functionally identical. At the most basic level,
every digital computer operates in the way our doubling machine did with the squares
and Os and Xs. Instead of building a different physical machine to solve different
problems, it is more practical to describe to an instruction-following machine different
virtual machines (programs) that use this one-square-at-a-time mechanical instruction-
following process to solve complicated problems through a pattern of simple operations.

Following instructions is the nature of digital computers. The difference between a
computer calculator and a computer typewriter, for example, lies in the instructions it
follows -- the coded description it is given of the virtual machine it is meant to imitate in
order to perform a task. Since computers understand "bits" that can correspond to O and
X, or 0 and 1, or "on" and "off," you can use these symbols to write descriptions that turn
the general machine into the specific machine you want. That's what programmers do.
They think of machines people might want to use, and figure out ways to describe those
machines to general machines -- computers, that is.

It would be too time-consuming to achieve anything significant in programming if
programmers had to spend all their time thinking of ways to describe machines in strings
of Os and Xs. The O and X code is similar to what is now called machine language, and
a relatively small number of programmers are actually able to write programs in it. But
what if you could build a virtual machine on top of a virtual machine? What if
there were a coded program written in terms of Os and Xs, much like the system we
described for the doubling machine, except that this new system's task is to translate
symbols that humans find easier to use and understand -- instructions like "go left" or
even "double this number" -- into machine language?

Assembly language, a close relative of machine language except that is uses recognizable
words instead of strings of Xs and Os, is a lot more manageable than machine language,
so that's what most programmers use when they write video games or word processors.
Assembly language makes it easier to manipulate the information in the "squares" -- the
memory cells of the computer -- by using words instead of numbers. You use the
translation program described above, called an assembler, to translate assembly language
into machine language.

Every different microprocessor (the actual silicon chip hardware at the core of every
modern computer) has a list of around a hundred primitive machine language operations -
- known as "firmware" -- wired into it. When the assembler follows the instructions in the
assembly language programs, using machine language to talk to the microprocessor, the

 37

virtual machine meets the actual machine, and the computer is able to accomplish the
specified task for the human who started the whole process.

Since you have to accomplish tasks in assembly language by telling the computer very
specifically where to find the information you want, when to move it into an "active
square" called an accumulator, and where to store it when it is processed, writing
anything complicated in assembly language can be a chore -- like writing a book with
semaphore flags, or measuring a city with a yardstick.

For example, to add two numbers in assembly language you have to specify what the first
number is and assign it to the accumulator, then you have to specify the second number
and instruct the machine to add it to the number already in the accumulator. Then you
have to specify where to store the answer, and issue step-by-step instructions on how to
send the answer to your printer or monitor.

Obviously, it is easier to do the whole thing in a procedure like the one in BASIC: You
simply type something on the keyboard, like "PRINT 2 + 3," and some part of the
software takes care of accumulators and memory addresses. Your printer prints out "5,"
or it is displayed on your monitor, and the computer doesn't bother you with details about
its internal operations.

At the core of every computer language is something very much like the doubling
machine. Since it is possible to describe machines that describe machines, under the rules
of the universal Turing machine game, it is possible to write a machine language program
that describes a machine that can translate assembly language into machine language.
Having done that, this new tool can be used to create yet another level of communication
that is even more manageable than assembly language, by making a code-language that is
still closer to English.

That last virtual machine -- the English-like one -- is called a high-level programming
language. High-level doesn't mean that a language is intellectually lofty, only that it us a
virtual machine interpreted by a lower-level machine, which in turn may be interpreted
by an even lower level machine, until you get to the lowest level of on and off impulses
that translate the Os and Xs into electronically readable form. BASIC and FORTRAN
and other languages that programmers work with are actually virtual machines that are
described to the computer by other virtual machines equivalent to the assemblers
mentioned above, known as interpreters and compilers.

The first compiler, however, was not to be written until 1953, seventeen years after
Turing's theoretical paper was published in 1936. The emergence of the digital computer,
based on the principles of Turing's machine, was stimulated by World War II, which was
still four years in the future. In 1936, Claude Shannon had yet to discover that the algebra
invented by George Boole to formalize logical operations was identical with the
mathematics used to describe switching circuits. John von Neumann and his colleagues
had yet to devise the concept of stored programming. Norbert Wiener hadn't formalized

 38

the description of feedback circuits in control systems. Several crucial electronic
developments were yet to come.

Although only a half-dozen metamathematicians thought about such things during the
1930s, the notion of machines whose functions depend on the descriptions of how they
operate happened to have one real-world application that suddenly became very
important toward the end of the decade. In 1940, the British government developed an
intense interest in Turing's theories.

WWII

A top-secret project code-named "Ultra," under the direction of an intelligence officer
code-named "Intrepid," had captured and brought to London the secret German cipher
machine known as "Enigma." The machine enabled the Nazi high command to send
orders to field commanders in the form of an uncrackable code. Even though they had the
machine in their hands British intelligence was still baffled by the encoding mechanism.
Even the best of the old-style cryptographers couldn't suggest a solution.

The British high command recruited brilliant mathematicians, engineers, and logicians,
inadvertently creating one of the seminal research groups in the field that was to be
known as artificial intelligence. Among them was Donald Michie, then only twenty-two,
who was later to become the leading British machine intelligence researcher. Another
very young colleague who later distinguished himself was I. J. Good, a prankster who
once wrote Her Majesty the Queen suggesting that he be made peer of the realm, because
then his friends would be forced to remark, "Good Lord, here comes Lord Good," when
they saw him coming.

The place known as Bletchley Park is far less famous than Omaha Beach, but many
historians contend that the European war was won, in large part, in a closely guarded
Victorian mansion in Hertfordshire, England, by the group of thinkers who succeeded in
breaking the German code. The brilliant, young, unorthodox code-crackers were housed
near Bletchley Park while they performed their role in the top-secret operation. One of
the code breakers was twenty-eight-year-old Alan Turing.

Turing was eccentric, fun-loving, disheveled, painfully honest, erratic, introspective,
prodigiously and elegantly brilliant, and somewhat inept socially. Turing was an early
model of the similar maladroit and analogously otherworldly computer hackers
who were to come later: He was a sloppy dresser and a passionate chessplayer, fond of
children's radio programs and dedicated to long-distance running. (Sometimes he even
timed himself with an alarm clock tied around his waist.) Even one of his few intimate
friends described his speech as "a shrill stammer and crowing laugh which told upon the
nerves even of his friends."

He never quite got the hang of automobiles, which was probably safer, considering the
way Turing's mind wandered far away from the realities of the roadway. He preferred the

 39

http://www.cranfield.ac.uk/CCC/BPark/

battered bicycle of the Cambridge don. The bicycle and his habit of running twenty or
thirty miles to attend a meeting were the objects of sundry anecdotes about "the Prof," as
Turing was known around Bletchley. He was once detained by the local constable
for bicycling around in a gas mask, which Truing claimed alleviated his hay
fever.

Turing and his colleagues at Bletchley Park ended up solving the Enigma enigma by
devising a series of machines known as "bombes," "the Robinsons," and a culminating
contraption known as "Colossus." Their purpose? To imitate "Enigma," of course!

The Bletchley Park devices were by no means universal machines by Turing's 1936
definition, but they did use important aspects of Turing's ideas. Using high-speed devices
for feeding instructions encoded on paper tapes, and electrical circuitry for performing
simple but tedious logical operations upon coded messages, the decoding machines began
operating in 1943. The machines enabled the British to crack Enigma's code, in part by
imitating crucial functions of the enemy coding machine.

The fact that these young academecians had broken the code was a secret of unparalleled
importance, perhaps the most closely kept secret of the war, because the ability of the
Bletchley machines to continue to successfully decode German messages depended upon
the Nazi high command's continuing ignorance that their unbreakable code had been
cracked.

Despite the importance of this work, early wartime bureaucracy and the thickets of
secrecy surrounding the project threatened to cancel the incredible strategic advantage the
1943 Enigma breakthrough had handed the Allies. Turing appealed directly to Winston
Churchill, who gave the project top priority. The codes continued to be cracked
throughout the duration of the war, and in 1944 and 1945 the valuable information was
disguised in the form of other kinds of intelligence, then relayed to British commanders
in the Atlantic.

The tide of the critical U-boat conflict was turned, and the invasion of Europe became
possible, largely because of Turing's success with the naval version of the Enigma. The
Germans never caught on, and Turing's esoteric work in metamathematics turned out to
have dramatically practical applications after all. Because of the growing strategic
significance of advanced cryptanalysis methods in the cold war era, the project continued
to be held secret for decades after the war. After 1945, a very few people knew that
Turing had done something important for the war effort but nobody knew exactly what it
was, because he still wasn't allowed to allude to it.

His role at Bletchley wasn't Turing's only wartime contribution. He was sent over to
America, at a time when it was indeed dangerous to take a North Atlantic cruise, to share
crucial aspects of British cryptanalytic progress with American intelligence and to lend
his intelligence to several American war-related scientific projects.

 40

It was during this American visit that Turing picked up practical knowledge of
electronics. Turing had first become acquainted with what were then called "electronic
valves" when he investigated the possibility of using the exotic vacuum-tube devices
coming out of radar research to speed up the massive information-processing tasks
needed by the Bletchley code-breakers. In America, Turing was involved in another
hypersecret project, this time involving voice encryption -- what the spy novels call
"scramblers." Because of this work on the device that was code-named "Delilah," Turing
learned his electronics from some of the best in the business -- the engineers at Bell
Laboratories in New York (including one named Claude Shannon, a prodigy of a
different kind, who will enter the story again).

By the end of the war, the knowledge that electronic technology could be used to speed
up logical switching circuits, and the possibility of building working models of Turing's
universal machines, led His Majesty's government to once again support an automatic
calculating device. This time, it was not called the "Analytical Engine," but the
"Automatic Computing Engine" -- or ACE, as it became known. At the end of World
War II, despite the work in America of Mauchly and Eckert (ENIAC's inventors), the
British were in an excellent position to win the race to build the first true electronic
digital computer. But unfortunately for Alan Turing, postwar computer research in
Britain was not pursued as aggressively and on the same scale as the American effort.

Turing, of course, was in the thick of the postwar computer development effort, but not at
the center, and certainly not in control. As it turned out, his heroic and secret war work
helped to make him the victim of scientific politics, not their master. His reports on the
hardware and software design for ACE were ambitious, and if the machine he originally
envisioned had been constructed as soon as it was designed, it would have put ENIAC to
shame.

While a succession of other men took over the direction of the computer projects at the
National Physical Laboratory and at the University of Manchester, Turing hovered at the
periphery of the political power while he put his mind to the actual construction of one of
his long-imaginary universal machines. In this he was hampered by the attitude prevalent
among his peers that upper-middle-class Cambridge theoreticians simply did not get their
hands dirty with "engineering." But rigid conformity to social standards was not Alan's
strong point. He forged ahead with what he knew was important -- the development of a
science of software.

Programming

Turing's ideas about the proper approach to computer design stressed the need to build
computing capabilities into the program, not the hardware. He was particularly
interested in the programming operations -- or "coding," as it was already coming to
be called -- by which truly interesting mathematical operations, and possibly "thinking"
itself, eventually might be simulated by an electronic computer. And while Turing's first

 41

http://www.rheingold.com/texts/tft/4.html

attempt at writing programming languages would be considered crude by today's
standards, his ideas were far more advanced than the state of the hardware then available.

While his colleagues and the American team scrambled to put together the most
elementary models of electronic digital computers, Turing was already looking far
beyond the clumsy contraptions constructed in the late forties and early fifties. His public
talks and private conversations indicated a strong belief that the cost of electronic
technology would drop while its power as a medium for computation would increase in
the coming decades. He also believed that the capabilities of these devices would quickly
extend beyond their original purposes.

Programs for doubling numbers or extracting square roots or breaking codes are handy
tools, but Turing was aware that calculation was only one of the kinds of formal systems
that could be imitated by a computational device. In particular, he saw how the simple
"instruction tables" of his theoretical machines could become elements of a powerful
grammar that the machines could use to modify their own operations.

One innovation of Turing's stemmed from the fact that computers based on Boolean
logic operate only on input that is in the form of binary numbers (i.e., numbers expressed
in powers of two, using only two symbols), while humans are used to writing numbers in
the decimal system (in which numbers are expressed in powers of ten, using ten symbols.
Turing was involved in the writing of instruction tables that automatically converted
human-written decimals to machine-readable binary digits. If basic operations like
addition, multiplication, and decimal-to-binary conversion could be fed to the machine in
terms of instruction tables, Turing saw that it would be possible to build up heirarchies of
such tables. The programmer would no longer have to worry about writing each and
every operational instruction, step by repetitive step, and would thus be freed to write
programs for more complex operations.

Turing wrote a proposal shortly after the end of the war in which he discussed both the
hardware and "coding" principles of his long-hypothetical machines. He foresaw that the
creation of these instruction tables would become particularly critical parts of the entire
process, for he recognized that the ultimate capabilities of computers would not always
be strictly limited by engineering considerations, but by considerations of what was not
yet known as "software."

Turing not only anticipated the fact that software engineering would end up more
difficult and time-consuming than hardware engineering, but anticipated the importance
of what came to be known as "debugging":

Instruction tables will have to be made up by mathematicians with computing experience and perhaps a
certain puzzle-solving ability. There will probably be a good deal of work of this kind to be done, for every
known process has got to be translated into instruction table form at some stage. This work will go on
whilst the machine is being built, in order to avoid some delay between the delivery of the machine and the
production of the results. Delay there must be, due to the virtually invisible snags, for up to a point it is
better to let the snags be there than to spend such time in design that there are none (how many decades
would this course take?). This process of constructing instruction tables should be very fascinating. There is

 42

no real danger of it ever becoming a drudge, for any processes that are quite mechanical may be turned
over to the machine itself.
Except for the almost equally advanced ideas of a German inventor by the name of
Konrad Zuse, which were long unknown to British and American scientists, Turing's
postwar writings about the logical complexities and mathematical challenges
inherent in the construction of instruction tables were the first significant steps
in the art and science of computer programming. Turing was fascinated with the
intricacies of creating coded instruction tables, but he was also interested in what might
be done with a truly sophisticated programming language. His original metamathetical
formalism had stemmed from his attempt to connect the process of human thought to the
structure of formal systems, and Turing was still intrigued by the possibility that
automatic formal systems -- computers -- might one day emulate aspects of human
reasoning.

The most profound questions Turing raised concerning the capabilities of universal
machines were centered around this hypothesized future ability of computing engines to
simulate human thought. If machinery might someday help in creating its own
programming, would machinery ever be capable, even in principle, of
performing activities that resembled human thought? His 1936 paper was
published in a mathematical journal, but it eventually created the foundation of a whole
new field of investigation beyond the horizons of mathematics -- computer science. In
1950, Turing published another article that was to have profound impact; the piece, more
simply titled "Computing Machinery and Intelligence," was published in the
philosophical journal Mind. In relatively few words, using tools no more esoteric
than common sense, and absolutely no mathematical formulas, Turing provided
the boldest subspecialty of computer science -- the field of artificial
intelligence.

Despite the simplicity of Turing's hypothetical machine, the formal description in the
mathematics journal makes very heavy reading. The 1950 article, however, is worth
reading by anyone interested in the issue of artificial intelligence. The very first sentence
still sounds as direct and provocative as Turing undoubtedly intended it to be: "I propose
to consider the question 'Can machines think?' "

In typical Turing style, he began his consideration of deep AI issues by describing -- a
game! He called this one "The Imitation Game," but history knows it as the "Turing
Test." Let us begin, he wrote, by putting aside the question of machine intelligence and
consider a game played by three people -- a man, a woman, and an interrogator of either
gender, who is located in a room apart from the other two. The object of the game is to
ask questions of the people in the other room, and to eventually identify which one is the
man and which is the woman -- on the basis of the answers alone. In order to disguise the
appearance, voice, and other sensory clues from the players, the interrogation takes place
over a teletype.

 43

http://www.zib-berlin.de/Prospect/zuse.html

Turing then asks us to substitute a machine for one of the unknown players and make a
new object for the game: This time, the interrogator is to guess, on the basis of the
teletyped conversation, which inhabitant of the other room is a human being and which
one is a machine. In describing how such a conversation might go, Turing quoted a brief
"specimen" of such a dialog:

Q: Please write me a sonnet on the subject of the Forth Bridge.
A: Count me out on this one. I could never write poetry.
Q: Add 44957 to 70764.
A: (pause about 30 seconds and then give as answer) 105621.
Q: Do you play chess?
A: Yes.
Q: I have K at my K1, and no other pieces. You only have K at K6 and R at R1. It
is your move. What do you play?
A: (After a pause of 15 seconds) R-R8 mate.

Note that if this dialog is with a machine, it is able to do faulty arithmetic (39457 + 7064
does not equal 105621) and play decent chess at the same time.

Having established his imitation game as the criterion for determining whether or not a
machine is intelligent, and before proceeding to consider various objections to the idea of
artificial intelligence, Turing explained his own beliefs in the matter:

. . . I believe that in about fifty years' time it will be possible to program computers, ... to make them play
the imitation game so well that an average interrogator will not have more than 70 percent chance of
making the right identification after five minutes of questioning. The original question, "Can machines
think?" I believe to be too meaningless to deserve discussion. Nevertheless I believe that at the end of the
century the use of words and educated opinion will have altered so much that one will be able to speak of
machines thinking without expecting it to be contradicted.

In the rest of the paper, Turing presented, then countered, a number of principal
objections to the possibility of artificial intelligence. The titles Turing gave these
objections reveal his whimsical streak "The Theological Objection," "The 'Heads in the
Sand' Objection," "The Mathematical Objection," "Lady Lovelace's Objection," "The
Argument from Consciousness," "Arguments from the Continuity in the Nervous
System," "The Argument from Informality of Behavior," and "The Argument from
Extrasensory Perception."

In this paper, Turing made evident his knowledge of his intellectual antecedents in this
field by countering the objection raised by Ada in her commentary, in which she stated
the problem that is still cited by most people in an argument about the possibility of
machine intelligence: "The Analytical Engine has no pretensions to originate anything. It
can do whatever we know how to order it to perform. Turing pointed out that Ada might
have spoken differently if she had seen, as he had, evidence that electronic equipment
could be made to exhibit a primitive form of "learning," by which programs would be
able to eventually master tasks that had never been specifically programmed, but which
emerged from trial-and-error techniques that had been preprogrammed.

 44

Turing's work in computing, mathematics, and other fields was cut short by his tragic
death in June, 1954, at the age of forty-two. Besides being a genius, Turing was also a
homosexual. During the early 1950s, following the defection of two homosexual spies to
the Soviet Union, Great Britain was an especially harsh environment for anyone caught
engaging in prohibited sexual acts -- especially for someone who had something even
more secret than radar or the atomic bomb in his head. Turing was arrested and convicted
of "gross indecency," and sentenced to probation on the condition that he submit to
humiliating and physically debilitating female hormone injections. Turing's war record
was still too secret to even be mentioned in his defense.

Turing put up with the hormones and the public disgrace, and quietly began to break
ground for another cycle of brilliant work in the mathematical foundations of biology --
work that might have had even more momentous consequences, if it had been completed,
than his work with computable numbers. For nearly two years after his arrest, during
which time the homophobic and "national security" pressures grew even stronger, Turing
worked with the ironic knowledge that he was being destroyed by the very government
his wartime work had been instrumental in preserving. In June, 1954, Alan Turing lay
down on his bed, took a bite from an apple, dipped it in cyanide, and bit again.

Like Ada, Alan Turing's unconventionality was part of his undoing, and like her he saw
the software possibilities that stretched far beyond the limits of the computing machinery
available at the time. Like her, he died too young.

Other wartime research projects and other brilliant mathematicians were aware of
Turing's work, particularly in the United States, where scientists were suddenly emerging
into the nuclear age as figures of power. Military-sponsored research-and-development
teams on both sides of the Atlantic continued to work on digital computers of their own.
A few of these independent research efforts grew out of Ballistics work. Others were
connected with the effort to build the first nuclear fission and fusion bombs.

Over a hundred years had passed between Babbage and Turing. The computer age
might have been delayed for decades longer if World War II had not provided
top-notch engineering teams, virtually unlimited funds, and the will to apply
scientific findings to real-world problems at the exact point in the history of
mathematics when the theory of computation made computers possible. While
the idea undoubtedly would have resonated in later minds, the development of the
computer was an inevitable engineering step once Turing explained computation.

When an equally, perhaps even more gifted thinker happened upon the same ideas Turing
had been pursuing, it was no accident of history that Turing's theoretical insights were
converted to workable machinery. A theory of computation is one very important step --
but you simply cannot perform very sophisticated computations in a decently short
interval if you are restricted to a box that chugs along a tape, erasing Os and writing Xs.
The next step in both software and hardware history was precipitated by the thinking of
another unique, probably indispensable figure in the history of programming -- John von
Neumann.

 45

Turing had worked with von Neumann before the war, at Princeton's Institute for
Advanced Study. Von Neumann wanted the young genius to stay on with him, as his
protégé and assistant, but Turing returned to Cambridge. Von Neumann's profound
understanding of the implications of Turing's work later became a significant factor in the
convergence of different lines of research that led to the invention of the first digital
computers.

It isn't often that the human race produces a polymath like von Neumann, then sets him to
work in the middle of the biggest crisis in human history. Von Neumann was far more
than an embellisher of Turing's ideas -- he built the bridge between the
abstractions of mathematicians and the practical concerns of the people who
were trying to create the first generation of electronic computers. He was a key
member of the team who designed the software for the first electronic computer and who
created the model for the physical architecture of computers. He also added elegance and
power to Turing's first steps towards creating a true programming language.

 46

Chapter Four:
Johnny Builds bombs and Johnny Builds Brains
If you asked ten thousand people to name the most influential thinker of the twentieth
century, it is likely that not one of them would nominate John von Neumann. Few would
even recognize his name. Despite his obscurity outside the communities of
mathematicians and computer theorists, his thoughts had an incalculable impact on
human destiny. He died in 1957, but the fate of the human race still depends on how we
and our descendants decide to use the technologies von Neumann's extraordinary mind
made possible.

At the end of his life he was an American, and a power behind the scenes of American
scientific policy and foreign policy. But that was only the last of several equally
distinguished identities in different countries and fields of thought. Janos Neumann,
known as "Jansci," was a prodigious young chemical engineer turned mathematician and
logician in Hungary in the early 1920s. Johann von Neumann was one of the elite
quantum physics revolutionaries in Gottingen, Germany, in the late twenties. And from
1933 until his death, he was John von Neumann of Princeton, New Jersey; Los Alamos,
New Mexico; and Washington, D.C., known to professors and Presidents as "Johnny."

Ada and Babbage could only dream of the day their device could be put to work. Turing
was a tragic victim of political events before he could get his hands on a computer worth
the name. Johnny, however, not only managed to get his machines built and use them to
create the first working principles of software -- but he also ended up telling his
government how to use the new technology. He was responsible for much more than the
first boost in accelerating American effort to develop computer technology.

A combination of many different scientific and political developments led to the
invention of ENIAC. Electronic tube technology, Boolean logic, Turing-type
computation, Babbage-Lovelace programming, and feedback-control theories were
brought together because of the War Department's insatiable hunger for raw calculating
power. John von Neumann was the only man who not only knew enough about
the scientific issues but moved comfortably enough in the societies of Princeton
and Los Alamos and Washington to grasp the threads and weave them together
in an elegant and powerful design.

Von Neumann was a very important, probably indispensable, member of the Manhattan
Project scientific team. Oppenheimer, Fermi, Teller, Bohr, Lawrence, and the other
members of the most gifted scientific gathering of minds in history were as awed by
Johnny's intellect as anyone else who ever met him. More impressively, they were as
reliant on his mathematical judgment as anyone else. In that galactic cluster of world-
class physicists, chemists, mathematicians, and engineers, it was a rare tribute that von
Neumann was put in charge of the mathematical calculations upon which all their
theories -- and the functioning of their "gadget" -- would depend.

 47

http://www.needham.mec.edu/NPS_Web_docs/High_School/cur/mp/index.html
http://www.needham.mec.edu/NPS_Web_docs/High_School/cur/mp/index.html

As if his significant contributions to the development of the first nuclear weapons and the
first computers were not enough for one man, he was also one of the original logicians
who had posed the questions that Turing and Kurt Gödel answered in the 1930s. He was
a cofounder of the modern science of game theory (picking up where Babbage left off),
one of the founders of operational research (also, curiously, advancing a field first
explored by Babbage), an active participant in the creation of quantum physics, one of the
first people to suggest analogies and differences between computer circuits and brain
processes, and one of the first scientists since Turing to examine the relationship between
the mathematics of code-making and the mystery of biological reproduction.

Von Neumann ended up a key policy-maker in the fields of nuclear power,
nuclear weapons, and intercontinental ballistic weaponry: he was the director of
the Atomic Energy Commission and an influential member of the ICBM Committee.
Generals and senators were lucky to get an appointment. Even when he was dying, the
most powerful men in the world gathered around for a final consultation. According to
Admiral Lewis Strauss, former chairman of the Atomic Energy commission: "On one
dramatic occasion near the end, there was a meeting at Walter Reed Hospital where,
gathered around his bedside and attentive to his last words of advice and wisdom, were
the secretary of Defense and his Deputies, the Secretaries of the Army, Navy, and Air
Force, and all the military Chiefs of Staff."

John von Neumann's political views, undoubtedly rooted in his upper-class Hungarian
past, were unequivocal and extreme, according to the public record and his biographers.
He not only used his scientific expertise to hasten and accelerate the
development of nuclear weapons and computer-guided missiles, but counseled
military and political leaders to think about using these new American
inventions against the USSR in a "preventive war." (In an article in Life magazine,
published shortly after he died, von Neumann was quoted as saying: "If you say why not
bomb them tomorrow, I say, why not today. If you say at five o'clock, I say why not one
o'clock.")

In contrast to Turing, whom he knew from Turing's prewar stay at Princeton and from
their wartime work, von Neumann was a sophisticated, worldly, and gregarious fellow,
famous for the weekly cocktail parties he and his wife hosted during his tenure at
Princeton's Institute for Advanced Study and up on the Mesa at Los Alamos. He had a
substantial private income and an additional $10,000 a year from the Institute. He was
widely known to have a huge repertoire of jokes in several languages, a vast knowledge
of risqué limericks, and a casual manner of driving so recklessly that he demolished
automobiles at regular intervals, always managing to emerge miraculously unscathed.

Despite his apparently charmed existence, von Neumann, like Ada Lovelace and Alan
Turing, died relatively young. Lovelace died of cancer at thirty-six, Turing of cyanide at
forty-two, and von Neumann of cancer at fifty-three. Like many other Los Alamos
veterans, he may have been a victim of exposure to radiation during the early nuclear
bomb tests. His death came as a shock to all who knew him as a vital, lively, peripatetic,
seemingly invulnerable individual. Stanislaw Ulam, von Neumann's mathematical

 48

colleague and lifelong friend, in a memorial to Johnny published in a mathematical
journal shortly after von Neumann's death, described his physical presence in loving
detail:

Johnny's friends remember him in his characteristic poses: standing before a blackboard or discussing
problems at home. Somehow his gesture, smile, and the expression of the eyes always reflected the thought
or the nature of the problem under discussion. He was of middle size, quite slim as a young man, then
increasingly corpulent; moving in small steps with considerable random acceleration, but never with great
speed. A smile flashed on his face whenever a problem exhibited features of a logical or mathematical
paradox. Quite independently of his liking for abstract wit, he had a strong appreciation (one might almost
say a hunger) for the more earthy type of comedy and humor.

Everyone who knew him remembers to point out two things about von Neumann -- how
charming and personable he was, no matter what language he was speaking, and how
much more intelligent that other human beings he always seemed to be, even in a crowd
of near-geniuses. Among his friends, the standard joke about Johnny was that he
wasn't actually human but was as skilled at imitating human beings as he was at
everything else.

Born into an upper-class Hungarian Jewish family, Jansci was fluent in five or six
languages before the age of ten, and he once told his collaborator Herman Goldstine that
at age six he and his father often joked with each other in classical Greek. It was well
known that he never forgot anything once he read it, and his ability to perform lightning
fast calculations was legendary.

One night in the middle of the summer of 1944, von Neumann encountered by
happenstance a mathematician of past acquaintance in the Aberdeen, Maryland, train
station. History might have been far different if one of their trains had been scheduled a
few minutes earlier. That accidental meeting in Aberdeen presented von Neumann with a
nearly completed approach to a problem the strategic significance of which he was
uniquely equipped to understand, the details of which were complex and profound
enough to attract his intellectual curiosity, the successful completion of which could be
hastened by the use of his political clout.

Lieutenant Herman Goldstine, then associated with the U.S. Army Ordnance Ballistic
Laboratory at Aberdeen, Maryland, didn't know anything about the other projects von
Neumann was juggling at that time. But he knew that von Neumann's security clearance
was miles above his and that he was a member of the Scientific Advisory Committee at
the Ballistic Research Laboratory. So Goldstine happened to mention that an Army
project at the Moore School of Engineering was soon to produce a device capable of
performing mathematical calculations at phenomenal speeds.

Years later, Goldstine remembered that he was understandably nervous upon meeting the
world-famous mathematician on the platform at the Aberdeen station. Goldstine recalled:

Fortunately for me, von Neumann was a warm friendly person who did his best to make people feel relaxed
in his presence. The conversation soon turned to my work. When it became clear to von Neumann that I
was concerned with the development of an electronic computer capable of 333 multiplications per second,

 49

the whole atmosphere of our conversation changed from one of relaxed good humor to one more like the
oral examination for the doctor's degree in mathematics.

Because he had all-important reasons for wanting a fast automatic calculator, von
Neumann asked for a demonstration. At the Moore School of Engineering, he met the
gadget's inventors, Mauchly and Eckert, and the next years saw Johnny adding Aberdeen
as a regular stop on his Princeton-D.C.-Los Alamos shuttle. Like everything else he
turned his mind to, von Neumann immediately seemed to see more clearly than anyone
else the future potential of what was then only a crude prototype. While the other
principal creators of the first electronic computer were either mathematicians or electrical
engineers, von Neumann was also a superb logician, which enabled him to understand
what few others did -- that these gadgets were in a class quite far beyond that of superfast
calculating engines.

From those early meetings in 1944 to the eras of ENIAC, EDVAC, UNIVAC, MANIAC,
and (yes) JOHNNIAC, the problem of assigning legal and historical credit to the
inventors of the first electronic digital computers becomes a tangled affair in which
easy explanations are impossible and many conflicts are still unresolved. Goldstine -- the
other man on the platform with von Neumann -- had his own version of the key events in
early computer history. Mauchly and Eckert had a distinctly different point of view.
There was a tale of Stibitz at Bell Labs. IBM's Thomas Watson, Senior, had yet another
story. And a man in Iowa named Atanasoff eventually had the unexpected last laugh in a
courtroom in 1973.

Monumental court cases have been fought over the issue of assigning credit for the
invention of the modern computer, and even the legal decisions have been somewhat
murky. Certainly it was a field in which a few people all over the world, working
independently, reached similar conclusions. In the case of the ENIAC team, it was a case
of several determined minds working together.

It isn't hard to envision von Neumann coming onto the scene after others have worked for
years on the considerable engineering problems involved in building ENIAC (Electronic
Numerical Integrator and Calculator), then dominating the voice of the group when they
articulated their discoveries, not out of self-aggrandizement, but because he undoubtedly
had the most elegant way of stating the conclusions that the group had arrived at, working
in concert. Because of von Neumann's prominence in other fields, and the way his charm
worked on journalists as well as generals, he was often described by the mass media as
the sole inventor of key concepts like the all-important "stored program" -- a credit he
never claimed himself.

Although the matter of assigning credit for the earliest computer hardware is a tricky
business, there is no denying von Neumann's central role in the history of software. His
contributions to the science of computation in the late forties and early fifties were
preceded by even earlier theoretical work that led to the notion of computation. He was
one of the principal participants in both of the lines of thought that converged into the
construction of ENIAC -- mathematical logic and ballistics.

 50

http://www.intercom.net/local/shore_journal/joc10225.html
http://www.upenn.edu/AR/penninfo-new/ENIAC_Papers.html
http://www.upenn.edu/AR/penninfo-new/ENIAC_Papers.html

John von Neumann's role in the invention of computation began nearly twenty years
before the ENIAC project. In the late 1920s, between his major contributions to quantum
physics, logic, and game theory, young Johann von Neumann of Göttingen was one of
the principal players in the international game of mathematical riddles that started with
Boole seventy years prior and led to Turing's invention of the universal machine a decade
later.

The impending collision of philosophy and mathematics that was becoming evident at the
end of the nineteenth century made mathematicians extremely uncomfortable. Slippery
metaphysical concepts associated with human thought might have appealed to minds like
Boole's or Turing's. But to David Hilbert of Göttingen and others of the early 1900s, such
vagueness was a grave danger to the future of an enterprise that intended to reduce all
scientific laws to mathematical equations.

The logical and metamathematical foundations of more "pure" forms of mathematics,
Hilbert insisted, could only be stated clearly in terms of numerical problems and precisely
defined symbols and rules and operations. This was the doctrine of formalism that later
spurred Turing to make his astonishing discovery about the capabilities of machines.
Johann von Neumann, a student of Hilbert's, was one of the stars of the formalists. In
itself, von Neumann's metamathematical achievement was remarkable. His work in
formalism, however, was only part of what von Neumann achieved in several disparate
fields, all in the same dazzling year.

In 1927, at the age of twenty-four, von Neumann published five papers that
were instant hits in the academic world, and which still stand as monuments in
three separate fields of thought. It was one of the most remarkable interdisciplinary
triple plays in history. Three of his 1927 masterpieces were critical to the field of
quantum physics. Another paper established the new field of game theory. The paper
most directly to the future of computation was about the relationship between formal
logic systems and the limits of mathematics.

In his last 1927 paper, von Neumann demonstrated the necessity of proving that all
mathematics was consistent, a critically important step toward establishing the theoretical
basis for computation (although nobody yet knew that). This led, one year later, to a
paper published by Hilbert that listed three unanswered questions about mathematics that
he and von Neumann had determined to be the most important questions facing logicians
and mathematics of the modern era.

The first of these questions asked whether or not mathematics was complete.
Completeness, in the technical sense used by mathematicians, means that every true
mathematical statement can be proven (i.e., is the last line of a valid proof).

The second question, the one that most concerned von Neumann, asked whether
mathematics (or any other formal system) was consistent. Consistency in the technical
sense means that there is no valid sequence of allowable steps (or "moves" or "states")

 51

that could prove an untrue statement to be true. If arithmetic was a consistent system,
there would never be a way to prove that 1 + 1 = 3.

The third question, the one that opened the side door to computation, asked whether or
not mathematics was decidable. Decidability means that there is some definite method
that is guaranteed to correctly determine whether an assertion is provable.

It didn't take long for a shocking answer to emerge in response to the first Hilbert-von
Neumann question. In 1930, yet another young mathematician, Kurt Gödel, showed that
arithmetic cannot be complete, because there will always be at least one true assertion
that cannot be proved. In the course of demonstrating this, Gödel crossed a crucial
threshold between logic and mathematics when he showed that any formal system that is
as rich as the number system (i.e., contains the mathematical operators + and =) can be
expressed in terms of arithmetic. This means that no matter how complicated
mathematics (or any other equally powerful formal system) becomes, it can always be
expressed in terms of operations to be performed on numbers, and the parts of the system
(whether or not they are inherently numerical) can be manipulated by rules of counting
and comparing.

Von Neumann's and Hilbert's third question about the decidability of mathematics led
Turing to his 1936 breakthrough. The "definite method" (of determining whether a
mathematical assertion is provable) that was demanded by the decidability question was
formulated by Alan Turing as a machine that could operate in definite steps on statements
encoded as symbols on tape. Gödel had shown how numbers could represent the
operations of formal system, and Turing showed how the formal system could be
described numerically to a machine equipped to decode such a description (e.g., translate
the system's rules into the form "find a number n, such that . . . ", "n" being expressible as
a string of ones and zeroes).

All of these questions were terribly important at the time they were formulated -- to the
few dozen people around the world who were equipped to understand their significance.
But in 1930, the rest of the population had more important things to worry about that the
hypothetical machines of the metamathematicians. Even those who understood that
universal machines could in fact be built were in no position to begin such a task.
Making a digital computer was an engineering project that would require the
kind of support that only a national government could afford.

John von Neumann was at the Institute for Advanced Study at Princeton by the time
young Gödel and Turing came along. Although he was keenly aware of the latest
developments in the "foundation crisis of mathematics" he had helped initiate in the late
1920s, von Neumann's restless intellect was attacking half a dozen new problems by the
early 1930s. To Johnny, still in his twenties, the most important thing in life was to find
"interesting problems."

In particular, he was interested in mathematical questions involving the phenomenon of
turbulence, and the dynamics of explosions and implosions happened to be one area

 52

http://www.ias.edu/

where such questions could be applied. He was also interested in new mathematical
methods for modeling complex phenomena like global weather patterns or the passage of
radiation through matter -- methods that were powerful but required such enormous
numbers of calculations that future progress in the field was severely limited by the
human inability to calculate the results of the most interesting equations in a reasonable
length of time.

Von Neumann seemed to have a kind of "Midas Touch." The problems he tackled,
no matter how abstruse and apparently obscure they might have seemed at the time, had a
way of becoming very important a decade or two later. For example, he wrote a paper in
the 1920s on the mathematics underlying economic strategies. A quarter of a century later
it turned out to be a perfect solution to the problem of how airplanes should search for
submarines (as well as one of the first triumphs of "operational research," one of the
fields pioneered by Babbage).

By the 1940s, von Neumann's expertise in the mathematics of hydrodynamic turbulence
and the management of very large calculations took on unexpected importance because
these two specialties were especially applicable to a new kind of explosion that was being
cooked up by some of the old gang from Göttingen, now gathered in New Mexico. The
designers of the first fission bomb knew that hellish mathematical problems in both areas
had to be solved before any of the elegant equations of quantum physics could be
transformed into the fireball of a nuclear detonation. As von Neumann already suspected,
the mathematical work involved in designing nuclear and thermonuclear weapons created
an avalanche of calculations.

The calculating power needed in the quest for thermonuclear weaponry ended up being
one of the highest-priority uses for ENIAC -- top-secret calculations for Los Alamos
were the subject of the first official programs run on the device when it became
operational -- although the reason the electronic calculator had been
commissioned in the first place was to generate the mathematical tables needed
for properly aiming conventional artillery.

The ENIAC project was started under the auspices of the Army Ballistic Research
Laboratory. Herman Goldstine, a historian of computation as well as one of the key
participants, took the trouble to point out that the word ballistics is derived from the Latin
ballista, the name of a large device for hurling missiles. Ballistics in the modern sense is
the mathematical science of predicting the path of a projectile between the time it is
launched and the moment it hits the target. Complex equations concerning moving bodies
are complicated further by the adjustments necessary for winds of different velocities and
for the variations in air resistance encountered by projectiles fired from very large guns as
they travel through the atmosphere. The results of all possible distance, altitude, and
weather calculations for guns of each specific size and muzzle velocity are given in
"firing tables" which artillerymen consult as they set up a shot.

The application of mass-production techniques to weapons meant that new types of guns
and shells were coming along at an unprecedented pace, making the ongoing production

 53

of firing tables no easy task. During World War I, such calculations were done by
humans who were called "computers." But even then it was clear that new methods of
organizing these large-scale calculations, and new kinds of mechanical calculators to help
the work of human computers, would be an increasingly important part of modern
warfare.

In 1918 the Ballistics Branch of the Chief of Ordnance set up a special mathematical
section at the Aberdeen Proving Ground in Maryland. One of the early recruits was the
young Norbert Wiener, who was to feature prominently in another research tributary of
the mainstream of ballistic technology -- the automatic control of antiaircraft guns -- and
who was later to become one of the creators of the new computer-related discipline of
cybernetics.

In the 1930s, both the Aberdeen laboratory and an associated group at the University of
Pennsylvania's Moore School of Engineering obtained models of the automatic analog
computer constructed by Vannevar Bush at MIT, a gigantic mechanical device known as
the "differential analyzer." It was a marvelous aid to calculation, but it was far from being
a digital computer, in either its design or its performance.

With the aid of these machines, the work of performing ballistic calculations was
somewhat relieved. Before World War II, the machines were still second to the main
resource -- mathematics professors emeriti at the Moore School, who performed the
calculations by hand, with the aid of hand-cranked mechanical calculators. Shades of
Babbage's Cornish clergymen!

When war broke out, it was obvious that the institutions in charge of producing ballistic
calculations for several armed services needed expert help. It was for this reason that a
mobilized mathematician, Lieutenant Herman Goldstine, reported for duty at Aberdeen in
August, 1942, and was assigned the task of streamlining ballistic computations. He soon
found the Moore School facilities inadequate, and started to expand the staff of human
"computers" by adding a large number of young women recruited from the Women's
Army Corps to the small cadre of elderly ex-professors.

Goldstine's wife, Adele, herself a mathematician who was to play a prominent role in the
programming of early computers (she and six other women were eventually assigned the
task of programming the ENIAC), became involved with recruiting and teaching new
staff members. Von Neumann's wife, Klara, performed a similar role at Los Alamos, both
before and after electronic computing machines became available. The tradition of using
women for such work was widespread -- the equivalent roles in Britain's code-breaking
efforts were played by hundreds of skilled calculators whom Turing and his colleagues
called "girls" as well as "computers."

The expansion of the human computing staff at Aberdeen to nearly two hundred people,
mostly WACs, was a stopgap measure. The calculation of firing tables was already out of
hand. As soon as a new kind of gun, fuse, or shell became available for combat, a new
table had to be calculated. The final product was either printed in a booklet that gunners

 54

http://www.rheingold.com/texts/tft/5.html
http://www.rheingold.com/texts/tft/9.html
http://www.rheingold.com/texts/tft/2.html

kept in their pockets, or was mechanically encoded in special aiming apparatus called
automata. (An entirely different mathematical research effort by Julian Bigelow, Warren
Weaver, and Norbert Wiener was to concentrate on the characteristics of these automatic
aiming machines.)

The answer to the firing table dilemma, as Goldstine was one of the first to recognize,
was to commission the invention of an entirely new kind of mechanical calculating aid.
The Vannevar Bush calculators were no longer the most efficient calculating devices.
Faster machines, built on different principles, had been built by Dr. Howard Aiken and an
IBM team at Harvard, and by a group led by a man named George Stibitz at Bell
laboratories. But Goldstine knew that what they really needed at Aberdeen and the Moore
School was an automatic calculator that was hundreds, even thousands of times faster
than the fastest existing machines.

Such dreams would have been akin to an Air Force officer wishing for a ten-thousand-
mile-per-hour airplane, except for the fact that another new technology, one that only a
few people even thought of applying to mathematical problems, looked as if it might
make such a machine possible in theory, if only questionably probable in execution.
Research in the young field of electronics had been uncovering all sorts of marvelous
properties of the vacuum tube. Over in Great Britain, the whiz kids at Bletchley Park
were using such devices in Colossus, their not-quite-computational code-breaking
machine.

Until the war, electronic vacuum tubes had been used almost exclusively as amplifiers.
But they could also be used as very fast switches. Since the rapid execution of a large
number of on/off impulses is the hallmark of digital computation, and vacuum
tubes could switch on and off as fast as a million times a second, electronic switching (as
opposed to the mechanical switching of Vannevar Bush's machine) was an unbelievably
good candidate for the key component of an ultrafast computing machine.

By 1943, unknown to Goldstine and almost all of his superiors, another, much higher-
ranking scientist was also searching for an ultrafast computing machine. Goldstine beat
the other fellow to it. Goldstine found Mauchly and Eckert in 1942. John von Neumann,
and chance, found Goldstine in 1944.

John W. Mauchly and J. Presper Eckert have been properly credited with the invention of
ENIAC, but before they implemented the key ideas of electronic digital computing
machines, a man named Atanasoff in Iowa, in the 1930s, built small, crude, but
functioning prototypes of electronic calculating machines. His name has not been as
widely known, and his fortunes turned out differently from those of other pioneers when
computers grew from an exotic newborn technology to a powerful infant industry. But in
1973 a Unites Stated district court ruled that John Vincent Atanasoff invented the
electronic digital computer.

It was a complicated decision, reached after years of litigation, and was not as clear-cut
as it might have been if both did not have such strong cases. The core of the dispute

 55

http://www.library.upenn.edu/special/gallery/mauchly/jwmintro.html

centered around original work Atanasoff did in the 1930s, and the influence that his work
later had on John Mauchly's design of ENIAC. Like the Hollerith-Billings story of the
invention of punched-card data processing, simple explanations of where one man's ideas
left off and another's began are difficult to reconstruct at best.

Atanasoff was the last of the lone inventors in the field of computation; after
him, such projects were too complicated for anything less than a team effort. Like Boole,
Atanasoff was the recipient of one of those sudden inspirations that provided the solution
to a problem he had been grappling with for years. A theoretical physicist teaching at
Iowa State in the early 1930s, he came up against the same obstacle faced by other
mathematicians and physicists of his era. The approaches to the most interesting ideas
were blocked by the problems of performing large numbers of complex calculations.

By 1935, Atanasoff was in hot pursuit of a scheme to mechanize calculation. He was
aware of Babbage's ideas, but he was an electronic hobbyist as well as a physicist, and
entire technologies that didn't exist in Babbage's time were now showing great promise.
Atanasoff was gradually convinced that an electronic computing machine was a good bet
to pursue, but he had no idea how to go about designing one, and he wasn't sure how to
design a machine without working out a method of programming it. In the late 1970s,
Atanasoff told writer Katherine Fishman:

I commenced to go into torture. For the next two years my life was hard. I thought and thought about this.
Every evening I would go into my office in the physics building. One night in the winter of 1937 my whole
body was in torment from trying to solve the problems of the machine. I got in my car and drove at high
speeds for a long while so I could control my emotions. It was my habit to do this for a few miles: I could
gain control of myself by concentrating on driving. But that night I was excessively tormented, and I kept
on going until I had crossed the Mississippi River into Illinois and was 189 miles from where I started. I
knew I had to quit; I saw a light, which turned out to be a roadhouse, and I went in. It was probably zero
outside, and I remember hanging up my heavy coat; I started to drink and commenced to warm up and
realized that I had control of myself.

Nearly forty years later, when he testified in the patent case concerning the invention of
the electronic computer, Atanasoff recalled that he decided upon several design elements
and principles that night in the roadhouse -- including a binary system for encoding input
and electronic tube technology for switching -- that would transform his dream of an
electronic calculator into a practical plan.

The state of each inventor's mind at the time of their discussions in 1940 and 1941 was
the crux of the legal and historical conflict. There is no dispute that John Mauchly had
also devoted years of thought to the idea of automated calculation. Thirty-three years old
when he met Atanasoff, Mauchly had worked his way through Johns Hopkins as a
research assistant, which gave him extensive experience with procedures that involve
detailed measurement and calculation. In 1933, as head of the physics department at
Ursinus College near Philadelphia, he began to perform research in atmospheric
electricity.

Mauchly was particularly interested in the long-disputed theory about the effect of
sunspots on the earth's weather. There was no obvious connection between these huge

 56

storms on the sun and terrestrial weather conditions, but that did not prove that such a
connection did not exist. In 1936, Mauchly arranged to have many parts of the
government's voluminous meteorological records shipped back to his office at Ursinus.
He intended to apply modern statistical analysis to the weather data in an attempt to
correlate them with records of sunspot activity, hoping that this probe would reveal the
previously undetected pattern.

As other mathematical meteorologists like von Neumann were also quickly discovering,
Mauchly found that any calculations involving data based on weather quickly grew so
complicated that it would take a lifetime to calculate all the equations generated from
even the shortest periods of observation. So he found himself doing the same thing that
the ballistics experts did -- hiring a lot of people with adding machines. A Depression-era
agency, the National Youth Administration, helped Mauchly pay students fifty cents an
hour to tabulate his weather data with hand calculators. Mauchly planned to obtain
punched-card machines, once he got his crew to tackle the first part of the data. But when
he watched a demonstration of the world's most advanced punched-card tabulator at the
1939 World's Fair, he realized that even scores of such machines in the hands of trained
operators might take another decade to go through the weather data.

In 1939 and 1940, Mauchly read in scientific journals about a new measuring and
counting system developed to assist cosmic-ray research. The part of the system that
caught his eye was the fact that this new device, using electronic circuits, could count
cosmic rays far faster than a dozen of the fasted punched-card tabulators. Cosmic rays
can be detected at the rate of thousands per second, but all previous recorders failed to
keep pace beyond 500 times a second. Mauchly tried making a few electronic circuits for
himself, and he began to see a way that they could be used for computation.

Mauchly took note of one circuit in particular that was developed by the cosmic-ray
researchers -- the coincidence circuit, in which a switch would be closed only when
several signals arrived at exactly the same time, thus, in effect, rendering a decision.
Would a machine capable of making electronic logical operations be possible via some
variation of this circuit? Experimenting with his own vacuum-tube circuits, Mauchly
speculated that there might also exist circuits used in other kinds of instruments that
would enable him to build a machine to add, subtract, multiply, and divide. At this point
his speculations were more grandiose than his hand-wired prototypes, but the clues he
had obtained from the cosmic-ray researchers were enough to put Mauchly's weather-
predicting machines on a collision course with a certain device the U.S. Army had in
mind, one that had nothing to do with sunspots or the weather.

Mauchly brought a small analog device to the AAAS meeting where he met Atanasoff,
and in June, 1941, he hitched a ride to visit Atanasoff in Ames, Iowa. Atanasoff
demonstrated the ABC, Mauchly stayed for five days, and thirty-two years later a court
decided that Mauchly's later invention of the ENIAC relied upon key ideas of Atanasoff's
that were transferred from mind to mind those five days in June.

 57

The 1973 legal decision (Honeywell versus Sperry Rand, U.S. District Court, District of
Minnesota, Fourth Division) did not state that Mauchly stole anything, but did restore
partial credit for the invention of the electronic computer to a man whose name had been
nearly forgotten in all the publicity and honors heaped upon Mauchly and Eckert. After
the ruling, Mauchly said: "I feel I got nothing out of that visit to Atanasoff except the
royal shaft later." On Mauchly's behalf, it must be noted that nobody has disputed the fact
that the sheer scale and engineering audacity of ENIAC was far beyond the ABC, and
that Mauchly was indeed on the right track at least as early as Atanasoff.

Part of the reason for ENIAC's success and ABC's obscurity must be attributed to the
accidents of history. Legal issues aside, the historical momentum shifted to Mauchly later
in the summer of 1941, when he signed up for an Army-sponsored electronics course at
the Moore School of Engineering. His instructor, J. Presper Eckert, was an exceptionally
bright Philadelphia blueblood twelve years younger than Mauchly. When Eckert, the
electronics wizard, learned of Mauchly's plan to automate large-scale numerical
calculations, a critical mass of idea-power was reached. They were in exactly the right
place at the right time to cook up such an ambitious project.

Not long after thirty-four-year-old John Mauchly and twenty-two-year-old Pres Eckert
started to sketch out a plan for an electronic computer, they became acquainted with
Lieutenant Herman Goldstine, both as a mathematician and as a liaison officer between
the Moore School and the Ballistic Research Laboratory. By the time he met them,
Goldstine was sufficiently frustrated by the lack of ballistic computing power
that he was receptive to even a science-fiction story like the one presented to
him by these two whiz kids.

As wild as it sounded as an engineering feat, Goldstine knew that an electronic device
such as the one Mauchly and Eckert described to him had the potential to perform
ballistic calculations over 1000 times faster than the best existing machine, the Aiken-
IBM-Harvard-Navy device called the Mark I. But it would cost a lot of money to find out
if they were right. Atanasoff and Berry built their prototype for a total of $6500. These
boys would need hundreds of thousands of dollars to lash together something so
complicated and delicate that most electrical engineers of the time would swear it could
never work.

Goldstine later explained the risks associated with attempting the proposed electronic
calculator project:

. . . we should realize that the proposed machine turned out to contain over 17,000 tubes of 16 different
types operating at a fundamental clock rate of 100,000 pulses per second. . . . once every 10
microseconds an error would occur if a single one of the 17,000 tubes operated
incorrectly; this means that in a single second there were 1.7 billion . . . chances
of a failure occurring . . . Man has never made an instrument capable of
operating with this degree of fidelity or reliability, and this is why the
undertaking was so risky a one and the accomplishment so great.

 58

http://www.scl.ameslab.gov/ABC/

The two young would-be computer inventors at the Moore School, the mathematician-
turned-lieutenant who found them, and their audacious plan for cutting through the
calculation problem by creating the world's most complicated machine were the subject
of a high-level meeting on April 9, 1943. Attending was one of the original founders of
the military's mathematical research effort and President of the Institute for Advanced
Study at Princeton, Oswald Veblen, as well as Colonel Leslie Simon, director of the
Ballistic Research Laboratory, and Goldstine.

The moment when the United States War Department entered the age-old quest for a
computing machine, and thus made the outcome inevitable, was recalled by Goldstine
when he wrote, nearly thirty years later, that Veblen, "after listening for a short while to
my presentation and teetering on the back legs of his chair brought the chair down with a
crash, arose, and said, 'Simon, give Goldstine the money.'" They got their money --
eventually as much as $400,000 -- and started building their machine.

ENIAC was monstrous -- 100 feet long, 10 feet high, 3 feet deep, weighing 30
tons -- and hot enough to keep the room temperature up toward 120 degrees F
while it shunted multivariable differential equations through its more than
17,000 tubes, 70,000 resistors, 10,000 capacitors, and 6,000 hand-set switches.
It used an enormous amount of power -- the apocryphal story is that the lights
of Philadelphia dimmed when it was plugged in.

When it was finally completed, ENIAC was too late to use in the war, but it certainly
delivered what its inventors had promised: a ballistic calculation that would have taken
twenty hours for a skilled human calculator could be accomplished by the machine in less
than thirty seconds. For the first time, the trajectory of a shell could be calculated in less
time than it took an actual shell to travel to its target. But the firing tables were no longer
the biggest boom on the block by the time ENIAC was completed. The first problem run
on the machine, late in the winter of 1945, was a trial calculation for the hydrogen bomb
then being designed.

After his first accidental meeting with Goldstine at Aberdeen, and the demonstration of a
prototype ENIAC soon afterward, von Neumann joined the Moore School project as a
special consultant. Johnny's genius for formal, systematic, logical thinking was applied to
the logical properties of this huge maze of electronic circuits. The engineering problems
were still formidable, but it was becoming clear that the nonphysical component, the
subtleties of setting up the machine's operations -- the coding, as they began to call it --
was equally difficult and important.

Until the transistor came along a few years later, ENIAC would represent the physical
upper limit of what could be done with a large number of high-speed switches. In 1945,
the most promising approach to greater computing power was in improving the logical
structure of the machine. And von Neumann was probably the one man west of Bletchley
Park equipped to understand the logical attributes of the first digital computer.

 59

Part of the reason ENIAC was able to operate so fast was that the routes followed by the
electronic impulses were wired into the machine. This electronic routing was the
materialization of the machine's instructions for transforming the input data into the
solution. Many different kinds of equations could be solved, and the performance of a
calculation could be altered by the outcome of subproblems, but ENIAC was nowhere
near as flexible as Babbage's Analytical Engine, which could be reprogrammed
to solve a different set of equations, not by altering the machine itself, but by
altering the sequence of input cards.

What Mauchly and Eckert gained in calculating power and speed, they paid for
in overall flexibility. The gargantuan electronic machine had to be set up for
solving each separate problem by changing the configuration of a huge
telephone-like switchboard, a procedure that could take days. The origins of the
device as a ballistics project were partially responsible for this inflexibility. It was not the
intention of the Moore School engineers to build a universal machine. Their contract
quite clearly specified that they create an altogether new kind of trajectory calculator.

Especially after von Neumann joined the team, they realized that what they were
constructing would not only become the ultimate mathematical calculator, but the first,
necessarily imperfect prototype of a whole new category of machine. Before ENIAC was
completed, its designers were already planning a successor. Von Neumann, especially,
began to realize that what they were talking about was a general-purpose machine, one
that was by its nature particularly well suited to function as an extension of the human
mind.

If one thing was sacred to Johnny, it was the power of human thought to penetrate the
mysteries of the universe, and the will of human beings to apply that knowledge to
practical ends. He had other things on his own mind at the time -- from the secrets of H-
bomb design to the structure of logic machines -- but he appeared to be most keen on the
idea that these devices might evolve into some kind of intellectual extension. How much
more might a thinker like himself accomplish with the aid of such a machine? One
biographer put it this way:

Von Neumann's enthusiasm in 1944 and 1945 had first been generated by the challenge of improving the
general-purpose computer. He had been a proponent of using the latest in computing machines in the
atomic bomb project, but he realized that for the impending hydrogen bomb project still better and faster
machines were needed. In the theoretical level he was intrigued by the fact that there appeared to be
organizational parallels between the brain and computers and that these parallels might lead to formal-logic
theories encompassing both computers and brains; moreover, the logical theories would constitute
interesting abstract logics in their own right. He was cautious in assuming similarity between a computer
and the awesome functioning of the human brain, especially as in 1944 he had little preparation in
physiology. Rather he regarded the computer as a technical device functioning as
an extension of its user; it would lead to an aggrandizement of the human brain,
and von Neumann wanted to push this aggrandizement as far and as fast as
possible.

 60

There is no dispute that Mauchly, Eckert, Goldstine, and Von Neumann worked together
as a team during this crucial gestation period of computer technology. The team split up
in 1946, however, so the matter of accrediting specific ideas has become a sticky one.
Memoranda were written, as they are on any project, without the least expectation that
years later they would be regarded as historical or legal documents. Technology was
moving too fast for the traditional process of peer review and publication: the two most
important documents from these early days were titled "First Draft . . ." and "Preliminary
Report . . ."

By the time they got around to sketching the design for the next electronic computer, the
four main ENIAC designers had agreed that the goal was to design a machine that would
use the same hardware technology in a more efficient way. The next step, the invention
of stored programming, is where the accreditation controversy comes in. At the end of
June, 1945, the ENIAC team prepared a proposal in the form of a "First Draft of a Report
on the Electronic Discrete Variable Calculator" (EDVAC). It was signed by von
Neumann, but reflected the conclusions of the group. Goldstine later said of this: "It has
been said by some that von Neumann did not give credits in his First Draft to others. The
reason for this was that the document was intended by von Neumann as a working paper
for use in clarifying and coordinating the thinking of the group and was not intended for
publication." (Mauchly and Eckert, however, took a less benign view of von Neumann's
intentions.) The most significant innovations articulated in this paper involved the logical
aspects of coding, as well as dealing with the engineering of the physical device that was
to follow the coded instructions.

Creating the coded instructions for a new computation on ENIAC was nowhere near as
time consuming as carrying out the calculation by hand. Once the code for the
instructions needed to carry out the calculation had been drawn up, all that had to be done
to perform the computation on any set of input data was to properly configure the
machine to perform the instructions. The calculation, which formerly took up the most
time, had become trivial, but a new bottleneck was created with the resetting of switches,
a process that took an unreasonable amount of time compared with the length of time it
would take to run the calculation.

Resetting the switches was the most worrisome bottleneck, but not the only one. The
amount of time it took for the instructions to make use of the data, although greatly
reduced from the era of manual calculation, was also significant -- in ballistics, the
ultimate goal of automating calculation was to be able to predict the path of a missile
before it landed, not days or hours or even just minutes later. If only there was a more
direct way for the different sets of instructions -- the inflexible, slow-to-change
component of the computing system -- to interact with the data stored in the electronic
memory, the more quickly accessible component of computation. The solution, as von
Neumann and colleagues formulated it, was an innovation based upon a logical
breakthrough.

The now-famous "First Draft" described the logical properties of a true general-purpose
electronic digital computer. In one key passage, the EDVAC draft pointed out something

 61

that Babbage, if not Turing, had overlooked: "The device requires a considerable
memory. While it appears that various parts of this memory have to perform functions
which differ somewhat in their nature and considerably in their purpose, it is nevertheless
tempting to treat the entire memory as one organ." In other words, a general-purpose
computer should be able to store instructions in its internal memory, along with data.

What used to be a complex configuration of switchboard settings could be symbolized by
the programmer in the form of a number and read by the computer as the location of an
instruction stored in memory, an instruction that would automatically be applied to
specified data that was also stored in memory. This meant that the program could
call up other programs, and even modify other programs, without intervention
by the human operator. Suddenly, with this simple change, true information
processing became possible.

This is the kernel of the concept of stored programming, and although the ENIAC team
was officially the first to describe an electronic computing device in such terms, it should
be noted that the abstract version of exactly the same idea was proposed in Alan Turing's
1936 paper in the form of the single tape of the universal Turing machine. And at the
same time the Pennsylvania group was putting together the EDVAC report, Turing was
thinking again about the concept of stored programs:

So the spring of 1945 saw the ENIAC team on one hand, and Alan Turing on the other, arrive naturally at
the idea of constructing a universal machine with a single "tape." . . .

But when Alan Turing spoke of "building a brain," he was working and thinking alone in his spare time,
pottering around in a British back garden shed with a few pieces of equipment grudgingly conceded by the
secret service. He was not being asked to provide the solution to numerical problems such as those von
Neumann was engaged upon; he had been thinking for himself. He had simply put together things that no
one had put together before: his one tape universal Turing machine, the knowledge that large scale pulse
technology could work, and the experience of turning cryptanalytic thought into "definite methods" and
"mechanical processes." Since 1939 he had been concerned with little but symbols, states, and instruction
tables -- and with the problem of embodying these as effectively as possible in concrete forms.

With the EDVAC design, ballistics calculators took the first step toward general-purpose
computers, and it became clear to a few people that such devices would surely evolve
into something far more powerful. The kind of uses the inventors envisioned for the
future of their technology was a cause for one of several major theoretical
disagreements that were to surface soon thereafter among the four ENIAC principals.
Von Neumann and Goldstine saw the opportunity to build an incredibly powerful
research tool for scientists and mathematicians. Mauchly and Eckert were already
thinking of business and government applications outside military or research
institutions.

The first calculation run on ENIAC in December, 1945, six months after the "First
Draft," was a problem posed by scientists from Los Alamos Laboratories. ENIAC was
formally dedicated in February, 1946. By then, the patriotic solidarity enforced upon the
research team by wartime conditions had faded away. Von Neumann was enthusiastic

 62

about the military and scientific future of the computer-building enterprise, but the two
young men who had dreamed up the computer project before the big brass stepped in
were getting other ideas about how their brain-child ought to mature. The tensions
between institutions, people, and ideas mounted until Mauchly and Eckert left the Moore
School on March 31, 1946, over a dispute with the university concerning patent rights to
ENIAC. They founded their own group shortly thereafter, eventually naming it The
Eckert-Mauchly Computer Corporation.

When Mauchly and Eckert later suggested that they were, in fact, the sole originators of
the EDVAC report, they were, in Goldstine's phrase, "strenuously opposed" by Goldstine
and von Neumann. The split turned out to be a lifelong feud. Goldstine, writing in 1972
from his admittedly partial perspective, was unequivocal in pointing out von Neumann's
contributions:

First, his entire summary as a unit constitutes a major contribution and had a profound impact not only on
the EDVAC but also served as a model for virtually all future studies of logical design. Second, in that
report he introduced a logical notion adapted from one of McCulloch and Pitts, who used it in a study of the
nervous system. This notation became widely used, and is still, in modified form, an important and indeed
essential way for describing pictorially how computer circuits behave from a logical point of view.

Third, in the famous report he proposed a repertoire of instructions for the EDVAC, and in a subsequent
letter he worked out a detailed programming for a sort and merge routine. This represents a milestone,
since it is the first elucidation of the now famous stored program concept together with a completely
worked-out illustration.

Fourth, he set forth clearly the serial mode of operation of the modern computer, i.e., one instruction at a
time is inspected and then executed. This is in sharp distinction to the parallel operation of the ENIAC in
which many things are simultaneously performed.

While Mauchly and Eckert set forth to establish the commercial applications of computer
technology, Goldstine, von Neumann, and another mathematician by the name of Arthur
Burks put together a proposal and presented it to the Institute for Advanced Study at
Princeton, the Radio Corporation of America, and the Army Ordnance Department,
requesting one million dollars to build an advanced electronic digital computer. Once
again, some of the thinking in this project was an extension of the group creations of the
ENIAC project. But this "Preliminary Discussion," unquestionably dominated by von
Neumann, also went boldly beyond the EDVAC conception as it was stated in the "First
Draft."

Although the latest proposal was aimed at the construction of a machine that would be
more sophisticated than EDVAC, the authors went much farther than describing a
particular machine. They very strongly suggested that their specification should be of the
general plan for the logical structure and fundamental method of operation for all future
computers. They were right: it took almost forty years, until the 1980s until
anyone made a serious attempt to build "non-von Neumann machines."

"Preliminary Discussion of the Logical Design of an Electronic Computing Instrument,"
which has since been recognized as the founding document of the modern science

 63

of electronic computer design, was submitted on June 28, 1946, but was available
only in the form of mimeographed copies of the original report to the Ordnance
Department until 1962, when a condensed version was published in Datamation
magazine. The primary contributions of this document were related to the logical use of
the memory mechanism and the overall plan of what has been come to be known as the
"logical architecture." One aspect of this architecture was the ingenious way data and
instructions were made to be changeable during the course of a computation without
requiring direct intervention by the human operator.

This changeability was accomplished by treating numerical data as "values" that could be
assigned to specific locations in memory. The basic memory component of an EDVAC-
type computer used collections of memory elements known as "registers" to store
numerical values in the form of a series of on/off impulses. Each of these numbers was
assigned an "address" in the memory, and any address could contain either data or an
instruction. In this way, specific data and instructions could be located when needed by
the control unit. One result of this was that a particular piece of data could be a variable --
like the x in algebra -- that could be changed independently by having the results of an
operation stored at the appropriate address, or by telling the computer to perform an
operation on whatever was found at that location.

One of the characteristics of any series of computation instructions is a reference to data:
when the instructions tell the machine how to perform a calculation, they have to specify
what data to plug into the calculation. By making the reference to data a reference to the
contents of a specific memory location, instead of a reference to a specific number, it
became possible for the data to change during the course of a computation, according to
the results of earlier steps. It is in this way that the numbers stored in the memory can
become symbolic of quantities other than just numerical value, in the same way that
algebra enables one to manipulate symbols like x and y without specifying the values.

It is easier to visualize the logic of this schema if you think of the memory addresses as
something akin to numbered cubbyholes or post-office boxes -- each address is nothing
but a place to find a message. The addresses serve as easily located containers for the
(changeable) values (the "messages") to be found inside them. Box #1, for example,
might contain a number; box #2 might contain another number; box #3 might contain
instructions for an arithmetic operation to be performed on the numbers found in boxes
#1 and #2; box #4 might contain the operation specified in box #3. The numbers in the
first two boxes might be fixed numbers, or they might be variables, the values of which
might depend on the result of other operations.

By putting both the instructions and the raw data inside the same memory, it became
possible to perform computations much faster than with ENIAC, but it also became
necessary to devise a way to clearly indicate to the machine that some specific addresses
contain instructions and other addresses contain numbers for those instructions to operate
on.

 64

In the "First Draft," von Neumann specified that each instruction should be designated in
the coding of a program by a number that begins with the digit 1, and each of the
numbers (data) should begin with the digit 0. The "Preliminary Report" expanded the
means of distinguishing instructions from data by stating that computers would keep
these two categories of information separate by operating during two different time
cycles, as well.

All the instructions are executed according to a timing scheme based on the ticking of a
built-in clock. The "instruction" cycles and "execution" cycles alternate: On "tick," the
machine's control unit interprets numbers brought to it as instructions, and prepares to
execute the operations specified by the instructions on "tock," when the "execution" cycle
begins and the control unit interprets input as data to operate upon.

The plan for this new category of general-purpose computer not only specified a timing
scheme but set down what has become known as the "architecture" of the computer -- the
division of logical functions among physical components. The scheme had similarities to
both Babbage's and Turing's models. All such machines, the authors of the "Preliminary
Report" declared, must have a unit where arithmetic and logical operations can be
performed (the processing unit where actual calculation takes place, equivalent to
Babbage's "mill"), a unit where instructions and data for the current problem can be
stored (like Babbage's "store," a kind of temporary memory device), a unit that executes
the instructions according to the specified sequential order (like the "read/write head" of
Turing's theoretical machine), and a unit where the human operator can enter raw
information or see the computed output (what we now call "input-output devices").

Any machine that adheres to these principles -- no matter what physical
technology is used to implement these logical functions -- is an example of
what has become known as "the von Neumann architecture." It doesn't matter
whether you build such a machine out of gears and springs, vacuum tubes, or transistors,
as long as its operations follow this logical sequence. This theoretical template was first
implemented in the Unites States at the Institute for Advanced Study. Modified copies of
the IAS machine were made for the Rand Corporation, an Air Force spinoff "think tank"
that was responsible for keeping track of targets for the nation's new but fast-growing
nuclear armory, and for the Los Alamos Laboratory. Against von Neumann's mild
objections, the Rand machine was dubbed JOHNNIAC. The Los Alamos machine
assigned to nuclear weapons-related calculations was given the strangely uneuphemistic
name of MANIAC.

(Neither EDVAC, the IAS machine, the Los Alamos machine, nor the Rand machine was
the first operational example of a fully functioning stored-program computer. British
computer builders, who had been pursuing parallel research and who were aware of Von
Neumann's ideas, beat the Americans when it came to constructing a machine based on
the logical principles enunciated by von Neumann. The first machine that was binary,
serial, and used stored-program memory was EDSAC -- the Electronic Delay Storage
Automatic Calculator, built at the University Mathematical Laboratory, University of
Cambridge, England.)

 65

In a von Neumann machine, the arithmetic and logic unit is where the basic operations of
the system are wired in. All the other instructions are constructed out of these
fundamentals. It is possible, in principle, to build a device of this type with very few,
extremely simple, built-in operations. Addition, for example, could be performed over
and over again whenever a multiplication operation is requested by a program. In fact, the
only two operations that are absolutely necessary are "not" and "and." The problem
with using a few very simple hardwired operations and proportionally complex
software structures built from them is that it slows down the operation of the
computer: Because instructions are executed one at a time ("serially") as the
internal clock ticks, the number of basic instructions in a program dictates how
long it takes a computer to run that program.

The control unit specified by the "Preliminary Report" -- the component that supervises
the execution of instructions -- was the materialization of the formal logic device created
by Emil L. Post and Turing, who had proved that it was possible to devise codes in terms
of numbers that could cause a machine to solve any problem that was clearly statable.
This is where the symbol meets the signal, where sequences of on and off impulses in the
circuits, the Xs and Os on the cells of the endless tape, the strings of numbers in the
programmer's code, marry the human-created computation to the machine that computes.

The input-output devices were the parts of the system that were to advance the most
slowly while the switch-based memory, arithmetic, and control components ascended
through orders of magnitude. For over a decade after ENIAC, punched cards were the
main input devices, and for over two decades, teletype machines were the most common
output devices.

The possibility of future breakthroughs in this area and their implications were not
overlooked. In a memorandum written in November, 1945, concerning one of the early
proposals for the IAS machine, von Neumann anticipated the possibility of creating a
more visually oriented output device:

In many cases the output really desired is not digital (presumably printed) but pictorial (graphed). In such
situations the machine should graph it directly, especially because graphing can be done electronically and
hence more quickly than printing. The natural output in such a case is an oscilloscope, i.e., a picture on its
fluorescent screen. In some cases these pictures are wanted for permanent storage . . . in others only visual
inspection is desired. Both alternatives should be provided for.
But a personal interactive computer, helpful as such a device might be to a mind such as
von Neumann's, was not an interesting enough problem. After solving interesting
problems about the processes that take place in the heart of stars, a scientific-
technological tour de force that also became a historical point of no return when the
scientists' employers demonstrated their creation at Hiroshima, and then solving another
set of problems concerned with the creation of computing machinery, all the while
pontificating about the most potent aspects of foreign policy to the leaders of the most
powerful nation in history, John von Neumann was aiming for nothing less than the
biggest secret of all. In the late 1940s and early 1950s, the most interesting scientific
question of the day was "what is life?"

 66

To someone who had been at Alamogordo and the Moore School, it would not have been
too farfetched to believe that the next intellectual conquest might bring the secret of
physical immortality within reach. Certainly he would never know whether he could truly
resolve the most awesome of nature's mysteries until he set his mind to decoding the
secret of life. And that he did. Characteristically, von Neumann focused on the aspect of
the mystery of life that appealed to his dearest instincts and most powerful capacities --
the pure, logical, mathematical underpinnings of nature's code. He was particularly
interested in the logical properties of the theoretical devices known as automata, of which
Turing's machine was an example.

Von Neumann was especially drawn to the idea of self-reproducing automata --
mathematical patterns in space and time that had the property of being able to reproduce
themselves. He was able to draw on his knowledge of computers, his growing
understanding of neurophysiology and biology, and make particularly good use of his
deep understanding of logic, because he saw self-replicating automata as essentially
logical beasts. The way the task was accomplished by living organisms of the type found
on earth was only one way it could be done. In principle, the task could be done by a
machine that could follow a plan, because the plan, and not the mechanism that carried it
out, was a part of the system with the special, heretofore mysterious property that
distinguished life from nonliving matter.

Von Neumann approached "cellular automata" on an abstract level, just as Turing did
with his first machines. As early as 1948, he showed that any self-replicating system must
have raw materials, a program that provides instructions, an automaton that follows the
instructions and arranges the symbols in the cells of a Turing-type machine, a system for
duplicating instructions, and a supervisory unit -- which turned out to be an excellent
description of the DNA direction of protein synthesis in living cells.

Another thing that interested Johnny was the gamelike aspect of the world. Accordingly,
he thought about the way his self-reproducing automaton was like a game:

Making use of the work done by his colleague Stanislav Ulam, von Neumann was able to refine his
calculations and make them more generally applicable. Von Neumann's mental experiment, which we can
easily present in the form of a game, makes use of a homogeneous space subdivided by cells. We can think
of these cells as squares on a playing board. A finite number of states -- e.g., empty, occupied, or occupied
by a specific color -- is assigned to a square. At the same time, a neighborhood is defined for each cell. This
neighborhood can consist of either the four orthogonally bordering cells or the eight orthogonally and
diagonally bordering cells. In the space divided up this way, transition rules are applied simultaneously to
each cell. The transition any particular cell undergoes will depend on its state and on the states of its
neighbors. Von Neumann was able to prove that a configuration of about 200,000 cells, each with 29
different possible states and each placed in a neighborhood of 4 orthogonally adjacent squares, could meet
all the requirements of a self-reproducing automaton. The large number of elements was necessary because
von Neumann's model was also designed to simulate a Turing machine. Von Neumann's machine can,
theoretically, perform any mathematical operation.

In 1950, when it was evident to all that the engineering phase of computer technology
was accomplishing impressive tasks, von Neumann postulated one such system in
terms of a factory that contains within it the machinery and the detailed

 67

blueprints for making identical factories (and identical blueprints) from raw
materials provided to it. Take that a step up in complexity, and the details can include
a specification for subsystems that find raw materials for the factory from the
environment, with no human intervention.

If one fantasizes one step farther on the complexity spectrum, the instructions and
capabilities could specify factories capable of building spaceships to send more
spaceships to other planets, where the raw materials found would be shaped into more
factory-spaceship-launchpad systems, and if you could build factories that could build
two or more such complexes, you could have a counterforce to the generally disorderly
trend of the cosmos, in the form of a (mindless?) horde of factory-building
factories, munching outward through the galaxies like an anti-entropic swarm
of logical locusts.

While it definitely sounds like a science-fiction story, and many would add that it could
be interpreted to be an idea of such inhuman coldness as to be termed "fiendish" such
scenarios are legitimate topics in the field of automata, and are still known as "von
Neumann machines" (as distinguished from "the von Neumann machine," the logical
architecture he created for digital computers).

Von Neumann died in 1957, before he could achieve a breakthrough in the field of
automata. Like Ada, he died of cancer, and like Ada, he was said to have suffered
terribly, as much from the loss of his intellectual facilities as from pain. But the world he
left behind him was powerfully rearranged by what he had accomplished before he failed
to solve his last, perhaps most interesting problem.

 68

Chapter Five:
Ex-Prodigies and Antiaircraft Guns
Today, when molecular biologists talk about the "coding" of the DNA molecule,
cognitive scientists discuss the "software of the brain," and behavioral psychologists
write about "reprogramming old habits," they are all making use of a scientific metaphor
that emerged from the technology of computation, but which has come to encompass
much more than the mechanics of calculating devices. Cybernetics, the study of
communication and control in physical and biological systems, was born when yet
another unusual mind was drawn into the software quest through the circumstances of
war.

Because of the discoveries of Norbert Wiener and his colleagues, discoveries that were
precipitated by the wartime need for a specific kind of calculating engine, software has
come to mean much more than the instructions that enable a digital computer to
accomplish different tasks. From the secrets of life to the ultimate fate of the universe, the
principles of communication and control have successfully been applied to the most
important scientific puzzles of our age. These principles were discovered through a
strange concatenation of events, and the people who were involved in those events were
no less unusual than the software patriarchs who preceded them.

Eccentrics and prodigies of both the blissful and agonized varieties dominated the early
history of computation. Ada Lovelace, George Boole, John von Neumann, Alan Turing,
and Presper Eckert were all in their early twenties or younger when they did their most
important work. All except Eckert were also more than a little bizarre. But for raw
prodigy combined with sheer imaginative eccentricity, Norbert Wiener,
helmsman of the cybernetic movement, stands out even in this not-so-ordinary
crowd.

Norbert's father, a Harvard professor who was a colorful character in his own right, had
definite opinions about education, and publicly declared his intention to mold his young
son's mind. Norbert was to become a lovingly but systematically engineered genius. In
1911, an article in a national magazine reported these plans:

Professor Leo Wiener of Harvard University . . . believes that the secret of precocious mental development
lies in early training . . . He is the father of four children, ranging in age from four to sixteen; and he has the
courage of his convictions in making them the subject of an educational experiment. The results have . . .
been astounding, more especially in the case of his oldest son, Norbert.

This lad, at eleven, entered Tufts College, form which he graduated in 1909,
when he was only fourteen years old. He then entered Harvard Graduate School.

Norbert completed his examinations and his doctoral dissertation in mathematical logic
when he was eighteen, then studied with Bertrand Russell in Cambridge and David
Hilbert in Göttingen, where he later crossed paths with von Neumann, nine years his

 69

http://www.rheingold.com/texts/tft/2.html
http://www.rheingold.com/texts/tft/2.html#boole
http://www.rheingold.com/texts/tft/4.html
http://www.rheingold.com/texts/tft/3.html
http://www.rheingold.com/texts/tft/4.html
http://www-groups.dcs.st-and.ac.uk/%7Ehistory/Mathematicians/Russell.html
http://loki.sonoma.edu/Math/faculty/falbo/hilbert.html
http://loki.sonoma.edu/Math/faculty/falbo/hilbert.html

junior, also a student of Hilbert's, and a world renowned authority in several of Wiener's
fields of interest. One of the most immediate differences between the two prodigies, even
this early in their careers, was the pronounced contrast between their personalities.

Rare was the teacher or student who failed to be charmed by von Neumann, who went
out of his way to assure fellow humans that he was just as mortal as everyone else.
Wiener, an insecure, far less worldly, sometimes vain, and often hypersensitive
personality, simply didn't go to as much trouble to make an impression outside the realm
of mathematics, where he was confident to the point of arrogance. Bertrand Russell wrote
of Wiener, in a letter to a friend:

At the end of Sept. an infant prodigy named Wiener, Ph.D. (Harvard), aged 18, turned up with his father
who teaches Slavonic languages there, having come to America to found a vegetarian communist colony,
and having abandoned that intention for farming, and farming for the teaching of various subjects. . . . The
youth has been flattered, and thinks himself God Almighty -- there is a perpetual contest between him and
me as to which is to do the teaching.

Like Babbage, Wiener was famous for the feuds he carried on. While a student at
Göttingen, he impressed the administrative head of the university, Richard Courant, but
Wiener accused him of misappropriating several of the younger man's mathematical ideas
and appending Courant's own name to them. When he returned to Cambridge, the
outraged young genius turned his energies to a novel that was never published, about
someone who bore a remarkable resemblance to Courant, and who was depicted as a man
who stole the ideas of young geniuses.

Before World War I, Wiener wrote pieces for Encyclopedia Americana, taught
philosophy at Harvard and mathematics at the University of Maine. During World War I,
Private Wiener was assigned to the U.S. Army's Aberdeen proving Grounds in Maryland,
where he was one of the mathematicians responsible for the computation of firing tables.
His service in 1918 was one of the reasons it was natural for Wiener's friend Vannevar
Bush to think of Norbert thirty years later, when the allies needed a way to put firing
tables directly into the radar-guided mechanism of antiaircraft guns.

After the end of World War I, Norbert Wiener joined the Massachusetts Institute of
Technology as an instructor of mathematics. It turned out to be the beginning of his
lifelong association with that institution. By the early 1920s, like his fellow polymath
across the Atlantic, Wiener was turning out world-class papers in mathematics, logic, and
theoretical physics. At MIT Wiener began his long friendship with Vannevar Bush, a
man who in the early 1930s was deeply involved in the problems of building mechanical
calculators, and in the 1940s took charge of the largest-scale administration of applied
science in history.

Decades later, Wiener quarreled with his lifelong friend because Bush didn't side strongly
enough with Wiener in his feud with two other colleagues. Such feuds were one of the
more well-known characteristics of Wiener's style -- he tended to take disagreements over
scientific issues as personal attacks, even if the disputes involved his closest personal
friends. Like Babbage, his judgement did not always seem equal to his imagination.

 70

http://www.rheingold.com/texts/tft/9.html

It must be said that Wiener did have many warm lifelong friendships that didn't go sour.
For all his moodiness and paranoia, Wiener truly cared about "the human use of
human beings" (as he was to title one of his later books on the implications of
cybernetics), and passionately reminded the scientific community of their special
responsibilities regarding the apocalyptic weaponry they had created. Despite his failure
to get along with some of his colleagues, Wiener never wavered in his belief that the
future of scientific enterprise lay in interdisciplinary cooperation. His friendship
with the physiologist Arturo Rosenbluth, and their shared dream of stimulating such
interdisciplinary pursuits, catalyzed the origins of cybernetics. But Wiener might never
have worked with Rosenblueth if it wasn't for the Battle of Britain.

Like von Neumann, Wiener's most important need was for interesting problems. Like von
Neumann, he knew that the quantum revolution was the most interesting problem of the
1920s. And one of the effects of quantum physics on the young mathematician's thinking
was to convince him that some of the most interesting problems of purely theoretical
mathematics could end up having the most concrete applications in the real world.

Another effect of quantum physics was the importance of probability and
statistical measures for dealing with phemomena based on uncertain information.
Wiener's familiarity with these concepts was to mature under unexpected circumstances.
Like von Neumann and Goldstine and Eckert, in the late 1930s Wiener wasn't yet aware
that ballistics would be the avenue for bringing his knowledge of probability and
statistics to bear on the most pragmatic problems, eventually to yield most astonishing
results. But, like them, he would soon come to understand that his war-related task was
leading to profound scientific consequences far beyond the bounds of ballistics.

The scene was set for the emergence of Wiener's astounding results, not by any series of
scientific events, but by the political circumstances of the early 1940s. When war broke
out in Europe, Bush assigned Wiener to the antiaircraft control project at MIT, under the
direction of Warren Weaver, himself a distinguished mathematician. It seemed like a
natural step for Wiener, considering his prior experience in the early ballistic calculation
efforts at Aberdeen during World War I.

The key ideas that led to computers were in the air in the late 1930s, albeit in the rather
rarefied air of metamathematics and other esoteric intellectual disciplines. The necessities
of war and the coordinated scientific effort that they entailed served to bring those key
ideas together with the few people who were equipped to understand them more quickly
and urgently than might have happened in more normal times.

Von Neumann and Goldstine's accidental meeting at Aberdeen was fortuitous and
unlikely, but it could hardly be called incredible. One of the circumstances that
brought Wiener together with the problem of antiaircraft guns, however, was
downright weird. The technological turning point of the Battle of Britain, and a
critical chapter in the science of communications systems in machines and
organisms, originated when a young Bell Laboratories employee in America

 71

http://www.links.net/vita/swat/course/reality/quantum.html

had an odd dream. The crucial dream was not about mathematics or engineering
problems connected with computers, but was related to technical issues involving
antiaircraft artillery. And it was the question of how to deal with dive bombers that was
the rather urgent if indirect problem that led to Wiener's later insights.

The pathway between military strategy and scientific theory was far too circuitous,
coincidental, and unlikely to have been predicted in advance, and became clearly
discernible only in retrospect. In many respects, the birth of cybernetics was the kind of
story more likely to be found in a novel than in a scientific journal. One of the historical
coincidences was the position of Vannevar Bush as the leader of war-related research. In
his role as a research administrator, Bush knew that antiaircraft technology was one of his
top priorities. As a scientist, MIT researcher, and friend of Norbert Wiener's, Bush was
also concerned with the task of building high-speed mechanical calculators.

The allies' two most pressing problems in the early years of World War II were the
devastating U-boat war in the North Atlantic and the equally devastating Luftwaffe
attacks on Britain. Turing's secret solution to the naval Enigma machine was responsible,
in large part, for solving the U-boat problem. But where Turing's problem was one of
cryptanalysis, of mathematically retrieving the meaning from a garbled message, the
Luftwaffe problem was one of predicting the future: How can you shoot at a plane that is
going as fast as your bullets?

Radar made it possible to track the positions of enemy aircraft, but there was no way to
translate the radar-provided information into a ballistic equation quickly enough to do
any good. And attacking airplanes had a disconcerting habit of taking evasive action.
Vannevar Bush was well acquainted with the calculation problem when Bell Laboratories
came to him with an interesting idea for an electrically operated aiming device. That is
where the young engineer's dream came in.

His name was D. B. Parkinson, and he was working with a group of Bell engineers on an
automatic level recorder for making more accurate measurements of telephone
transmissions -- a "control potentiometer," they called it. In the spring of 1940, Parkinson
had the following dream:

I found myself in a gun pit or revetment with an anti-aircraft gun crew. . . . There was a gun there which
looked to me -- I had never had any close association with anti-aircraft guns, but possessed some general
information on artillery -- like a 3 inch. It was firing occasionally, and the impressive thing was that every
shot brought down an airplane! After three or four shots one of the men in the crew smiled at me and
beckoned me to come closer to the gun. When I drew near he pointed to the exposed end of the left
trunnion. Mounted there was the control potentiometer of my level recorder! There was no mistaking it -- it
was the identical item.

The electrical device, as it happened, was a good start on an automatic aiming
mechanism. But very serious theoretical and mathematical problems, having to do with
the way the control device sent and received instructions, cropped up when they tried to
construct such a mechanism. That is when Bush turned to Weaver and Wiener.

 72

During this wartime mathematical work related to radar-directed antiaircraft fire, Wiener
recognized the fundamental relationship between two basic problems -- communication
and control. The communication problem in the earliest days of radar was that the radar
apparatus was like a badly tuned radio receiver. The true signal of attacking planes was
often drowned out by false signals -- noise -- from other sources. Wiener recognized that
this too was a kind of cryptography problem, if the location of the enemy aircraft is seen
as a message that must somehow be decoded from the surrounding noise.

The noisy radar was more than an ordinary "interesting problem," because once you
understand messages and noise in terms of order and information measured
against disorder and uncertainty, and apply statistics to predict future messages,
it becomes clear (to a mathematician of Wiener's stature) that the issue is
related to the basic processes of order and disorder in the universe. Once it is
seen in statistical and mathematical terms, the communication problem leads to the heart
of something more important, called information theory. But that branch of the story
belongs to Claude Shannon as much as, or more than, it does to Wiener.

The control problem was where Wiener, and his very young and appropriately brilliant
assistant, an engineer by the name of Julian Bigelow, happened upon the general
importance of feedback loops. Assuming that it is possible to feed information about a
plane's path into the aiming apparatus of a gun, how can that information be used to
predict the probable location of the plane? The use of statistics and probability theory was
one clue. A method for predicting the end of a message based on information about the
beginning was another clue. The device in Parkinson's dream was another clue.

Then it occurred to Wiener and Bigelow that the human organism had already solved the
problem they were facing. How is any human being, or a chimpanzee for that matter, able
to reach out a hand and pick up a pencil? How are people able to put one foot in front of
the other, fall face-forward for a short distance, and end up taking a step? Both processes
involve continuous, precise readjustments of muscles (the servomechanisms that move
the gun), guided by continuous visual information (radar), controlled by a continuous
process of predicting trajectories. The prediction and control take place in the nervous
system (the control circuits of the animating automata).

Wiener and Bigelow looked more closely at other servomechanisms, including
self-steering mechanisms as simple as thermostats, and concluded that feedback
is the concept that connects the way brains, automatic artillery, steam engines,
autopilots, and thermostats perform their functions. In each of those systems,
some small part of the past output is fed back to the central processor as present
input, in order to steer future output. Information about the distance from the hand to
the pencil, as seen by the eye, is fed back to the muscles controlling the hand. Similarly,
the position of the gun and the position of the target as sensed by radar are fed back to the
automatic aiming device.

 73

http://www.rheingold.com/texts/tft/6.html

The MIT team had wondered whether someone more informed about neurophysiology
had come across analogous mathematics of pencil pushing, with similar results. As it
happened, there was another team that, like Wiener and Bigelow, was made up of one
infant prodigy and one slightly older genius, by the names of Pitts and McCulloch
respectively, who were coming down exactly the same trail from the other direction. A
convergence of ideas that was both forced and fortuitous, related to but distinctly
different from the convergence on digital computation, was taking place under the
pressure of war.

Even von Neumann was due to get into the act, as Wiener wanted him to do -- Wiener
persuaded MIT to try to outbid Princeton for von Neumann's attentions after the war.
Politically, militarily, and scientifically, Wiener's corner of the plot was getting
thick. The antiaircraft problem, the possible explanations for how brain cells
work, the construction of digital computers, the decoding of messages from
noise -- all these seemingly unrelated problems were woven together when the
leading characters were brought together by the war.

The founding of the interdisciplinary study that was later named cybernetics came about
when Wiener and Bigelow wondered whether any processes in the human body
corresponded to the problem of excessive feedback in servomechanisms. They appealed
to an authority on physiology, from the Instituto Nacional de Cardología in Mexico City.
Dr. Arturo Rosenblueth replied that there was exactly such a pathological condition
named (meaningfully) the purpose tremor, associated with injuries to the cerebellum (a
part of the brain involved with balance and muscular coordination).

Together the mathematician, the neurophysiologist, and the engineer plotted out a new
model of the nervous system processes that they believed would demonstrate how
purpose is embodied in the mechanism -- whether that mechanism is made of metal or
flesh. Wiener, never reluctant to trumpet his own victories, later noted that this
conception "considerably transcended that current among neurophysiologists."

Wiener, Bigelow, and Rosenblueth's model, although indirectly derived from top-secret
war work, had such general and far-reaching implications that it was published under the
title "Behavior, Purpose and Technology," in 1943, in the normally staid journal
Philosophy of Science. The model was first discussed for a small audience of specialists,
however, at a private meeting held in New York in 1942, under the auspices of the Josiah
Macy Foundation. At that meeting was Warren McCulloch, a neurophysiologist who had
been corresponding with them about the mathematical characteristics of nerve networks.

McCulloch, a neurophysiologist based at the University of Illinois, was, naturally enough
in this company, an abnormally gifted and colorful person who had a firm background in
mathematics. One story that McCulloch told about himself goes back to his student days
at Haverford College, a Quaker institution. A teacher asked him what he wanted to do
with his obviously brilliant future:

 74

"Warren," said he, "what is thee going to be?" And I said, "I don't know," "And what is thee going to do?"
And again I said, "I have no idea, but there is one question that I would like to answer: What is a number
that man may know it, and a man that he may know a number?" He smiled and said, "Friend, thee will be
busy as long as thee lives."
Accordingly, the mathematician in McCulloch strongly desired a tool for
reducing the fuzzy observations and theoretical uncertainties of
neurophysiology to the clean-cut precision of mathematics. Turing, and Bertrand
Russell before him, and Boole before that, had been after something roughly similar, but
they all lacked a deep understanding of brain physiology. McCulloch's goal was to find a
basic functional unit of the brain, consisting of some combination of nerve cells, and to
discover how that basic unit was built into a system of greater complexity. He had been
experimenting with models of "nerve networks" and had discovered that these networks
had certain mathematical and logical properties.

McCulloch started to work with a young logician by the name of Walter Pitts. Pamela
McCorduck, a historian of artificial intelligence research, attributes to Manuel Blum, a
student of McCulloch's and now a professor at the University of California, the story of
Pitt's arrival on the cybernetic scene. At the age of fifteen, Walter Pitts ran away from
home when his father wanted him to quit school and get a job. He arrived in Chicago, and
met a man who knew a little about logic. This man, "Bert" by name, suggested that Pitts
read a book by the logician Carnap, who was then teaching in Chicago. Bert turned out to
be Bertrand Russell, and Pitts introduced himself to Carnap in order to point out a
mistake the great logician had made in his book.

Pitts studied with Carnap, and eventually came into contact with McCulloch, who was
interested in consulting with logicians in regard to his neurophysiological research. Pitts
helped McCulloch understand how certain kinds of networks -- the kinds of circuits that
might be important parts of nervous systems as well as electrical devices -- could embody
the logical devices known as Turing machines.

McCulloch and Pitts developed a theory that regarded nerves as all-or-none,
on-or-off, switchlike devices, and treated the networks as circuits that could be
described mathematically and logically. Their paper, "A Logical Calculus of the
Ideas Immanent in Nervous Activity," was published in 1943 when Pitts was still only
eighteen years old. They felt that they were only beginning a line of work that would
eventually address the questions of how brain physiology is linked to knowledge.

When Wiener, Bigelow, and Rosenblueth got together with McCulloch and Pitts, in 1943
and 1944, a critical mass of ideas was reached. Pitts joined Wiener at MIT, then worked
with von Neumann at the Institute for Advanced Study after the war. By the time this
interdisciplinary cross-fertilization was beginning, the ENIAC project had progressed far
enough for digital computers to join the grand conjunction of ideas.

A series of meetings occurred in 1944, involving an interdisciplinary blend of topics that
seemed to be coming from subject areas as far afield as logic, statistics, communication
engineering, and neurophysiology. The participants were an equally eclectic assortment

 75

of thinkers. It was at one of these meetings that von Neumann made the acquaintance of
Goldstine, whom he was to encounter again not long afterward, at the Aberdeen railroad
station. Rosenblueth had to depart for Mexico City in 1944, but by December, Wiener,
Bigelow, von Neumann, Howard Aiken of the Harvard-Navy-IBM Mark I calculator
project, Goldstine, McCulloch and Pitts formed an association they called "The
Teleological Society," for the purpose of discussing "communication engineering, the
engineering of control devices, the mathematics of time series in statistics, and the
communication and control aspects of the nervous system." In a word -- cybernetics.

In 1945 and 1946, at the teleological society meetings, and in personal correspondence,
Wiener and von Neumann argued about the advisability of placing too much trust in
neurophysiology. Von Neumann thought that the kinds of tools available to McCulloch
and Pitts put brain physiologists in the metaphorical position of trying to decipher
computer circuits by bashing computers together and studying the wreckage,

To von Neumann, the bacteriophage -- a nonliving microorganism that can reproduce
itself -- was a much more promising object of study. He felt that much more could be
learned about nature's codes by looking at microorganisms than by studying
brains. The connection between the mysteries of brain physiology and the secrets of
biological reproduction were later to emerge more clearly from theories involving the
nature of information, and von Neumann turned out to be right -- biologists were to make
faster progress in understanding the coding of biological reproduction than
neuroscientists were to make in their quest to decode the brain's functions.

The Macy Foundation, which had sponsored the meetings that led to the creation of the
Teleological Society, continued to sponsor free-wheeling meetings. Von Neumann and
Wiener were the dramatic co-stars of the meetings, and the differences in their personal
style became part of the excited and dramatic debates that characterized the formative
years of cybernetics. Biographer Steve Heims, in his book about the two men -- John von
Neumann and Norbert Wiener -- noted the way their contrasting personae emerged at
these events:

Wiener and von Neumann cut rather different figures at the semiannual conferences on machine-organism
parallels, and each had his own circle of admirers. Von Neumann was small and plump, with a large
forehead and a smooth oval face. He spoke beautiful and lucid English, with a slight middle-European
accent, and he was always carefully dressed; usually a vest, coat buttoned, handkerchief in pocket, more the
banker than the scholar. He was seen as urbane, cosmopolitan, witty, low-key, friendly and accessible. He
talked rapidly, and many at the Macy meetings often could not follow his careful, precise, rapid reasoning. .
. .

Wiener was the dominant figure at the conference series, in his role as brilliant originator of ideas and
enfant terrible. Without his scientific ideas and his enthusiasm for them, the conference series would never
have come into existence, nor would it have had the momentum to continue for seven years without him. A
short, stout man with a paunch, usually standing splay-footed, he had coarse features and a small white
goatee. He wore thick glasses and his stubby fingers usually held a fat cigar. He was robust, not the
stereotype of the frail and sickly child prodigy. Wiener evidently enjoyed the meetings and his central role
in them: sometimes he got up from his chair and in his ducklike fashion walked around the circle of tables,
holding forth exuberantly, cigar in hand, apparently unstoppable. He could be quite unaware of other

 76

people, but he communicated his thoughts effectively and struck up friendships with a number of the
participants. Some were intrigued as much as annoyed by Wiener's tendency to go
to sleep and even snore during a discussion, but apparently hearing and
digesting what was being said. Immediately upon waking he would often make penetrating
comments.

Although the nerve network theory was to suffer a less than glorious fate when
neurophysiology progressed beyond what was known about nerve cells in the 1940s, the
nerve-net models had already profoundly influenced the design of computers. (Later
research showed that switching circuits are not such an accurate model for the human
nervous system, because neurons do not act strictly as "all-or-none" devices.) Despite his
misgivings about the state of the art in theories of brain functioning, in his 1945 "first
Draft," von Neumann adopted the logical formalism proposed by McCulloch and Pitts.
When the architectural template of all future general-purpose computers was first laid
down, the cyberneticists' findings influenced the logical design.

In 1944 and 1945, Wiener was already thinking about a scientific model involving
communication, information, self-control -- an all-embracing way of looking at nature
that would include explanations for computers and brains, biology and electronics, logic
and purpose. He later wrote: "It became clear to me almost at the very beginning that
these new concepts of communication and control involved a new interpretation of man,
of man's knowledge of the universe, and of society."

Wiener was convinced that biology, even sociology and anthropology, were to be as
profoundly affected by cybernetics as electronics theory or computer engineering; in fact
anthropologist Gregory Bateston was closely involved with Wiener and later with the
first AI researchers. While Shannon published information theory, and von Neumann
pushed the development of computer technology, Wiener retreated from the politics of
big science in the postwar world to articulate his grand framework.

After the war, as the plans for the Institute for Advanced Study's computer proposed by
von Neumann were put into action, with Julian Bigelow as von Neumann's chief engineer
on the project, and as Mauchly and Eckert struck out on their own to start the commercial
computer industry, Wiener headed for Mexico City to work with Rosenblueth. Then, in
the spring of 1947, Wiener went to England, where he visited the British computer-
building projects, and spoke with Alan Turing.

When he returned to Mexico City, Wiener wrote his book and decided to title it and the
new field Cybernetics, from the Greek word meaning "steersman." It was subtitled: or
Control and Communication in the Animal and the Machine. Cybernetics was the
description of a general science of mechanisms for maintaining order in a
disorderly universe, the process for steering a course through the random forces
of the physical world, based on information about the past and forecasts about
the future.

 77

http://pespmc1.vub.ac.be/CYBSYSTH.html
http://members.gnn.com/cybernetic/CTI.html

When a steersman moves a rudder, the craft changes course. When the steersman detects
that the previous change of course has oversteered, the rudder is moved again, in the
opposite direction. The feedback of the steersman's senses is the controlling element that
keeps the craft on course. Wiener intended to embed in the name of the discipline
the idea that there is a connection between steering and communication. "The
theory of control in engineering, whether human or animal or mechanical," he stated, "is
a chapter in the theory of messages."

The mathematics underlying the steering of rudders or antiaircraft guns and the steering
of biological systems was the same -- it was a general law, Wiener felt, like the laws of
motion or gravity. Wiener's intuitions turned out to be correct. Communication and
control, coding and decoding, steering and predicting, were becoming more important to
physicists and biologists, who were interested in phenomena very different from guns or
computing machines.

In the late 1940s, another new category of interdisciplinary theorists who would come to
be known as molecular biologists were beginning to think about the coding mechanism of
genetics. Even the quantum physicists were looking into the issues that were so dear to
Wiener, Bigelow, and Rosenblueth. It looked as if Wiener might be onto an even
more cosmic link between information, energy, and matter. A scientific watershed
was imminent, and many of his colleagues were expecting more major breakthroughs
from Wiener. By the fall of 1947, prior to its 1948 publication, his book on cybernetics
was making the rounds of government and academic experts in manuscript form.

Robert Fano, a professor of electrical engineering who eventually became head of the
electrical engineering department at MIT and administrative leader of MIT's pioneering
computer project known as MAC, witnessed some strange behavior on Wiener's part
around that time, behavior that Fano later had cause to remember when Claude Shannon
published his work. Fano was working on his doctoral thesis in electrical engineering.
From time to time, Wiener would walk into the student's office, inform him rather
cryptically that "information is entropy," and walk out without saying another
word.

By the end of 1946, Wiener had reached a decision that had nothing to do with the cold
formalisms of mathematics, a decision that distinguished him in yet another way from his
weaponry-oriented colleague. Renouncing any future role in weapons-related research,
Wiener deliberately removed himself from the hot center of the action in the development
of computer technology (as opposed to cybernetic theory) when he stated: "I do not
expect to publish any future work of mine which may do damage in the hands of
irresponsible militarists." Fortunately for Wiener, and for the scientific world, the
implications of his discoveries were not limited to military applications. It quickly
became evident that weapons were not the only things of interest that were built from
communication and control codes.

By the late forties and early fifties, the atmosphere was crackling with new scientific
ideas having to do with what nobody yet called information theory. The quantum

 78

physicist Erwin Shroedinger gave a famous lecture at Cambridge University in 1945,
later published, on the topic "What is Life?" One of the younger physicists in the
audience, Francis Crick, decided to switch to biology, where the most crucial decoding
problem in scientific history was waiting for him. Von Neumann turned out to be right in
his dispute with Wiener -- the bacteriophage, not the nervous system, was the subject of
the next great decoding.

Von Neumann's ideas about self-reproducing automata -- patterns complex enough and
highly ordered enough to direct their own replication -- seemed to point toward the same
idea. Something about order and disorder, messages and noise, was near the heart of life.
The manipulation of information looked like something more like a game mathematicians
play, even more than a capability of machines. Information, in a way that was not
mathematically demonstrated until Claude Shannon's 1948 publications, began to look
like a reflection of the way the universe works. The whole idea was a wrenching of mind-
set, at first for scientists, then for many others.

At the beginning of the twentieth century, scientists saw the universe in terms of particles
and forces interacting in complicated but orderly patterns that were, in principle, totally
predictable. In important ways, all of the nonscientists who lived in an
increasingly mechanized civilization also saw the universe in terms of particles
and forces and a clockwork cosmos. Around sixty years ago, quantum theory
did away with the clockwork and predictability. Around thirty years ago, a few
people began to look at the world and see, as Norbert Wiener put it, "a myriad of To
Whom It May Concern messages."

The idea that information is still a fundamental characteristic of the cosmos, like matter
and energy, is still young, and further surprise discoveries and applications are sure to
pop up before a better model comes along. Before the 1950s, only scientists thought
about the idea that information had anything to do with anything. Common words like
communication and message were given new, technical meanings by Wiener and Claude
Shannon, who independently and roughly simultaneously demonstrated that everything
from the random motions of subatomic particles to the behavior of electrical switching
networks and the intelligibility of human speech is related in a way that can be expressed
through certain basic mathematical equations.

The information-related equations were useful in building computers and telephone
networks, but they also had significant impact on all the sciences. Research inspired by
the information-communication model has provided clues to some of the fundamental
features of the universe, from the way the cellular instructions for life are woven into the
arrangement of atoms in DNA molecules, to the process by which brain cells encode
memory. The model has become what Thomas Kuhn calls a "scientific paradigm." The
two fundamental pillars of this paradigm were Claude Shannon's information and
Wiener's cybernetics.

The significance of these two theoretical frameworks that came to the attention of
scientists in the late 1940s and began to surface in public consciousness in the 1950s, and

 79

the mass attitude shift they implied, was noted by Paula McCorduck, in her history of
artificial intelligence research:

Cybernetics recorded the switch from one dominant model, or set of explanations for phenomena, to
another. Energy -- the notion central to Newtonian mechanics -- was now replaced by information. The
ideas of information theory, such as coding, storage, noise, and so on, provided a better explanation for a
whole host of events, from the behavior of electronic circuits to the behavior of a replicating cell. . . . These
terms mean pretty much what you'd think. Coding refers to "a system of signals used to represent letters or
numbers in transmitting messages"; storing means holding these signals until they're needed. Noise is a
disturbance that obscures or affects the quality of a signal (or message) during transmission.

It turns out that coding and storing happen to be central problems in the logical design of
computing machines and the creation of software. The basic scientific work that resulted
in information theory did not originate from any investigation of computation, however,
but from an analysis of communication. Claude Shannon, several years younger than
Turing, working about a year after the British logician's discoveries in metamathematics,
did another nifty little bit of graduate work that tied together theory and engineering,
philosophy, and machinery.

 80

Chapter Six:
Inside Information
His unicycle skills notwithstanding, Claude Shannon has been more flamboyant but no
less brilliant than his elder colleagues. Rather than advertising his own genius like
Wiener, or blitzing the world of science with salvo after salvo of landmark findings like
von Neumann, Claude Shannon has published unprolifically, and he spends more time
attempting to diminish rather than embellish the mythology that grew up around his
infrequent but monumental contributions. A modest man, perhaps, but hardly a timid one,
when Shannon has something to publish, it usually changes the world.

Claude Shannon was a bona fide prodigy, twenty-two years old when he published (in
1937) the famous MIT master's thesis that linked electrical circuitry to logical
formalisms. He was the peer of pioneers like Turing, Wiener, and von Neumann, the
teacher of the first generation of artificial intelligence explorers like John McCarthy and
Marvin Minsky, and the mentor of Ivan Sutherland, who has been one of the most
important contemporary infonaut-architects.

When Shannon's papers establishing information theory were published in 1948, he was
thirty-two. The impact on science of this man's career was incalculable for these two
contributions alone, but he also wrote a pioneering article on the artificial intelligence
question of game-playing machines, published in 1950. In 1953, at about the same time
von Neumann and Turing were both thinking about the mathematical possibilities of self-
reproducing machinery, Shannon published another major work on the subject of these
special automata.

In 1956, at the age of forty, Shannon was one of the organizers of the conference at
Dartmouth that gave birth to the field of artificial intelligence. From the pre-war
discoveries that scooped Wiener and von Neumann, to the explorations in the 1950s that
led to both AI and multi-access computer systems, his life and ideas formed the single
most important bridge between the wartime origins of cybernetics and digital computers
and the present age of artificial intelligence and personal computing.

What Shannon did in 1937 was to provide a way to design machines based on the logical
algebra described a century before by George Boole. Boole, in The Laws of Thought,
stated that he had succeeded in connecting the process of human reason to the precise
symbolic power of mathematics. There were only two values in the logical calculation
system that Boole proposed: 1 and 0. If a value is true, it can be designated by the symbol
1; and if it is false, the symbol 0 can be used. In this system, a truth table describes the
various possible logical states of a system. Given an input state, a truth table for a specific
operation determines the appropriate output state for whenever that operation is applied
to that input. Another way of saying that would be that given a starting tape, the truth
table determines what the ending tape will be.

 81

http://www.rheingold.com/texts/tft/5.html
http://www.rheingold.com/texts/tft/4.html
http://canyon.ucsd.edu/infoville/schoolhouse/class_html/duy.html
http://brainop.media.mit.edu/people/minsky.html
http://www.kzoo.edu/%7Eabrady/CS400/bioW96/soulier.html
http://www.rheingold.com/texts/tft/2.html#boole

In Boolean Algebra, one fundamental logical operation is not, an operation that reverses
the input, so that the output of a "not" operation is the opposite of the input (remember
that there are only two symbols or states). Another fundamental operation is and, which
dictates that the output is true (or "on" or "1") if and only if every one of the several
inputs are also true ("on," "1"). For example, the listing in the table for "A is true and B is
true" would be set for "1" when A is "1" and B is "1" and set for "0" in all other cases.
One could look up the answer in the truth table by finding the input row where both A
and B are equal to 1:

NOT AND
Input Output Input A Input B Output

0 1 0 0 0
1 0 0 1 0

 1 0 0
 1 1 1

The way that results are determined by matching the proper rows and columns in the
truth tables, a purely automatic procedure, has a crucial resemblance to the "instruction
tables" Turing proposed.

One of the important features of Boolean algebra is the way logical operations can be put
together to form new ones, and collections of logical operations can be put together to
perform arithmetic operations. Logical syllogisms can be constructed in terms of
operations on zeroes and ones, by arranging for the output of one truth table to feed input
to another truth table. For example, it turns out that by putting a not before every and
input, and putting another not after its output, it is possible to build an "or" operation. By
stringing various sequences of only these two basic operations, "not" and "and," it is
possible to build procedures for adding, subtracting, multiplying, and dividing. Logic and
arithmetic are thus intimately and simply related. What nobody knew until Shannon told
us was that the same algebra could describe the behavior of electrically switched circuits.

Equally important was the way these combinations of logical and arithmetic operations
could be used to build a "memory" operation. Boolean algebra makes it possible to devise
a procedure, or build a device, the "state" of which can store specific information -- either
data or operations. If electrical circuitry can perform logical and mathematical operations,
and can also store the result of those operations, then electronic digital computers can be
designed.

Until Shannon, Boolean algebra had been a curious and almost totally forgotten eddy in
the mainstream of mathematical thought for almost a century, and was certainly unknown
to the more practical-minded world of physics and electrical engineering. And that is
where the genius of Shannon's rediscovery lies, for he was writing a thesis in electrical
engineering, not mathematical logic, and the objects of his concern were not the
processes of thought but the behavior of large circuits of electrical switches connected
together into the kinds of circuits one finds in a telephone system.

 82

Shannon was interested in the properties of complicated electrical circuits that
were built from very simple devices known as relays. A relay is a switch -- a device that
opens or closes a circuit, permitting or blocking the flow of electricity -- not unlike an
ordinary light switch, except a relay is not switched on or off by a human hand, but by the
passage of an electrical current.

A relay contains an electromagnet. When a small current flows into the relay, the
electromagnet is activated, closing the circuit controlled by the relay until the input
current is turned off. In other words, the electromagnet is a small electrical circuit that
opens and closes another electrical circuit. The circuit of one relay can also control the
electromagnet of the next relay, and so on, until you have a complete circuit that is made
of nothing but switches, all controlling one another, depending on how they are set at the
beginning and how they are altered by new input.

Each relay and circuit controlled by that relay can be in only one of two states, on or off.
This two-state characteristic of switched circuits is what links electricity to logic, for each
relay-controlled circuit can be seen as a truth table, where current flows from the output
only when specified input conditions are satisfied, and logical operations can be seen as
physical devices that emit an output pulse if and only if all of their input switches are on,
or off, or some specified combination,

In the 1930s, telephone systems were using ever larger and more complicated mazes of
circuits controlled by these relays. Instead of requiring a human operator to plug the
proper jack into the right part of a switchboard, relays could close the circuit when the
specified input conditions were reached. Using relays, all kinds of useful things could be
done in the way of automatic dialing and routing. But the growing complexity of the
circuitry was getting to be a problem. It was becoming harder and harder to figure out
what these big collections of switches were doing.

Shannon was looking for a mathematical procedure that was best suited for describing the
behavior of relay circuits. His thesis showed how George Boole's algebra could be used
to describe the operations of these complex circuits. And he was not unaware of the
implications if the fact that these circuits could now be designed to represent the
operations of logic and arithmetic.

If logic was the formal system that most closely matched the operations of human reason,
and if Boole's truth tables could embody such a formal system of simulated reasoning,
then the use of truth tables as the "instruction tables" Turing discussed, and with
switching devices like relays to represent the "states" of the machines (or the cells of the
tape), it would be possible to build electrical circuits that could simulate some of
the logical operations of human thought.

When the digital computer builders got together to plan the future development of the
technology, Shannon was in the thick of it -- and he didn't hesitate to remind his
colleagues that what they were building was the first step toward artificial intelligence.
But during the ten years immediately following his first breakthrough, Shannon turned to

 83

a different aspect of this new field. His new employer was Bell Laboratories, and the
electrical or electronic communication of messages was his specialty. AT&T, the
foremost communication company in the world, was the owner of Bell Laboratories, so
naturally the laboratory was interested in supporting Shannon's probes into the
fundamental nature of communication. Shannon was encouraged to pursue his interesting
questions such as: When something is communicated, what is delivered from one party to
another? When a communication is obscured by noise or encryption, what fails to get
across?

This was the communication part of the communication and control problem pointed out
by Wiener. During the war, working at top-secret defense projects for Bell Laboratories,
Shannon was involved in cryptological work that brought him into contact with Turing.
After the war, Shannon concentrated on describing the nature of the entity they were
communicating and manipulating with all these logical and mathematical circuits.

At this point, nobody knew, exactly, what information was. Just as he had found the
perfect tool for describing relay circuits, after the war Shannon wanted to find
mathematical tools for precisely defining the invisible but powerful commodity that these
new machines were processing. He succeeded in finding the descriptive tools he sought,
not in an obscure corner of mathematics, as in the case of Boole's algebra, but in the
fundamental laws governing energy.

Like Turing, Shannon put a surprise finishing touch on a project that scientists had
worked at for centuries. In this case, the quest was not to understand the nature of symbol
systems, but a more pragmatic concern with the nature of energy and its relation to
information. Although Shannon was specifically looking at the laws underlying the
communication of messages in man-made systems, and generally interested in the
difference between messages and noise, he ended up dealing with the laws governing the
flow of energy in the universe. In particular, he discovered the secrets of decoding
telephone switching networks, hidden in the work of previous scientists who
had discovered certain laws governing heat energy in steam engines.

Back when the Industrial Revolution was getting started, and steam-powered engines
were the rage, it became a practical necessity to find out something about the efficiency
of these energy-converting devices. In the process, it was discovered that something
fundamental to the nature of heat prevents any machine from ever becoming perfectly
efficient. The study of the movement of heat in steam engines became the science of
thermodynamics, given precise expression in 1850 by Rudolf Clausius, in his two laws of
thermodynamics.

The first law of thermodynamics stated that the energy in a closed system is constant.
That means that energy cannot be created or destroyed in such systems, but can only be
transformed. The second law states, in effect, that part of that unchangeable reservoir of
energy becomes a little less stable every time a transformation takes place. When you
pour hot water into cold water, you can't separate it back into a hot and a cold glass of

 84

http://www.bell-labs.com/
http://physics.hallym.ac.kr/reference/physicist/Ch.html#Clausius

water again (without using a lot more energy). Entropy, meaning "transformation," was
the word Claudius later proposed for that lost quantity of usable energy.

Entropy

Entropy as defined by Clausius is not just something that happens to steam engines or to
glasses of water. It is a universal tendency that is as true for the energy transactions of the
stars in the sky as it is for the tea kettle on the stove. Because the universe is presumed to
be a closed system, and since Clausius demonstrated that the entropy of such systems
tends to increase with the passage of time, the gloomy prediction of a distant but
inevitable "heat death of the universe" was a disturbing implication of the second law of
thermodynamics. "Heat death" was what they called it because heat is the most entropic
form of energy.

But the gloomy news about the end of time wasn't the only implication of the entropy
concept. When it was discovered that heat is a measure of the average motion of a
population of molecules, the notion of entropy became linked to the measure of order or
disorder in a system. If this linkage of such disparate ideas as "heat," "average motion,"
and "order of a system" sounds confusing, you have a good idea of how nineteenth-
century physicists felt. For a long time, they thought that heat was some kind of invisible
fluid that was transferred from one object to another. When it was discovered that heat is
way of characterizing a substance in which the molecules were, on the average, moving
around faster than the molecules in a "cold" substance, a new way of looking at systems
consisting of large numbers of parts (molecules, in this case) came into being. And this
new way of looking at the way the parts of systems are arranged led, eventually, to the
entropy-information connection.

Because "average motion" of molecules is a statistical measure, saying something about
the amount of heat in a system says something about they way the parts of that system are
arranged. Think about a container of gas. The system in this case includes everything
inside the container and everything outside the container. The gas is considered to be hot
if the average energy of the molecules inside the container is higher than the average
energy of the molecules outside the container. Some of the molecules inside the container
might, in fact, be less energetic (cooler) than some of the molecules outside the container
-- but on the average, the population of molecules inside are more energetic than the
population of the molecules outside.

There is a certain order to this arrangement -- energetic molecules are more likely to be
found inside the container, less energetic molecules are more likely to be found outside.
If there were no container, the highly energetic molecules and the less energetic
molecules would mix, and there would be no sharp differentiation between the hot parts
and the cold parts of the system.

A system with high entropy has a low degree of order. A system with low entropy has a
higher degree of order. In a steam engine, you have the heat in one place (the boiler) and

 85

it is dissipated into the cold part (the condenser). This is a very orderly (low entropy)
system in the sense that anyone can reliably predict in which part of the engine the hot
molecules are likely to be found. But when all the parts of a steam engine are the same
temperature, and the hot and cold molecules are equally likely to be found in the boiler
and the condenser (and hence the entropy is high), the engine can't do any work.

Another physicist, Boltzmann, showed that entropy is a function of the way the parts of
the system are arranged, compared with the number of ways the system can be arranged.
For the moment, let's forget about molecules and think about decks of cards. There is a
large number of ways that fifty-two cards can be arranged. When they come from the
factory, every deck of cards is arranged in a definite order, by suit and by value. With a
little bit of thought, anybody can predict which card is the fifth from the top of the deck.
The predictability and orderliness disappears when the deck is shuffled.

An unshuffled deck of cards has a lower degree of entropy because energy went into
arranging it in an unlikely manner. Less energy is then required to put the deck into a
more probable, less orderly, less predictable, more highly entropic state: According to the
second law of thermodynamics, all decks of cards in the universe will eventually be
shuffled, just as all molecules will have an equal amount of energy.

James Clerk Maxwell, yet another nineteenth-century scientist, proposed a paradox
concerning this elusive quality called entropy, which seems to relate such intuitively
dissimilar measures as energy, information, order, and predictability. The paradox
became infamous among physicists under the name "Maxwell's demon." Consider a
container split by a barrier with an opening small enough to pass only one molecule at a
time from one side to another. On one side is a volume of hot gas, in which the average
energy of the molecules is higher than the average energy of the molecules in the cold
side of the container. According to the second law, the hotter, more active molecules
should eventually migrate to the other side of the container, losing energy in collisions
with slower moving molecules, until both sides reach the same temperature.

What would happen, Maxwell asked, if you could place a tiny imp at the molecular gate,
a demon who didn't contribute energy to the system, but who could open and close the
gate between the two sides of the container? Now what if the imp decides to let only the
occasional slow-moving, colder molecule pass from the hot to the cold side when it
randomly approaches the gate? Taken far enough, this policy could mean that the hot side
would get hotter and the cold side would get colder, and entropy would decrease instead
of increase without any energy being added to the system!

In 1922, a Hungarian student of physics by the name of Leo Szilard (later to be von
Neumann's colleague in the Manhattan project), then in Berlin, finally solved the paradox
of Maxwell's demon by demonstrating that the demon does indeed need to contribute
energy to the system, but like a good magician the demon does not expend that energy in
its most visible activity -- moving the gate -- but in what it knows about the system. The
demon is a part of the system, and it has to do some work in order to differentiate the hot
and cold molecules at the proper time to open the gate. Simply by obtaining the

 86

information about molecules that it needs to know to operate the gate, the demon adds
more entropy to the system than it subtracts.

Although Szilard showed implicitly that information and entropy were intimately
connected, the explicit details of the relationship between these two qualities, expressed
in the form of equations, and the generalization of that relationship to such diverse
phenomena as electrical circuits and genetic codes, were not yet known. It was Claude
Shannon who made information into a technical term, and that technical term
has since changed the popular meaning of the word.

Another puzzle related to entropy, and the cryptic partial solution to it proposed in 1945
by another physicist, was a second clue linking it to information. Quite simply: If the
universe tends toward entropy, how does life, a highly ordered, energy-consuming,
antientropic phenomenon, continue to exist? In a universe flowing toward disorder, how
on earth did one-celled creatures complicate themselves enough to build a human nervous
system?

Quantum physicist Erwin Schrödinger pointed out that life defies the cosmic energy tide
courtesy of our sun. As long as the sun keeps shining, the earth is not a closed system.
Photochemical reactions on earth capture a tiny fraction of the sun's radiant energy and
use it to complicate things. In his famous "What Is Life?" lecture in 1945, Schrödinger
remarked that "living organisms eat negative energy." The relationship between negative
energy and information, like Boole's obscure algebra, was just waiting to be found when
Shannon started to wonder how messages manage to maintain their order in a medium
where disorder is often high.

The matter of devising a simple code and reliably transmitting it from place to place was
very important to British cryptographers, and Shannon had done his own work in
cryptography. The prediction of the behavior of electrical circuits used to transmit
messages made of these codes was another of Shannon's interests. When he put it all
together with a formal examination of how messages can be distinguished from
noise, and found that the very equation he sought was a variation of the
defining equation for entropy, Claude Shannon happened upon the fact that the
universe plays twenty questions with itself.

The formal foundations of information theory were laid down in two papers in 1948, and
at their core were fundamental equations that had a definite relationship to Boltzmann's
equations relating entropy to the degree of order in a system. But the general idea behind
the equations was simple enough for Shannon to suggest a game as a way of
understanding the quantitative dimension of coding and communication.

The game is a mundane version of "twenty questions." In the case of the English
alphabet, it turns out to be a game of "five questions." Player number one thinks of a
letter of the alphabet. Player number two tries to guess the letter, using only questions

 87

http://physics.hallym.ac.kr/reference/physicist/Schrodinger.html

like "is it earlier than L in the alphabetical sequence?" It is a strictly yes-or-no game, in
which only one of two possible answers applies at every move.

Shannon pointed out that it takes a maximum of five questions to locate any of the thirty
symbols necessary for making English sentences. If the sequence of yes or no decisions
needed to specify the correct letter is converted into a sequence of zeroes and ones or a
sequence of on and off impulses, or any other kind of binary symbol, you have a code for
communicating the alphabet -- which is, in fact, the basis of the code used for
transmitting teletypewriter messages.

This game can be visualized as a tree structure, where each letter is the only leaf on a
branch that branches off a branch that eventually branches off a trunk. Or it can be seen
as a garden of forking paths, where each path is a sequence of one-way-or-the-other
decisions, and the location of any endpoint can be coded by specifying the sequence of
decisions along the path. It is also a good way to locate an address in a computer's
memory or to encode an instruction to be placed in that location. This basic element in
this game-tree-code, the binary decision, was the basis for Shannon's basic
measure of information -- the bit. Whenever computer enthusiasts speak of a "bit,"
they are referring to one of those decisions in the garden of forking paths.

Note that each decision, each bit, reduces the uncertainty of the situation, whether you are
designating turns in a pathway or numbers in a guessing game or the energy state of
molecules in a container. But what if you were to use a different strategy to guess the
right answer? What if you just named each of the possible letters, one at a time, in a
sequence or randomly? This relates to probability theory, the mathematical principles
governing the random selection of small samples from large populations.

The relative probability of an event occurring, whether it is the probability of a molecule
being hot or the probability of a symbol being a specific letter of the alphabet, depends
upon the total number of cases in the population and the frequency of the specified event.
If there are only two cases in the population, a single yes or no decision reduces the
uncertainty to zero. In a group of four, it takes two decisions to be sure. In a group of
trillions, you have to guess a little. When you are making predictions about such large
populations, averages based on the overall behavior of the population have to replace
precise case-by-case calculations based on the behavior of individual members of the
population.

One of the properties of a statistical average is that it is quite possible for a population to
be characterized by an average value that is not held by any particular element of the
population. If you have a population consisting of three people, and you know that one is
three feet tall, one five feet tall, and one is six feet tall, you have quite precise information
about that population, which would enable you to pick out individuals by height. But if
all you know is that the average height of the population is four feet, eight inches, you
wouldn't know anything useful about any one of the three particular individuals.
Whenever a system is represented by an average, some information is necessarily lost,
just as two energy states lose a little energy when they are brought into equilibrium.

 88

Whenever you move from an average measure to a precise measure, you have reduced
uncertainty about that population. And that reduction in uncertainty is where the
statistical properties that govern the motions of populations of molecules are connected to
the statistical properties of a binary code, where entropy meets information. To see how
uncertainty can relate to a binary code, think about a game of twenty questions. If the
object of the game is to guess a number between one and one hundred, and player one
asks if the number is larger than fifty, an answer from player two (no matter if it is yes or
no) reduces player one's uncertainty by one half. Before asking the question, player one
had one hundred possible choices. After asking that single yes or no question, player one
either knows that the number is greater than fifty or that it is less than fifty.

One of the things Shannon demonstrated in 1948 was that the entropy of a system is
represented by the logarithm of possible combinations of states in that system -- which is
the same as the number of yes-or-no questions that have to be asked to locate one
individual case. Entropy, as it was redefined by Shannon, is the same as the number of
binary decisions necessary to identify a specific sequence of symbols. Taken together,
those binary decisions, like the answers in the game, constitute a definite amount of
information about the system.

When it comes to arranging molecules, living organisms seem to have a great deal of
information about how to take elementary substances and turn them into complex
compounds. Somehow, living cells manage to take the hodgepodge of molecules found in
their environment and arrange them into the substances necessary for sustaining life of
the organism. From a disorderly environment, living creatures somehow create their own
internal order. This remarkable property now sounds suspiciously like Maxwell's demon.
The answer, as we now know, is to be found in the way the DNA molecule arranges its
elements -- doing so in such a way that the processes necessary for metabolism and
reproduction are encoded. The "negative entropy" that Schrodinger says is the
nourishment of all life is information, and Shannon showed exactly how such
coding can be done -- in molecules, messages, or switching networks.

It has to be said, by the way, that Shannon was reluctant to use the word "entropy" to
represent this measure implied by his equations, but von Neumann told him to go ahead
and use it anyway, because "since nobody knows what entropy is, in a debate you will be
sure to have an advantage."

Remember that entropy is where Shannon ended up, not where he started. Hot molecules
and DNA were far from his original intention. He got to the guessing game and the
notion of bits and the relationship between uncertainty and entropy because he looked
closely at what a message really is. How does a signal that conveys information differ
from everything else that happens? How much energy must be put into broadcasting a
voice over the radio to be sure that it will be understood despite atmospheric interference
or static from other sources? These were the questions that Shannon set out to answer.

Shannon's 1948 publication ("A Mathematical Theory of Information") presented a set of
theorems that were directly related to the economical and efficient transmission of

 89

messages on noisy media, and indirectly but still fundamentally related to the connection
between energy and information. Shannon's work was a direct answer to an engineering
problem that had not decreased in importance since the war: how can messages be coded
so that they will be reliably transmitted and received over a medium where a certain
amount of noise is going to garble reception?

Shannon showed that any message can be transmitted with as high a reliability as one
wishes, by devising the right code. The limit imposed by nature is concerned only with
the limit of the communication channel. As long as there is a channel, no matter
how noisy, a code can be devised to transmit any message with any degree of
certainty. Entropy is a measure of the relationship between the complexity of the code
and the degree of certainty. These theorems meant a lot to radio and telephone engineers,
and made color television as well as broadcasts from the moon possible, but Shannon
stated them in a way that demonstrated their universality beyond the domain of electrical
engineering.

The key to life itself, in fact, turned out to be a matter of information, as the world
learned five years later, when that young physicist-turned-biologist who had attended
Schrödinger's lecture, Francis Crick, teamed up with James Watson to decipher the
molecular genetic coding of the DNA helix. Scientifically, and on the level of
consciousness, people seemed to jump rather too quickly to make the transition from an
energy-based metaphor of the universe to an information model. The rush to generalize
information theory to all sorts of scientific areas, some of them of dubious scientific
merit, led Shannon to decry this "bandwagon effect," remarking that information theory
"has perhaps ballooned to an importance beyond its actual accomplishments. . . . Seldom
do more than a few of nature's secrets give way at one time."

Despite Shannon's disclaimer, information- and communication-based models
have proved to be enormously useful in the sciences because so many
important phenomena can be seen in terms of messages. Human bodies can be
better understood as complex communication networks than as clockwork-like
machines. The error-correcting codes guaranteed by Shannon's "noisy channel" theorem
are just as useful for genetic control of protein synthesis as for protocols in a computer
network. Shannon's MIT colleague, Noam Chomsky, has used a similar tool in his
exploration of the "deep structure" of language.

With all these higher-level abstractions, Shannon did not abandon all thought of the
potential of digital computers. Where Wiener saw the computer as a self controlling
mechanism and von Neumann saw a device with logical as well as mathematical
properties, Shannon tended to think of ENIAC and UNIVAC as information processing
machines.

Like Turing and other mathematicians since then, Shannon was fascinated with the idea
that something as sophisticated and essentially human as chess playing could, in theory,
be emulated by some future version of these devices. In February, 1950, Shannon

 90

http://www.worldmedia.com/archive/index.htm

published "A Chess Playing Machine" in The Scientific American. Half a decade before
anyone dared to name the endeavor "artificial intelligence research," Shannon pointed
out what a very few people then recognized -- that electronic digital computers
could "be adapted to work symbolically with elements representing words,
propositions or other conceptual entities."

A chess game is a Turing machine. And a universal Turing machine, given the properly
coded rules, ought to be able to play chess. Shannon pointed out that the way most people
would design a machine to play chess -- to mechanically examine each alternative move
and evaluate it, the so-called brute-force method -- would be virtually impossible, even
on the fastest imaginable computer. He estimated that a typical chess game has
about 10^120 possible moves, so "A machine calculating one variation each
millionth of a second would require over 10^95 years to decide on its first
move!"

This "combinatorial explosion" -- the rapid and overwhelming buildup of alternatives in
any system in which each level leads to two or more deeper levels -- was another one of
those secrets of nature that Claude Shannon was in the habit of turning up. The explosive
expansion of the number of alternative decisions is a barrier that confronts any attempt to
exhaustively examine a branching structure, and continues to confront programmers who
seek to emulate cognitive functions by performing searches through problem spaces.

Turing and Shannon were altogether serious in their interest in chess, because of the
complexity of the game in relation to the simplicity of its rules, and because they
suspected that the shortcut needed to perform this kind of time-consuming search-
procedure would also be a clue to the way brains solved all sorts of problems.

A chess playing program was also interesting because it was a relative of the kind of
informational entities known as automata that von Neumann and Turing had been toying
with. Once again, like Turing's universal machines, these automata were theoretical
devices that did not exist at that time, but were possible to build, in principle. For years,
Shannon experimented with almost absurdly simple homemade versions -- mechanical
mice that were able to navigate simple mazes.

In 1953, Shannon wrote a paper, "Computers and Automata," in which he posed
questions that continue to be of acute interest to psychologists as well as
computerists. Can a chess playing computer learn form its mistakes? Is it
possible to build a machine that can diagnose itself and repair its own malfunctions? Can
computer programs ("virtual machines") be created that enable computers to write their
own software to the specifications of the human user? Can the way human brains process
information (known in some hard-core AI circles as "wetware") ever be effectively
simulated by hardware and software?

In the summer of 1953, while he was working on these ideas, Shannon hired two
temporary laboratory assistants named Minsky and McCarthy, another pair of prodigies

 91

who knew some fancy mathematics and thought they could do big things with computers.
Here were the first members of the first native generation of computer scientists, the ones
who already knew about electronics and cybernetics and information theory and brain
physiology and were looking for something ambitious to do with it all. They ended up in
the right place when they dug up Shannon in the midst of Bell Laboratories.

Shannon had long spoken of his suspicion that the future evolution of more sophisticated
computer hardware would make it possible to construct software capable of simulating
some parts of human cognition. But these younger guys were blatant believers. They
were out to build an intelligence, and didn't mind saying so. McCarthy and Shannon
edited a book on automata, and three years later, in 1956, Shannon joined Minsky,
McCarthy, and an IBM computer researcher, Nathaniel Rochester, in sponsoring a
summer conference at Dartmouth University, to set goals for this new field. The new
field they gathered to discuss was a branch of science that did not yet have a name, but
which was founded on the assumption that the existence of computers now made it
possible to consider creating an artificial version of the most complex system known to
science -- human intelligence.

It was around 1956 that McCarthy started using the words "artificial
intelligence." The Dartmouth Conference was the constitutional convention of the
artificial intelligence faction, and it was also the place where two virtually unknown Rand
programmers named Alan Newell and Herbert Simon breezed in from Santa Monica with
a piece of software they wrote with Cliff Shaw. To everyone's astonishment, it was a
program -- the famous Logic Theorist that could prove theorems from Russell and
Whitehead's Principia Mathematica -- that actually did what the rest of them thought
they were there to plan to do.

Hopes were high for the AI rebels in 1956 and 1957. Major efforts were under way and
ambitious goals were in sight. A very few unorthodox thinkers staked their careers on the
conviction that this branch of computer science, formerly a branch of science fiction,
would soon be seen as more important than anything else humankind had ever attempted:
Minsky remained at MIT and concentrated on the problem of how knowledge is
represented in minds and machines; Newell and Simon (now a Nobel Laureate) began
their long association with one another and Carnegie-Mellon University, where they
concentrated on the information processing approach to psychology and AI design;
McCarthy created LISP, a language specifically for conducting AI research, and left MIT
to preside over Stanford's AI laboratory.

Claude Shannon went back to his chess playing machines and continued building the
mechanical mice that could learn how to run simple mazes. In 1956, Robert Fano, the
electrical engineering student who witnessed Norbert Wiener's "Entropy is information!"
exclamations back in the summer of 1947, brought Shannon to MIT from Bell
Laboratories.

His professional standing was so far beyond reproach that his occasional unicycle
excursions through MIT halls, and his reluctance to lecture or publish frequently, hardly

 92

http://www.apl.jhu.edu/%7Ehall/lisp.html

dented Shannon's reputation. In fact, his reputation had reached such mythological
proportions that he had to start writing disclaimers. Fame wasn't something he wanted or
needed. By 1960, he didn't even come to the office.

In the 1960s Shannon became interested in the stock market as a real-world experiment in
probability theory, and rumor has it that he didn't do too badly. He began to seriously
extend his analysis of communications and messages to the English language. Nobody
but Shannon knows the full extent of his discoveries. Robert Fano (who went on to
become the administrative director of Project MAC) recently said this of Shannon:

There is a significant body of work he did in the 1950s that has never been printed. He doesn't want
someone else to write his papers for him, and he won't write them himself. It's as simple and as complicated
as that. He doesn't like to teach. He doesn't like giving lectures. His lectures are jewels, all of them. They
sound spontaneous, but in reality they are very, very carefully prepared.

In the early sixties, one of the extremely few students Shannon personally took on,
another MIT bred prodigy by the name of Ivan Sutherland, made quite a splash on the
computer science scene. By the mid-1970s, Shannon, now in his sixties, had become a
literal gray eminence. By the early 1980s, he still hadn't stopped thinking about things,
and considering his track record, it isn't too farfetched to speculate that his most
significant discoveries have yet to be published.

In the late 1950s, around the time Shannon began to retreat from public life, the artificial
intelligence pioneers began to stake out ambitious territories for their laboratories -- goals
like automatic theorem-proving programs, or knowledge-representation languages, or
robotics -- and it began to be possible to dream of computers that could be used as
laboratories for running experiments in new kinds of AI programs. Then fate put a little
pressure on the story once again.

This time, it was not a war, but an implicit threat of war. The space race and the computer
revolution were ready to be launched by 1957, and the information processing devices
pioneered by the World War II creators of computing were ready to leave the laboratories
and begin to infiltrate the real world. As usual, things started popping when an MIT
professor stumbled onto something big.

 93

Chapter Seven:
Machines to Think With
In the spring of 1957, while he continued to carry out the duties of an MIT researcher and
professor, Dr. J.C.R. Licklider noted every task he did during the day and kept track of
each one. He didn't know it then, but that unofficial experiment prepared the way for the
invention of interactive computing -- the technology that bridged yesteryear's number
crunchers and tomorrow's mind amplifiers.

Licklider's research specialty was psychoacoustics. During World War II, he had
explored ways electronics could be applied to understanding human communications.
Specifically, he wanted to learn how the human ear and brain are able to convert
atmospheric vibrations into the perception of distinct sounds. After the war, MIT was the
center of a number of different attempts to use electronic mechanisms to model parts of
the nervous system -- a movement in biology and psychology as well as engineering that
was inspired by the work of Wiener and others in the interdisciplinary field of
cybernetics. Licklider was one of the researchers attracted to this paradigm, not strictly
out of the desire to build a new kind of machine, but out of the need for new ways to
simulate the activities of the human brain. This need, inspired by cybernetics, was
extended simultaneously into engineering and physiology. Computers were the last thing
on Licklider's mind -- until his theoretical models of human perceptual mechanisms got
out of hand.

By the late 1950s, Licklider was trying to build mathematical and electronic models of
the mechanisms the brain uses to process the perception of sounds. Part of the excitement
generated during the early days of cybernetic research came from the prospect of
studying mechanical models of living organisms to help create theoretical models of the
way those organisms function, and vice-versa. Licklider thought he might be onto a good
idea with an intricate neural model of pitch perception, but quickly learned, to his
dismay, that his mathematical model had grown too complex to work out by hand in a
reasonable length of time, even using the analog computers that were then available. And
until the mathematical model could be worked out, there was no hope of building a
mechanical model of pitch perception.

The idea of building a mathematical or electronic model was meant to simplify
the task of understanding the complexities of the brain, like plotting a graph to
see the key relationships in a collection of data. But the models themselves now
began to grow unmanageably complex. Like Mauchly with his meteorological
data, twenty years before, Licklider found he was spending more and more of
his time dealing with the calculations he needed to do to create his models,
which left less time for what he considered to be his primary occupation --
thinking about what all that information meant. Beneath those numbers and graphs
was his real objective -- the theoretical underpinnings of human communication.

 94

Although he was primarily interested in how the brain processes auditory information, he
felt that he was spending most of his time putting things into files or taking them out, as
well as managing the increasing amounts of numerical data he needed to construct the
models he had in mind. Out of curiosity, he wondered if any of his colleagues had
looked into the way scientific researchers spent their time.

When he couldn't find any time-and-motion studies of information-shuffling researchers
like himself, Licklider decided to keep track of his own activities as he went through his
normal working day. "Although I was aware of the inadequacy of the sampling," he later
wrote, with the modesty that he is known for among his colleagues, "I served as my own
subject."

It didn't take long to discover that his main occupation, even when he wasn't keeping
records of his behavior, was centered on keeping records of everything else. Astonishing
as it must have seemed to any self-respecting scientist like himself, his observations
revealed that about 85% of his "thinking" time was actually spent "getting into
a position to think, to make a decision, to learn something I needed to know.
Much more time went into finding or obtaining information than into digesting
it."

Like almost any other experimentalist, he couldn't begin to make sense of psychoacoustic
data until he could see it translated into the form of graphs. Plotting the graphs took days.
Even teaching his assistants how to plot graphs took hours. As soon as the graphs were
finished and he was able to look at them, the relationships he was seeking became
immediately obvious. It was grossly inefficient and tedious to spend days plotting graphs
that took seconds to interpret.

While he had always thought of interpretation and evaluation as his most important
function as a scientist, Licklider's analysis of his research behavior showed that
most of his tasks were clerical or mechanical: "searching, calculating, plotting,
determining the logical or dynamic consequences of a set of assumptions or hypotheses,
preparing the way for a decision or an insight. Moreover, my choices of what to attempt
or not to attempt were determined to an embarrassingly great extent by considerations of
clerical feasibility, not intellectual capacity."

The conclusion he reached, while it doesn't sound so radical today, was shocking when it
occurred to him in 1957. A less modest man might not have been able to bring himself to
face the conclusion: Licklider decided, on the basis of his informal self-study, that
most of the tasks that take up the time of any technical thinker would be
performed more effectively by machines.

This was a thought that was occurring to one or two other people at about the same time -
- notably Doug Engelbart, out in California. But because of his association with certain
military-sponsored research projects at MIT in the 1950s, there was an important
difference between Licklider and the others who dreamed of converting computers into

 95

http://www.rheingold.com/texts/tft/9.html

some kind of mind-amplifying tool. This crucial difference was the fact that Licklider
had reached his conclusion not long before circumstances put him at the center
of power in the one institution capable of sponsoring the creation of an entire
new technology.

At that point in the history of computer technology -- a field in which Licklider had been
only tangentially involved until then -- no respectable computer scientist would dare
suggest that computer technology ought to be totally revamped so that scientists could
use these machines to help keep track of data and build theoretical models of the
phenomena they were studying. To those who were wild enough to make such a
suggestion -- especially the young MIT computer mavericks who were founding the field
of artificial intelligence around that time -- the idea might have seemed too obvious and
too trivial to pursue. In any case, the AI founders were more interested in
replacing the scientist than the scientist's file clerk. Licklider, however, was neither
a respectable computer scientist nor a computer maverick, but a psychologist with some
expertise in electronics. And like any other competent investigator, he followed where the
data led him.

In the late 1950s, Licklider had no real expertise in digital computer design, and although
he knew that only a computer could give him what he needed, he didn't think that the
kinds of computers then available, and the kinds of things they did, were suitable for
building a sort of "electronic file clerk." He knew that data processing wasn't what
he wanted.

If you were the Census Office, overflowing with information on a couple of hundred
million people, and for some crazy reason you wanted to find out how many divorced
people over sixty lived on farms in the sun belt, you could use a UNIVAC to perform the
sorting and calculating needed to tell you what you wanted to know. That was data
processing. If you had a payroll for 10,000 employees to calculate every other Friday and
needed to transform time sheets into entries in a ledger and print up all the checks -- data
processing power was just what you could buy from your local IBM representative.

Data processing involved certain constraints on what could be done with computers, and
constraints on how one went about doing these things.. Payrolls, mathematical
calculations, and census data were the proper kinds of tasks An arcane process known as
"batch processing" was the proper way to do these things. If you had a problem to solve,
you had to encode your program and the data that the program was meant to operate
upon, usually in one of the two major computer languages -- FORTRAN and COBOL.
The encoded program and data were converted into boxes full of what had become
universally known as "IBM cards" -- the kind you weren't supposed to spindle, fold, or
mutilate. The cards were delivered to a systems administrator at the campus "computer
center" or the corporate "data processing center." This specialist was the only one
allowed to submit the program to the machine, and the person from whom you would
retrieve your printout hours or days later.

 96

But if you wanted to plot ten thousand points on a line, or turn a list of numbers into a
graphic model of airflow patterns over an airplane wing, you wouldn't want data
processing or batch processing. You would want modelling -- an exotic new use for
computers that the aircraft designers were pioneering. All Licklider sought, at first, was a
mechanical servant to take care of the clerical and calculating work that accompanied
model building. Not long after, however, he began to wonder if computers could help
formulate models as well as calculate them.

When he attained tenure, later that same year, Licklider decided to join a consulting firm
near Cambridge named Bolt, Beranek & Newman. They offered him an opportunity to
pursue his psychoacoustic research -- and a chance to learn about digital computers.

"BB&N had the first machine that Digital Equipment Company made, the PDP-1,"
Licklider recalled in 1983. The quarter-million-dollar machine was the first of a
continuing line of what came to be called, in the style of the midsixties, "minicomputers."
Instead of costing millions of dollars and occupying most of a room, these new, smaller,
powerful computers only cost hundreds of thousands of dollars, and took up about the
same amount of space as a couple of refrigerators. But they still required experts to
operate them. Licklider therefore hired a research assistant, a college dropout who was
knowledgeable about computers, an exceptionally capable young fellow by the name of
Ed Fredkin, who was later to become a force in artificial intelligence research -- the first
of many exceptionally capable young fellows who would be drawn to Licklider's crusade
to build a new kind of computer and create a new style of computing.

Fredkin and others at BB&N had the PDP-1 set up so that Licklider could directly
interact with it. Instead of programming via boxes of punched cards over a period of
days, it became possible to feed the programs and data to the machine via a high-speed
paper tape; it was also possible to change the paper tape input while the program was
running. The operator could interact with the machine for the first time. (The possibility
of this kind of interaction was duly noted by a few other people who turned out to be
influential figures in computer history. A couple of other young computerists at MIT,
John McCarthy and Marvin Minsky, were also using a PDP-1 in ways computers weren't
usually used.)

The PDP-1 was primitive in comparison with today's computers, but it was a
breakthrough in 1960. Here was the model builder that Licklider had first
envisioned. This fast, inexpensive, interactive computer was beginning to
resemble the kind of device he dreamed about back in his psychoacoustic lab at
MIT , when he first realized how his ability to theorize always seemed constrained by the
effort it took to draw graphs from data.

"I guess you could say I had a kind of religious conversion," Licklider admits,
remembering how it felt, a quarter of a century ago, to get his hands on his first
interactive computer. As he had suspected, it was indeed possible to use computers to
help build models from experimental data and to make sense of any complicated
collection of information.

 97

Then he learned that although the computer was the right kind of machine he needed to
build his models, even the PDP-1 was hopelessly crude for the phenomena he wanted to
study. Nature was far too complicated for 1960-style computers. He needed more
memory components and faster processing of large amounts of calculations. As he began
to think about the respective strengths and deficiencies of computers and brains, it
occurred to him that what he was seeking was an alternative to the human-
computer relationship as it then existed.

Since the summer of 1956, when they met at Dartmouth to define the field, several young
computer and communication scientists Licklider knew from MIT had been talking about
a vaguely distant future when machines would surpass human intelligence. Licklider was
more concerned with the shorter-term potential of computer-human relations. Even at the
beginning, he realized that technical thinkers of every kind were starting to run up against
the problems he had started noticing in 1957. Let the AI fellows worry about ways
to build chess-playing or language translating machines. What he and a lot of
other people needed was an intelligent assistant.

Although he was convinced by his "religious conversion to interactive computing" -- a
phrase that has been used over and over again by those who participated in the events that
followed -- Licklider still knew too little about the economics of computer technology to
see how it might become possible to actually construct an intelligent laboratory assistant.
Although he didn't know how or when computers would become powerful enough and
cheap enough to serve as "thinking tools," he began to realize that the general-purpose
computer, if it was set up in such a way that humans could interact with it directly, could
evolve into something entirely different from the data processors and number crunchers
of the 1950s. Although the possibility of creating a personal tool still seemed
economically infeasible, the idea of modernizing a community-based resource, like a
library, began to appeal to him. He got fired up about the idea Vannevar Bush had
mentioned in 1945, the concept of a new kind of library to fit the world's new knowledge
system.

"The PDP-1 opened me up to ideas about how people and machines like this might
operate in the future," Licklider recalled in 1983, "but I never dreamed at first that it
would ever become economically feasible to give everybody their own computer." It did
occur to him that these new computers were excellent candidates for the super-
mechanized libraries that Vannevar Bush had prophesied. In 1959, he wrote a
book entitled Libraries of the Future, describing how a computer-based system
might create a new kind of "thinking center."

The computerized library as he first described it in his book did not involve anything as
extravagant as giving an entire computer to every person who used it. Instead he
described a setup, the technical details of which he left to the future, by which different
humans could use remote extensions of a central computer, all at the same time.

 98

After he wrote the book, during the exhilarating acceleration of research that began in the
post-Sputnik era, Licklider discovered what he and others who were close to
developments in electronics came to call "the rule of two": Continuing miniaturization of
its most important components means that the cost effectiveness of computer hardware
doubles every two years. It was true in 1950 and it held true in 1960, and beyond even the
wildest imaginings of the transistor revolutionaries, it was still true in 1980. A small
library of books and articles have been written about the ways this phenomenon has
fueled the electronics revolution of the past three decades. It looks like it will continue to
operate until at least 1990, when personally affordable computers will be millions of
times more powerful than ENIAC.

Licklider then started to wonder about the possibility of devising something far more
revolutionary that even a computerized library. When it began to dawn on him that this
relentlessly exponential rate of growth would make computers over a hundred times as
powerful as the PDP-1 at one tenth the cost within fifteen years, Licklider began to think
about a system that included both the electronic powers of the computer and the cortical
powers of the human operator. The crude interaction between the operator and the PDP-1
might be just the beginning of a powerful new kind of human-computer partnership.

A new kind of computer would have to evolve before this higher level of human-machine
interaction could be possible. The way the machine was operated by people would have
to change, and the machine itself would have to become much faster and more powerful.
Although he was still a novice in digital computer design, Licklider was familiar with
vacuum tube circuitry and enough of an expert in the hybrid discipline of "human factors
engineering" to recognize that the mechanical assistant he wanted would need capabilities
that would be possible only with the ultrafast computers he foresaw in the near future.

When he began applying the methods he had been using in human factors research to the
informational and communication activities of technical thinkers like himself, Licklider
found himself drawn to the idea of a kind of computation that was more
dynamic, more of a dialogue , more of an aid in formulating as well as plotting
models. Licklider set forth in 1960 the specifications for a new species of computer and a
new mode of thinking to be used when operating them, a specification that is still not
fully realized, a quarter of a century later:

The information processing equipment, for its part, will convert hypotheses into testable models and then
test the models against data (which the human operator may designate roughly and identify as relevant
when the computer presents them for his approval). The equipment will answer questions. It will simulate
the mechanisms and models, carry out procedures, and display the results to the operator. It will transform
data, plot graphs, ("cutting the cake" in whatever way the human operator specifies, or in several alternative
ways if the human operator is not sure what he wants). The equipment will interpolate, extrapolate, and
transform. It will convert static equations or logical statements into dynamic models so the human operator
can examine their behavior. In general, it will carry out the routinizable, clerical operations that fill the
intervals between decisions.

In addition, the computer will serve as a statistical-inference, decision-theory, or game-theory machine to
make elementary evaluations of suggested courses of action whenever there is enough basis to support a

 99

formal statistical analysis. Finally, it will do as much diagnosis, pattern matching, and relevance
recognizing as it profitably can, but it will accept a clearly secondary status in those areas.

The first research in the 1950s into the use of computing equipment for assisting human
control of complex systems was a direct result of the need for a new kind of air defense
command-and-control system. Licklider, as a human factors expert, had been involved in
planning these early air defense communication systems. Like the few others who saw
this point as early as he did, he realized that the management of complexity was
the main problem to be solved during the rest of the twentieth century and
beyond. Machines would have to help us keep track of the complications of
keeping global civilization alive and growing. And humans were going to need
new ways of attacking the big problems that would result form our continued
existence and growth.

Assuming that survival and a tolerable quality of existence are the most fundamental
needs for all sane, intelligent organisms, whether they are of the biological or
technological variety, Licklider wondered if the best arrangement for both the human and
the human-created symbol-processing entities on this planet might not turn out to be
neither a master-slave relationship nor an uneasy truce between competitors, but a
partnership.

Then he found the perfect metaphor in nature for the future capabilities he had foreseen
during his 1957-1958 "religious conversion" to interactive computing and during those
1958-1960 minicomputer encounters that set his mind wandering through the
informational ecology of the future. The newfound metaphor showed him how to apply
his computer experience to his modest discovery about how technical thinkers spend their
time. The idea that resulted grew into a theory so bold and immense that it would alter
not only human history but human evolution, if it proved to be true.

In 1960, in the same paper in which he talked about machines that would help formulate
as well as help construct theoretical models, Licklider also set forth the concept of the
kind of human-computer relationship that he was later to be instrumental in initiating:

The fig tree is pollinated only by the insect Blastophaga grossorum. The larva of the insect lives in the
ovary of the fig tree, and there it gets its food. The tree and the insect are thus heavily interdependent: the
tree cannot reproduce without the insect; the insect cannot eat without the tree; together, they constitute not
only a viable but a productive and thriving partnership. This cooperative "living together in intimate
association, or even close union, of two dissimilar organisms" is called symbiosis.

"Man-computer symbiosis" is a subclass of man-machine systems. There are many man-machine
systems. At present, however, there are no man-computer symbioses. . . . The hope is that, in not
too many years, human brains and computers will be coupled together very
tightly, and that the resulting partnership will think as no human being has ever
thought and process data in a way not approached by the information-handling
machines we know today.

 100

The problems to be overcome in achieving such a partnership were only partially a matter
of building better computers and only partially a matter of learning how minds interact
with information. The most important questions might not be about either the brain or the
technology, but about the way they are coupled.

Licklider, foreseeing the use of computers as tools to build better computers, concluded
that 1960 would begin a transitional phase in which we humans would begin to build
machines capable of learning to communicate with us, machines that would eventually
help us to communicate more effectively, and perhaps more profoundly, with one
another.

By this time, he had strayed far enough off the course of his psychoacoustic research to
be seduced by the prospect of building the device he first envisioned as a tool to help him
make sense of his laboratory data. Like Babbage who needed a way to produce accurate
logarithm tables, or Goldstine, who wanted better firing tables, or Turing, who wanted a
perfectly definite way to solve mathematical and cryptological problems, Licklider
began to move away from his former goals as he got caught up in the
excitement of creating tools he needed.

Except Licklider wasn't an astronomer and tinkerer like Babbage, a ballistician like
Goldstine, or a mathematician and code-breaker like Turing, but an experimental
psychologist with some practical electronic experience. He had set out to build a small
model of one part of human awareness -- pitch perception -- and ended up dreaming
about machines that could help him think about models.

As other software visionaries before and after him knew very well, Licklider's vision, as
grandiose as it might have been, wasn't enough in itself to ensure that anything would
ever happen in the real world. An experimental psychologist, even an MIT professor, is
hardly in a position to set armies of computer engineers marching toward an interactive
future. Like von Neumann and Goldstine meeting on the railroad platform at Aberdeen,
or Mauchly and Eckert encountering each other in an electronics class at the Moore
School, Licklider happened upon his destiny through accidental circumstances, because
of the time he spent at a place called "Lincoln Laboratory," an MIT facility for top-secret
defense research, where he was a consultant during a critical transition period in the
history of information processing.

It was his expertise in the psychology of human-machine interaction that led Licklider to
a position where he could make big things out of his dreams. In the early and mid 1950s,
MIT and IBM were involved in building what were to be the largest computers ever built,
the IBM AN/FSQ-7, as the control centers of a whole new continental air defense system
for the United States. SAGE (Semi-Automatic Ground Environment) was the Air Force's
answer to the new problem of potential nuclear bomber attack. The computers
weighed three hundred tons, took up twenty thousand feet of floor space, and
were delivered in eighteen large vans apiece. Ultimately, the Air Force bought
fifty-six of them.

 101

MIT set up Lincoln Laboratory in Lexington, Massachusetts, to design SAGE. At the
other end of the continent, System Development Corporation in Santa Monica (the center
of the aircraft industry) was founded to create software for SAGE. Some of the thorniest
problems that were encountered on this project had to do with devising ways to make
large amounts of information available in human-readable form, quickly enough for
humans to make fast decisions about that information. It just wouldn't do for your
computers to take three days to evaluate all the radar and radio-transmitted data before
the Air Defense Command could decide whether or not an air attack was underway.

Some of the answers to these problems were formulated in the "Whirlwind" project at the
MIT computing center, where high-speed calculations were combined with computer
controls that resembled aircraft controls. Other answers came from specialists in human
perception (like Licklider), who devised new ways for computers to present information
to people. With the exception of the small crew of the earlier Whirlwind project, SAGE
operators were the first computer users who were able to see information on visual
display screens; moreover, operators were able to use devices called "lightpens" to alter
the graphic displays by touching the screens. There was even a primitive decision-making
capacity built into the system: the computer could suggest alternate courses of action,
based on its model of the developing situation.

The matter of display screens began to stray away from electronics and into the area of
human perception and cognition which was Licklider's cue to join the computer builders.
But even before Lincoln Laboratory was established in 1953-1954, Licklider had been
consulted about the possibility of developing a new technology for displaying computer
information to human operators for the purpose of improving air defense capabilities.
Undoubtedly, the seeds of his future ideas about human-computer symbiosis
were first planted when he and other members of what was then called "the
presentation group" considered the kinds of visual displays air defense
command centers would need.

The presentation group was where he first became acquainted with Wesley Clark, one of
MIT's foremost computer builders. Clark had been a principle designer of Whirlwind, the
most advanced computer system to precede the SAGE project. Whirlwind, the purpose of
which was to act as a kind of flight simulator, was in many ways the first hardware
ancestor of the personal computer, because it was designed to be operated by a single
"test pilot." It was also used for modeling aerodynamic equations. While it was only
barely interactive in the sense that Licklider desired, Whirlwind was the first computer
fast enough to solve aerodynamic equations in "real time" -- as the event that was being
modeled was actually happening. Real-time computation was not only a practical
necessity for the increasingly complicated job of designing high-speed jet aircraft; it was
a necessary prerequisite for creating the guidance systems of rockets, the technological
successors to jet aircraft.

Ironically, by the time SAGE became fully operational in 1958, the entire concept of
ground-based air defense against bomber attack had been made obsolete on one shocking
day in October, 1957, when a little beeping basketball by the odd name of "Sputnik"

 102

jolted the American military, scientific, and educational establishments into a frenzy of
action. The fact that the Russians could put bombs in orbit set off the most intensive
peacetime military research program in history. When the Soviets repeated their triumph
by putting Yuri Gagarin into space, a parallel impetus started the U.S. manned space
effort on a similar course.

In the same way that the need for ballistics calculations indirectly triggered the invention
of the general-purpose digital computer, the aftermath of Sputnik started the development
of interactive computers, and eventually led directly to the devices now known as
personal computers. Just as von Neumann found himself in the center of political-
technological events in the ENIAC era, Licklider was drawn into a central role in what
became known as "the ARPA era."

The "space race" caused a radical shakeup in America's defense research bureaucracy. It
was decided at the highest levels that one of the factors holding up the pace of space-
related research was the old, slow way of evaluating research proposals by submitting
them for anonymous review by knowledgeable scientists in the field (a ritual known as
"peer review" that is still the orthodox model for research funding agencies).

The new generation of Camelot-era whiz kids from the think tanks, universities, and
industry, assembled by Secretary McNamara in the rosier days before Vietnam, were
determined to use the momentum of the post-Sputnik scare to bring the Defense
Department's science and technology bureaucracy into the space age. Something had to
be done to streamline the process of technological progress in fields vital to the national
security. One answer was NASA, which grew from a tiny sub-agency to a bureaucratic,
scientific, and engineering force of its own. And the Defense Department created the
Advanced Research Projects Agency, ARPA. ARPA's mandate was to find and fund
bold projects that had a chance of advancing America's defense-related
technologies by orders of magnitude -- bypassing the peer review process by
putting research administrators in direct contact with researchers.

Because of their involvement with previous air defense projects, a few of Licklider's
friends from Lincoln, like Wesley Clark, were involved in the changeover to the fast-
moving, forward-thinking, well funded, results-oriented ARPA way of doing things.
Clark designed the TX-0 and TX-2 computers at MIT and Lincoln. The first of these
machines became famous as the favorite tool of the "hackers" in "building 26," who later
became the legendary core of Project MAC. The second machine was designed expressly
for advanced graphic display research.

Graphic displays were esoteric devices in 1960, known only to certain laboratories and
defense facilities. Aside from the PDP-1, almost every computer displayed information
via a teletype machine. But there was an idea floating around Lincoln that SAGE-like
displays might be adapted to many kinds of computers, not just the big ones used to
monitor air defenses. By 1961, the psychology of graphic displays had become something
of a specialty for Licklider. Between BB&N and Lincoln, he was spending more time
with electrical engineers than with psychologists.

 103

Through his computer-oriented colleagues, Licklider became acquainted with Jack Ruina,
director of ARPA in the early 1960s. Ruina wanted to do something about computerizing
military command and control systems on all levels -- not just air defense -- and wanted
to set up a special office within ARPA to develop new information processing
techniques. ARPA's goal was to leapfrog over conventional research and development by
funding attempts to make fundamental breakthroughs. And Licklider's notion of creating
a new kind of computer capable of directly interacting with human operators via a
keyboard and a display screen interface (instead of relying on batch processing or even
paper-tape input) convinced Ruina that the minority of computer researchers Licklider
was talking about might just lead to such a possible breakthrough.

"I got Jack to see the pertinence of interactive computing, not only to military command
and control, but to the whole world of day-to-day business," Licklider recalls. "So, in
October, 1962 I moved into the Pentagon and became the director of the Information
Processing Techniques Office." And that event, as much as any other development of that
era, marked the beginning of the age of personal computing.

The unprecedented technological revolution that began with the post-Sputnik
mobilization and reached a climax with Neil Armstrong's first step on the moon a little
more than a decade later was in a very large part made possible by a parallel revolution in
the way computers were used. The most spectacular visual shows of the space age were
provided by the enormous rockets. The human story was concentrated on the men in the
capsules atop the rockets. But the unsung heroics that ensured the success of the space
program were conducted by men using new kinds of computers.

Remember the crew at mission control, who burst into cheers at a successful launch, and
who looked so cool nineteen hours later when the astronaut and the mission depended on
their solutions to unexpected glitches? When the bright young men at their computer
monitors were televised during the first launches from Cape Canaveral, the picture
America saw of their working habitat reflected the results of the research Licklider and
the presentation group had performed. After all, the kinds of computer displays you need
for NORAD (North American Air Defense Command) aren't too different from the kind
you need for NASA -- in both cases, groups of people are using computers to track the
path of multiple objects in space. NASA and ARPA shared results in the computer field -
- a kind of bureaucratic cooperation that was relatively rare in the pre-Sputnik era.

Because the Russians appeared to be far ahead of us in the development of huge booster
rockets, it was decided that the United States should concentrate on guidance systems and
ultralight (i.e., ultraminiature) components for our less powerful rockets -- a policy that
was rooted in the fundamental thinking established by the ICBM committee a few years
back, in the von Neumann days. Therefore the space program and the missile
program both required the rapid development of very small, extremely reliable
computers.

The decision of the richest, most powerful nation in history to put a major part of its
resources into the development of electronic-based technologies happened at an

 104

exceptionally propitious moment in the history of electronics. The basic scientific
discoveries that made the miniaturization revolution possible -- the new field of
semiconductor research that produced the transistor and then the integrated circuit --
made it clear that 1960 was just the beginning of the rapid evolution of computers. The
size, speed, cost, and energy requirements of the basic switching elements of computers
changed by orders of magnitude when electron tubes replaced relays in the late 1940s,
and again when transistors replaced tubes in the 1950s, and now integrated circuits were
about to replace transistors in the 1960s. In the blue-sly labs, where the engineers were
almost outnumbered by the dreamers, they were even talking about "large-scale
integration."

When basic science makes breakthroughs at such a pace, and when
technological exploitation of those discoveries is so deliberately intensified, a
big problem is being able to envision what's possible and preferable to do next.
The ability to see a long range goal, and to encourage the right combination of boldness
and pragmatism in all the subfields that could contribute to achieving it, was the
particular talent that Licklider brought onto the scene. And with Licklider came a new
generation of designers and engineers who had their sights on something the pre-Sputnik
computer orthodoxy would have dismissed as science fiction. Suddenly, human-
computer symbiosis wasn't an esoteric hypothesis in a technical journal, but a
national goal.

When Licklider went to ARPA, he wasn't given a laboratory, but an office, a budget, and
a mandate to raise the state of the art of information processing. He started by supporting
thirteen different research groups around the country, primarily at MIT; System
Development Corporation (SDC); the University of California at Berkeley, Santa
Barbara, and Los Angeles; USC; Rand; Stanford Research Institute (now SRI
International); Carnagie-Mellon University; and the university of Utah. And when his
office decided to support a project, that meant providing thirty or forty times the budget
that the researchers were accustomed to, along with access to state-of-the-art research
technology and a mandate to think big and think fast.

A broad range of new capabilities that Licklider then called "interactive computing"
was the ultimate goal, and the first step was an exciting new concept that came
to be known as time-sharing. Time-sharing was to be the first, most important step in
the transition from batch processing to the threshold of personal computing (i.e., one
person to one machine). The idea was to create computer systems capable of interacting
with many programmers at the same time, instead of forcing them to wait in line with
their cards or tapes.

Exploratory probes of the technologies that could make time-sharing possible had been
funded by the Office of Naval Research and Air Force Office of Scientific Research
before ARPA stepped in. Licklider beefed up the support to the MIT Cambridge
laboratory where AI researchers were working on their own approach to "multi-access
computing." Project MAC, as this branch became known, was the single node in the

 105

http://www.rheingold.com/texts/tft/8.html

research network where AI and computer systems design were, for a few more years,
cooperative rather than divergent.

MAC generated legends of its own, from the pioneering AI research of McCarthy,
Minsky, Papert, Fredkin, and Weizenbaum, to the weird new breed of programmers who
called themselves "hackers," who held late night sessions of "Spacewar" with a PDP-1
they had rigged to fly simulated rockets around an ocilloscope screen and shoot dots of
light at one another. MAC was one of the most important meeting grounds of both the AI
prodigies of the 1970s and the software designers of the 1980s. By the end of the ARPA-
supported heyday, however, the AI people and the computer systems people were no
longer on the same track.

One of Licklider's first moves in 1962-1963 was to set up an MIT and Bolt, Beranek and
Newman group in Massachusetts to help Systems Development Corporation in Santa
Monica in producing a transistorized version of the SAGE-based time-sharing prototypes,
which were based on the old vacuum tube technology. The first step was to get a machine
to all the researchers that was itself interactive enough that it could be used to design
more interactive versions -- the "bootstrapping" process that became the deliberate policy
of Licklider and his successors. The result was that university laboratories and think tanks
around the country began to work on the components of a system that would depend on
engineering and software breakthroughs that hadn't been achieved yet.

The time-sharing experience turned out to be a cultural as well as a
technological watershed. As Licklider had predicted, these new tools changed
the way information was processed, but they also changed the way people
thought. A lot of researchers who were to later participate in the creation of personal
computer technology got their first experience in the high-pressure art and science of
interactive computer design in the first ARPA-funded time-sharing projects.

One of the obstacles to achieving the kind of interactive computing that Licklider and his
growing cadre of "converts" envisioned lay in the slowness and low capacity of the
memory component of 1950-style computers; this hardware problem was solved when
Jay Forrester, director of the Whirlwind project, came up with "magnetic core memory."
The advent of transistorized computers promised even greater memory capacity and
faster access time in the near future. A different problem, characterized by the batch-
processing bottleneck, stemmed from the way computers were set up to accept input from
human operators; a combination of hardware and software innovations were converging
on direct keyboard-to-computer input.

Another one of the obstacles to achieving the overall goal of interactive computing lay
not in the way computer processed information -- an issue that was addressed by the
time-sharing effort -- but the primitive way computers were set up to display information
to human operators. Lincoln Laboratory was the natural place to concentrate the graphics
effort. Another graphics-focused group was started at the University of Utah. The
presentation group veterans, expanded by the addition of experts in the infant technology

 106

of transistor-based computer design, began to work intensively on the problem of display
devices.

Licklider remembers the first official meeting on interactive graphics, where the first
wave of preliminary research was presented and discussed in order to plan the assault on
the main problem of getting information from the innards of the new computers to the
surface of various kinds of display screens. It was at this meeting, Licklider recalls, that
Ivan Sutherland first took the stage in a spectacular way.

"Sutherland was a graduate student at the time," Licklider remembers, "and he hadn't
been invited to give a paper." But because of the graphics program he was creating for his
Ph.D. thesis, because he was a protégé of Claude Shannon, and because of the rumors
that he was just the kind of prodigy ARPA was seeking, he was invited to the meeting.
"Toward the end of one of the last sessions," according to Licklider, "Sutherland stood up
and asked a question of one of the speakers." It was the kind of question that indicated
that this unknown young fellow might have something interesting to say to this high-
powered assemblage.

So Licklider arranged for him to speak to the group the next day: "Of course, he brought
some slides, and when we saw them everyone in the room recognized his work to be
quite a lot better than what had been described in the formal session." Sutherland's thesis,
a program developed on the TX-2 at Lincoln, demonstrated an innovative way to handle
computer graphics -- and a new way of commanding the operations of computers. He
called it Sketchpad, and it was clearly evident to the assembled experts that he had leaped
over their years of research to create something that even the most ambitious of them had
not yet dared.

Sketchpad allowed a computer operator to use the computer to create, very rapidly,
sophisticated visual models on a display screen that resembled a television set. The visual
patterns could be stored in the computer's memory like any other data, and could be
manipulated by the computer's processor. In a way, this was a dramatic answer to
Licklider's quest for a fast model-builder. But Sketchpad was much more than a tool for
creating visual displays. It was a kind of simulation language that enabled computers to
translate abstractions into perceptually concrete forms. And it was a model for totally
new ways of operating computers; by changing something on the display screen, it was
possible, via Sketchpad, to change something in the computer's memory.

"If I had known how hard it was to do, I probably wouldn't have done it," Alan Kay
remembers Sutherland saying about his now-legendary program. Not only was the
technical theory bold, innovative, and sound, but the program actually worked. With a
lightpen, a keyboard, a display screen, and the Sketchpad program running on
the relatively crude real-time computers available in 1962, anyone could see for
themselves that computers could be used for something else beside data
processing. And in the case of Sketchpad, seeing was truly believing.

 107

http://www.kzoo.edu/%7Eabrady/CS400/bioW96/soulier.html

When he left ARPA in 1964, Licklider recommended Sutherland as the next director of
the IPTO. "I had some hesitance about recommending someone so young," remembers
Licklider, "but Bob Sproull, Ruina's successor as ARPA director, said he had no problem
with his youth if Sutherland was really as bright as he was said to be." By that time,
Sutherland, still in his early twenties, had established a track record for himself doing
what ARPA liked best -- racing ahead of the technology to accomplish what the
orthodoxy considered impossible or failed to consider altogether.

When Sutherland took over, the various time-sharing, graphics, AI, operating systems,
and programming language projects were getting into full swing, and the office was
growing almost as fast as the industries that were spinning off the space-age research
bonanza. Sutherland hired Bob Taylor, a young man from the research funding arm of
NASA, to be his assistant, and ultimately his successor when he left IPTO in 1965.
Licklider went to the IBM research center in 1964, and then back to MIT to take charge
of Project MAC in 1968.

In 1983, over a quarter of a century since the spring day he decided to observe his own
daily activities, Licklider is still actively counseling those who build information
processing technologies. After three decades of direct experience with "the rule of two,"
he is not sure that information engineers have even approached the physical limits of
information storage and processing.

One thing scientists and engineers know now that they didn't know when he
and the others started, Licklider points out, is that "Nature is very much more
hospitable to information processing than anybody had any idea of in the
1950s. We didn't realize that molecular biologists had provided an existence
proof for a fantastically efficient, reliable, information processing mechanism --
the molecular coding of the human genetic system. The informational
equivalent of the world's entire fund of knowledge can be stored in less than a
cubic centimeter of DNA, which tells us that we haven't begun to approach the
physical limits of information processing technology."

The time-sharing communities, and the network of communities that followed them, were
part of another dream -- the prospect of computer-mediated communities throughout the
world, extending beyond the computer experts to thinkers, artists, and business people.
Licklider believes it is entirely possible that the on-line, interactive human-computer
community he dreamed about will become technologically feasible sometime within the
next decade. He knew all along that the frameworks of ideas and the first levels of
hardware technology achieved in the 1960s and 1970s were only the foundation for a lot
of work that remained to be done.

When the bootstrapping process of building better, cheaper, experimental interactive
information processing systems intersects with the rising curve of electronic capabilities,
and the dropping curve of computational costs, it will become possible for millions,

 108

rather than a thousand or two, to experience the kind of information environment the
ARPA-sponsored infonauts knew.

In the early 1980s, millions of people already own personal computers that will become
obsolete when versions a hundred times as fast with a thousand times the memory
capacity come along at half of today's prices. When tens of millions of people get their
hands on powerful enough devices, and a means for connecting them, Licklider still
thinks the job will only be in its beginning stages.

Looking toward the day when the "intergalactic network" he speculated about in the mid
sixties becomes feasible, he remains convinced that the predicted boost in human cultural
capabilities will take place, but only after enough people use an early version of the
system to think up a more capable system that everybody can use: "With a large enough
population involved in improving the system, it will be easier for new ideas to be born
and propagated," he notes, perhaps remembering the years when interactive computing
was considered a daring venture by a bunch of mavericks. The most significant issue,
he still believes, is whether the medium will become truly universal.

"What proportion of the total population will be able to join that community?
That's still the important question," Licklider concludes, still not sure whether
this new medium will remain the exclusive property of a smaller group who
might end up wielding disproportionate power over others by virtue of their
access to these tools, or whether it will become the property of the entire
culture, like literacy.

 109

Chapter Eight:
Witness to Software History: The Mascot of Project
MAC
When he tried the doorknob and found it unlocked, then opened the door to Building 26
and poked his head into a room full of weirdos having a high old time with candy bars
and computer programs, David Rodman knew he had discovered something. The year
was 1960. David Rodman was ten years old. And 1960 was still at least four years too
early for weird people to be anything but a rarity, even on college campuses.

It turned out that these pasty-faced, hollow-eyed, jargon-spewing, insanely
cackling young men were the first, founding generation of dropout
programming wizards to call themselves "hackers," and Building 26 was where
the hotshot hired programmers of MIT's artificial intelligence Project MAC
were caged until they all moved to the ninth floor of 545 Technology Square, in
the early sixties.

Technology Square was MIT's space-age temple of sci-tech. The geographical move from
outpost to the pinnacle of the technohierarchy reflected an elevation in the importance of
the whole field of man-machine systems. MAC was set up originally by Licklider, later
administered at various times by Fano, Minsky, and Papert, and the ambiguity about the
meaning of the acronym was deliberate. On the level of the hackers' employers, it meant
both "machine-aided cognition" and "Multi-access computing," because in the
early 1960s computer system design and AI research had not yet parted ways.

Down in Building 26, where the dirty work went on, where this motley group of
exceptionally gifted programmers got their fingers into the logical guts of machines and
made them do their bidding, they were Maniacs And Clowns, Men Against Computers,
and numerous unprintable variations. They were the unruly but indispensable hired
craftsmen of the projects directed by the likes of McCarthy and Minsky and funded by
Licklider -- the ones who built the software probes their employers launched into the
frontiers of machine intelligence.

At the moment David walked in, a young man named Richard Greenblatt, who lived on
the stereotypical hacker diet of soft drinks, candy bars, and Rolaids, and who didn't stop
to sleep, much less to wash or change clothing, was explaining to a circle of awed
admirers, which included some of the computer scientists who had hired him, how he
intended to write a chess playing program good enough to beat a human. Greenblatt's
thesis advisor, Marvin Minsky, tried to discourage Greenblatt, telling him there was little
hope of making progress in chess playing software.

Six years after he first stumbled upon the inhabitants of building 26, sixteen-year-old
David Rodman, by now a dropout, acidhead, and professional AI programmer of his own,

 110

http://www.rheingold.com/texts/tft/7.html

albeit smaller, repute, was in the group that watched Greenblatt's "MacHack" program
demolish Hubert Dreyfus, the number one critic of the whole AI field, in a much-
heralded and highly symbolic game of chess. The MacHack versus Dreyfus duel has
become one of the hacker legends, and MacHack became the first program to be granted
honorary membership in the American Chess Federation.

The Dreyfus chess match was only one of several historic moments in AI history that
David witnessed from his vantage point of mascot, then apprentice, then full-fledged
hired hacker, during the heyday of MAC, between 1960 and 1967. He was there when his
motley colleagues began to build the programming and operating systems for the TX-0
and PDP-1 computer hardware, thus establishing the first software thrust into the age of
interactive computing. David was also there when Joseph Weizenbaum, to his later regret
unveiled ELIZA, probably the most widely quoted and widely misunderstood program in
history -- the program that seems to be an uncannily perceptive psychiatrist, but is
actually a programmer's semantic trick.

David came upon the hackers through a mixture of mischief and happenstance. He was
one of those prodigies who was angry about having a brain like his trapped for another
eight years in the body of a child. Since he was six, he had been an exceptional musician,
but he gave up the piano at ten because he despised performing for adults. He was a
loner, a wanderer, a looker through doorways, an urban spelunker -- a snoop, but not a
thief, unless you consider knowledge of how to find your way through a complicated
system as a stealable property. By the age of fifteen, David and his friends could find
their way into any building in the MIT complex, via the system of underground utility
tunnels.

Wandering through the halls of MIT, where his father worked in the medical school, was
one of his favorite pastimes. He liked to try doors and see what was behind the unlocked
ones. When he cast his eyes on those strange guys gathered around an odd-looking
television set with wires coming out of it, and then joined them at a game called
"Spacewar," using a control panel made out of a cigar box, and nobody seemed to notice
that he was ten years old -- David knew he had found his new intellectual home.

"They treated me with some subtlety. I think it was a kind of recognition. They had all
been through it, but they weren't about to tell me anything before I figured it out for
myself," David recalled, twenty years later. He just sat down and there was a keyboard
and someone got him started, and although they were the first people he had met who
didn't make a fuss over his intelligence, they noticed how quick he picked it up, all right.

After David returned a few times, and demonstrated his ability to find his way around the
computer, the hackers made him a mascot, and when he was a full-blooded initiate
("when they started calling me 'Rodman' instead of 'hey, kid'"), they started giving him
small tasks in machine language, eventually showing him tricks in the sexy new
programming language known as LISP invented specifically for AI programmers by John
McCarthy, one of the project's founders.

 111

Marvin Minsky's secretary took a liking to this wiseass ten-year-old who seemed to take
to programming as some kids take to chess or tennis or ballet, and Minsky, who had
always been the hackers' patron in MIT computer circles, let David use his password.

Today, having grown up through the early days of the hackers and AI research, the
ARPAnet years, the consulting contracts and security clearances, the regular escalation of
his income, and the transformation of the social status of computer programmers from
weirdo outsiders to millionaire culture heroes, David Rodman is the president of a
microcomputer software company whose primary product is a system of programs he
wrote himself. His personal odyssey from the inner sanctums of AI hackdom to the
rough-and-tumble capitalism of the microcomputer industry is a kind of capsule history
of the whole strange journey of interactive computing from laboratory curiosity to home
appliance.

But like many others who are now in their middle thirties and who didn't wear suits and
carry briefcases, the early history was colorful and not a little painful: "At the age of ten,
I was like a coiled spring inside -- lonely, uptight, angry, cynical. I was unable to balance
my intelligence against the rest of the world. Then suddenly, here were people not unlike
myself, who showed me a device that would respond to me when I sat down to program
it. Those people knew what was happening to me, and when I began programming, they
encouraged it."

MIT, to begin with, was the engineers' school of engineers' schools, where the
undergraduates hold an annual "ugliest man on campus" contest -- an unashamed, self-
proclaimed, national haven for supernerds. The campus population was primarily
composed of the people from all the high schools in the country who stayed home and
learned integral calculus or built ham radios while everybody else was at the sock hop.
Amid all this self-styled rejection of conventional youth culture and the
atmosphere of cultivated unfashionability, computer obsessives were
considered oddballs even by the other outcasts. Their standards were entirely their
own. They and their computers, and a few people in ARPA, were the only ones who
knew that the top hackers were really the insiders. Although they were outcasts from the
wider society, from their fellow techies, and even from most other computer scientists,
they happened to be the people who were creating the future of computing -- the first
time-sharing systems.

They were having so much fun with what they all knew to be the hot technology of the
future that they seemed to deliberately encourage their unappetizing image. You don't
just barge in and make yourself a hacker. You've gotta hack. And that means making a
computer do things its manufacturers never expected it to do. (This kind of
programming is known among hackers as "black magic.") It also meant surviving what
the other hackers could do to the results of all your work if you weren't clever enough to
prevent them.

There was a matter of intellectual style. Boldness and speed and raw power
were as important as (critics of hackers would say more important than)

 112

elegance and efficiency when it came to "cutting code" (writing the detailed
machine language or high-level language lists of instructions that make programs do what
computer users want them to do.). One common comeback when an outsider asked
what "hacker" meant was "somebody who makes furniture with an axe."
Orthodox programming style was hardly de rigeur in this crowd. The challenge was to
think of a clever way to do something that most normal computer experts would do some
other way or not at all. The performance standards were idiosyncratic and subtle, but all-
important. These people judged each other by criteria that the rest of the world didn't
even understand, and the hackers didn't mind keeping it that way.

They were other kinds of outcasts besides social outcasts, self-selected or otherwise.
Their values were entirely their own: academic or commercial success was too trivial to
be considered a driving motivation; the opportunity to work with like-minded colleagues
on state-of-the-art equipment was paramount. They had their own culture, their own
ethic, even their own dialect. The eighteen-year-old MIT dropouts David Rodman wanted
to emulate were distinguished from the hippies and radicals they superficially resembled
because they all happened to have a talent that was particularly valued in those days, and
still is -- the ability to write code that makes computers useful to
nonprogrammers.

While all their former classmates were on to their doctorates and assistant professorships
and corporate research laboratories, the misfits suddenly found their conventionally
successful peers, at a job where they weren't relegated to working out a payroll system or
an airline reservation service. The hackers knew, even if nobody else did, that they -- and
not IBM, or even their straighter "FORTRAN type" colleagues in computer science --
were the test pilots of the computational frontier, pushing the limits of what could be
done with each fresh generation of hardware.

Their mandate was to dream up new things for computers to do, and in the
process what they did was invent a whole new computer system and computer-
oriented society, a technology and social order in which their own little
fraternity of ex-outsiders, and not the conventional computer types, were
privileged to know the inner mysteries. When the rest of the world caught up with
them, they knew they would be on to something even more mysterious to the outsider and
more exciting to the hacker. None of them would deny the charges of addiction. Some of
the same people who were in that room when David walked in, almost a quarter of a
century ago, are still sitting in front of a computer terminal, somewhere on the upper
floors of 545 Technology Square.

Spacewar

Their superiors were smart enough to know that the best of the hackers would come
up with amazing things if they were left to their own devices. Spacewar, which
spread from MIT to other campus computer centers, was one of the rites of passage and

 113

defining characteristics of any den of hackers. It was invented by a MAC hacker named
Russell, known as "Slug", and was perfected in a communal effort by generations, and it
survived wherever it sprouted, like some antibiotic resistant organism, because every
computer laboratory manager in the country learned that productivity dove
when Spacewar was banned and shot back up when the game was reinstated.

It was Spacewar that influenced Nolan Bushnell to create, over a decade later, a much
simpler version called Pong, a commercial venture that created the first incarnation of
Atari Corporation and a billion-dollar video game industry. Before Pong succeeded,
however, Bushnell had failed to get people interested in a more complex game, a more
direct derivation of Spacewar. But in those days, the people who put quarters into video
machines at bars and arcades hadn't yet been educated in their video game sensibilities by
the Space Invaders and Pac-Man phenomena of the late 1970s and early 1980s.

But fun and games were only part of the fun and games. One of the things the hackers
were building when David arrived was the software for one of the first time-sharing
systems. They were writing a time-sharing operating system that they intended to use to
create the greatest hacks, the biggest pranks, the most amazing demonstrations of
programming virtuosity in hacker history. The fact that they were pioneering a whole
new way to use computers that would eventually bring the outside population in on it was
not the first thing on their mind. They wanted to get their own hands on the system, so
they built it in record time.

Actually, there were two MIT time-sharing projects. The more staid project was CTSS --
Compatible Time-Sharing System, so named because it was designed to be compatible
with other systems that were being constructed elsewhere. The MAC hackers were
designing an operating system they called ITS -- the Incompatible Time-sharing System.
They couldn't care less about making it easy for outsiders to use. They were having too
much fun to share it with the kind of straight-arrow programmers who could stand to eat
or sleep before finishing a good hack.

There were hackers and there were metahackers. Richard Greenblatt, because of what his
program did to Dreyfus, and because of his ability to improvise great code without fully
understanding how he did it, was at the top of the hacking order. He was a dropout and
looked the part of the "Pepsi-guzzling, nonsleeping, single-minded
programming addict who ate only food that came from a vending machine and
whose skin had not absorbed anything but fluorescent light in three years," as
Rodman fondly remembered him, three decades later. But Greenblatt's peers knew him as
a Nijinsky, a Frank Lloyd Wright, a Johann Sebastian Bach of LISP programming.

The matter of pranks, of what the hackers called "wheel wars" -- mucking up each others
files, trying to thwart each other or "crash" the operating system -- was part of the
working environment. Crashing the system could be accomplished by running some kind
of unrunnable self-swallowing program that the programmer who designed the system
hadn't made precautions for. When such a prank succeeds, everybody connected to the
system can lose important data. In the early sixties, at places like MAC, it was understood

 114

that, despite its unfortunate side effects, crashing was an allowable test of the system if
the hack revealed an important system vulnerability.

Two decades later, when mischievous and sometimes vandalistic teenagers with home
computers started calling themselves "hackers" and crashed the files of nonhackers via
the telephone, they were doing something quite different in its ultimate effect, if not in its
outward appearance, from what the first such outlaws at MAC were trying to accomplish.
The excuse was that they were "just exploring" an interesting vulnerability in the system
had some real validity back when the hackers were creating and testing new time-sharing
systems, and when their expertise was aimed toward a common goal. But when the
system that crashes, as nearly happened in 1983, is an operational computer used by a
hospital to keep track of patient medication records, it is a somewhat different matter.
The same kind of iconoclastic mischief that had one meaning in the 1960s took on
another meaning in the 1980s.

"Phone-hacking" was another kind of prank pioneered by MAC hackers in the early
1960s that was to spawn anarchic variants in the 1970s. The self-taught mastery of
complex technologies is the hallmark of the hacker's obsession, the conviction
that all information (and information delivery technologies) ought to be free is
a central tenet of the hacker ethical code, and the global telephone network is a
complex technological system par excellence, a kind of ad hoc worldwide
computer. The fact that a tone generator and a knowledge of switching circuits could
provide access to long-distance lines, free of charge, led to a number of legendary phone
hacks. But the mythology didn't die there.

In California, the Stanford AI Laboratory (SAIL) and the proximity to Silicon Valley led
to the growth of another phone-hacking subcult of "phone Phreaks" in the 1970s, whose
hero was a fellow who went by the name of Captain Crunch. A gap-toothed, crazy-eyed,
full-bearded fellow who now writes software and stays away from illegal activities,
Crunch traveled the highways in the late sixties and early seventies with a van full of
electronic equipment, playing virtuoso pranks from roadside phone booths -- until he was
caught, prosecuted, sentenced, and jailed. One of Crunch's phone hacking buddies from
the outlaw days, Steve Wozniak, went on to bigger fame when he invented the first Apple
computer. Captain Crunch, also known as John Draper, now makes very decent
legitimate money as "Cap'n Software," the sole programmer for the microcomputer
software company of the same name.

At Project MAC, and at the subcultural counterparts at Stanford (where they began to
blend some of their California brand of craziness into the hacker formula) and elsewhere,
you had to suffer in order to be admitted to the more interesting levels of hacker wisdom.
As in any closed subculture, the hackers spared no one their own kind of rites of passage.
David was the youngest initiate, but they didn't go any easier on him than any other
newcomer. You just weren't part of things at MAC until you met the now-legendary
"cookie monster" and some of its nastier relatives.

 115

http://www.well.com/user/crunch/
http://www.woz.org/

Crashing the system was a fact of life and an implicit challenge at the higher reaches of
hackdom -- if you were smart enough to come up with something that the system
programmers hadn't guarded against, it was more of an honor than a misdemeanor to
bring the computer to a halt, dumping hours or weeks of someone's work. By
comparison, the cookie monster was relatively mild. Unlike an operating system crash,
the cookie monster struck only selected victims, rather than everybody who was
unfortunate enough to be using the system when a crash was perpetrated.

The cookie monster would strike most often at four in the morning. (All-night hacking
began with time-sharing systems, not only because it fit in with the hacker's
weird self-image, but because time-shared systems run faster at night, when all
the nonhackers are out having dates or studying poetry or sleeping or whatever
nonhackers do at night in the real world.) You would be looking for a bug
somewhere in the two-thousandth line of your program. Suddenly, without warning, the
words "I WANT A COOKIE!!" appear on your monitor screen -- and all your
painstakingly crafted code is relentlessly munched into oblivion by the word COOKIE!!,
multiplied over and over until you finally figure out or (horror of horrors) somebody has
to tell you: you have to type the word COOKIE!! on your keyboard.

In their own way, the MAC hackers were the forerunners of other kinds of psychic
desperadoes who appeared on college campuses in the 1960s. A contempt for middle-
class values and an abiding interest in the workings of their own mind were two
characteristics that hackers were to share with later subcultures who had nothing to do
with computers. David Rodman was a confirmed hacker in the late 1960s, when he began
to dabble in a very different yet strangely similar outlaw subculture that was springing up
in the Cambridge student community.

"I would characterize my first acid trip as a quantum leap into the innards of my own
psychology," David recalls today. "Suddenly, there I was -- inside myself. I didn't know
the path to get in, but there I was. I could observe myself playing the guitar or writing
code, and think to myself while improvising. 'Where am I going and how do I know how
to go there and what am I really expressing?' It was the trip of all trips."

David thinks that "for my peculiar cognitive style, programming was a perfect
preparation for psychedelics, because it allowed me to model a little piece of my
personality in the machine, and interact with it. The older hackers would tell me 'never
mind what the main program does, we want you to write a program that moves a chess
piece on a chessboard,' so I wrote a small, gemlike part of the utility package that went
into one of the chess programs. The next time I found myself in one of those gemlike
structures on my first acid trip."

The small "gemlike structures" that David created were incorporated into early versions
of Greenblatt's MacHack, the program that eventually became an emblem of the hackers'
sovereignty within the AI community when MacHack met Dreyfus in 1967. It all started
when Hubert Dreyfus had the temerity to question not only the chances of success but the
very legitimacy of AI research. The entire field of artificial intelligence had been

 116

challenged as a fraud, and very serious efforts that went beyond the usual acrimony of
academic debate were being made to cut off funding for the foolishness Minsky et al.
were attempting. The Dreyfus affair began in the summer of 1965, when Hubert Dreyfus
-- a philosopher, not a computer scientist -- spent a few months at the Rand Corporation.
The paper that Dreyfus wrote at the end of that summer, entitled "Alchemy and Artificial
Intelligence," was informally circulated as a Rand report.

Dreyfus thought that AI was a crock. He specifically attacked some of the claims AI
enthusiasts had made about the future of their field. He claimed that the "progress" the AI
folks had been citing was an illusion, and attempted to prove that their goal was a
delusion. An IBM researcher, Arthur Samuels, had recently created a pretty decent
checkers program that was on its way to becoming a champion. To Dreyfus, saying that
the checkers program represented a step toward a true human-like machine intelligence
was like saying that an ape who could climb to the top of a tree was making progress
toward flying to the moon.

Dreyfus challenged the idea that a chess playing program of any significance could ever
be built, pointed out that in 1957 Herbert Simon had predicted an unbeatable chess
playing program within ten years, and noted that the time was about up. Greenblatt came
out of nowhere with his carefully constructed chess hack, and Seymour Papert, then
codirector of MAC, maneuvered Dreyfus into a public match.

David and other witnesses remember the game as a dramatic and unpredictable match -- a
cliff-hanger that was far more suspenseful and ingenious and less mechanical than what
any of them had expected. This was more than a friendly rivalry. The source of their
funds was being attacked, and it was just possible that this . . . this . . . philosopher might
manage to get people so stirred up that they would take their precious terminals away. It
was a grudge match, no question about it.

MacHack won. Gleefully, the bulletin of the Special Interest Group in Artificial
intelligence (SIGART) of the Association for Computing Machinery reported the results
of the match under a headline taken from Dreyfus' paper: "A Ten-Year-Old Can Beat the
Machine -- Dreyfus." The SIGART editors amended it with a subhead of their own: "But
the Machine Can Beat Dreyfus." The SIGART article touched off a series of letters to
editors, accusations, and counteraccusations, and Dreyfus ended up writing a book, What
Computers Can't Do in which he admitted: "Embarrassed by my expose of the disparity
between their enthusiasm and their results, AI workers finally produced a reasonably
competent program. R. Greenblatt's program called MacHack did in fact beat the author,
a rank amateur."

MacHack went on to become an honorary member of the U. S. Chess federation, and the
Dreyfus-versus-AI controversy has dragged on for decades, albeit without the hand-to-
hand fury of 1967, when a hacker rose brilliantly to the defense of his art with a
legendary hack, then retreated back to his terminal while others argued the significance of
what he had done. The event had more than symbolic significance: the formal paper
Greenblatt wrote about the program was of historical value to those who still hope to

 117

fulfill Turing's, von Neumann's, and Shannon's dreams of playing against a true master
chess-machine

Eliza

MacHack was actually the second of two historic software births David Rodman
witnessed during his apprenticeship at MAC. Joseph Weizenbaum showed up at MIT in
1963, and when he created ELIZA between 1964 and 1966, he changed the way
everybody thought about what computers can't do -- and that included changing his own
mind about where the whole computer-AI enterprise was heading. ELIZA was a clever
way of mimicking human interaction through a computer-mediated dialogue;
what the inventor hadn't anticipated was people's willingness to be taken in by
the mimicry -- even people who should have known better. By the time Weizenbaum
recovered from the shock of seeing the way people reacted to his program, he was
convinced that something very dangerous lurked in the much-heralded computer
revolution.

The reaction to ELIZA eventually led Weizenbaum to question the ultimate value of the
changes that computers were introducing to the general population -- changes he felt we
might all later regret. He also declared that we would soon be faced with important
decisions about what computers ought and ought not to do. He specifically cited the
hackers as a symptom of a sickness in the heart of computerdom. Weizenbaum's assault
on some of the most fundamental premises of the computer culture with the 1976
publication of Computer Power and Human Reason set off a continuing, oft-heated
public debate between Weizenbaum and the AI community.

The Dreyfus-AI debate had been largely a technical argument, which helped make
MacHack's technical victory so sweet. Weizenbaum's was a moral argument, and it
carried a passionate force far different in effect from that of Hubert Dreyfus, flying in
from California with his phenomenology. This was Joseph Weizenbaum, honored
professor of computer science at MIT, saying that AI might not be a crock, but we better
be a lot more careful with computers, and watch out for the hackers in the process.

Remember when those funny-looking "computer letters" started appearing on the bottom
of checks, in the early 1960s? That was part of Joseph Weizenbaum's work in the days
before he came to MIT. As a software expert for General Electric, he was centrally
involved in Bank of America's ERMA project, a milestone in the computerization of the
world's banking system. When Weizenbaum later spoke about the morality of using
computers in ways that might change millions of people's lives, he was speaking from
experience. His creation of a program that gave the illusion of a wise, all-knowing,
computerized psychiatrist -- and his shock at seeing how willingly even his computer-
sophisticated colleagues were taken in by the illusion -- triggered Weizenbaum's
dissension.

 118

http://www-ai.ijs.si/eliza/eliza.html

Weizenbaum started out at MIT with what he thought would be an abstract interest in
programs that used simple programming tricks to answer questions posed in English. He
put together a working version that the hackers had fun with, and which seemed to be a
step, albeit a very primitive first step, toward a genuine language-understanding program.
The hackers enjoyed the pretense that they were "conversing" with a computer,
even though they knew that the program was parsing very simple sentences
with no real underlying understanding of their meaning.

While he was working on a more elaborate question-answering program, with greater
sentence-parsing capabilities than his first version, Weizenbaum met a psychiatrist from
Stanford named Kenneth Colby, who was interested in using computers to model mental
states and mental disorders in order to find clues to more effective forms of
psychotherapy. Colby helped Weizenbaum create a special-case version of ELIZA,
known as DOCTOR. In the introduction of his 1976 book, Weizenbaum described how
this most successful and disturbing version of ELIZA came into being, and conveyed a
little of the flavor of the "ELIZA effect":

The work was done in the period 1964-1966, and it was reported in the computer-science literature in
January 1966 and August 1967. To summarize it briefly, I composed a computer program with which one
could "converse" in English. The human conversationalist partner would type his portion of the
conversation on a typewriter connected to a computer, and the computer, under control of my program,
would analyze the message that had been transmitted to it, compose a response to it in English, and cause
the response to be typed on the computer's typewriter.

I chose the name ELIZA for the language analysis program because, like the Eliza of Pygmalion fame, it
could be taught to "speak" increasingly well. . . .

For my first experiment, I gave ELIZA a script designed to permit it to play (I really should say parody) the
role of a Rogerian psychotherapist engaged in an initial interview with a patient. The Rogerian
psychotherapist is relatively easy to imitate because much of his technique consists of drawing his patient
out by reflecting the statements back to him. The following conversation betwen a young lady and ELIZA
playing doctor illustrates both the Rogerian technique of encouraging a patient to keep talking and the
operation of the computer program ELIZA. The first to "speak" is the young lady. The computer's
responses are printed entirely in capitals.

Men are all alike.

IN WHAT WAY

They're always bugging us about something or other.

CAN YOU THINK OF A SPECIFIC EXAMPLE

Well, my boyfriend made me come here.

YOUR BOYFRIEND MADE YOU COME HERE

He says I'm depressed much of the time.

I'M SORRY TO HEAR YOU ARE DEPRESSED

 119

The first thing that alarmed Weizenbaum was the way people who knew enough about
computers to know better began to get drawn into serious conversations with it about
their lives! Even his own secretary had fallen into the habit of conversing with it! People
were asking to be left alone with the machine to spill out their most intimate thoughts!
Weizenbaum was so horrified that he started rethinking everything he believed. But that
was just a symptom of how gullible we all might be to what he knew was just a clever
hack.

More serious, to Weizenbaum's way of thinking, was the fact that Colby and
others thought that "computer-therapists" might soon be applied to some form
of "automatic psychotherapy" -- an idea Weizenbaum considered "obscene."
Weizenbaum's ethical debate, although it originated in the same laboratory that spawned
so many important innovations in AI and computer systems design, will not be discussed
at length here. His books and the ideas expressed by Weizenbaum and his critics deserve
consideration on their own accord.

David Rodman was one of those who spent time conversing with ELIZA when it was still
in its infancy, while he was employed as a research assistant in the same laboratory.
Some of David's earliest LISP hacks were attempts to emulate ELIZA. And although
Weizenbaum didn't know it, some of David's early acid trips were spent in "conversation"
with ELIZA.

While Minsky was a kind of patron saint of hackdom, and Greenblatt was an unkempt
hero, and McCarthy had his own brand of AI prodigies, Weizenbaum was not very fond
of some of the hackers who shared his working quarters, to put it mildly. In his book, he
mounted a direct assault on the inner circle of hard-core hackers:

Wherever computer centers have become established, that is to say, in countless places in the United States,
as well as in virtually all other industrial regions of the world, bright young men of disheveled appearance,
often with sunken glowing eyes, can be seen sitting at computer consoles, their arms tensed waiting to fire,
their fingers, already poised to strike at the buttons and keys on which their attention seems to be as riveted
as a gambler's on the rolling dice. When not so transfixed, they often sit at tables strewn with computer
printouts over which they pore like possessed students of a cabalistic text. They work until they drop,
twenty, thirty hours at a time. Their food, if they arrange it, is brought to them: coffee, cokes, sandwiches.
If possible they sleep on cots near the computer. But only for a few hours -- then back to the console or the
printouts. Their rumpled clothes, their unwashed and unshaven faces, and their uncombed hair all testify
that they are oblivious to their bodies and to the world in which they move. They exist, at least when so
engaged, only through and for computers. These are computer bums, compulsive programmers. They are
an international phenomenon.
Weizenbaum attacked those particularly obsessed specimens among the hackers he called
"compulsive programmers" on several grounds besides their unorthodox appearance and
dietary habits. But he also took care to note (parenthetically) that "(It has to be said that
not all hackers are pathologically compulsive programmers. Indeed, were it not for the
often, in its own terms, highly creative labor of people who proudly claim the title
'hacker,' few of today's sophisticated time-sharing systems, computer language
translators, computer graphics systems, etc., would exist.)"

 120

The compulsive programmers, according to Weizenbaum's criteria, spend far more time
playing with their computers than using them to solve the problems they are being paid to
solve. They are often superb technicians, he admitted, but he also charged that they are
very often so sloppy when they document the programs they have written that other
programmers, when they later have to use or modify them, are unable to make sense of
what they did.

The obsessed hacker's motivation is not problem-solving, but the raw thrill of interacting
with the computer, and that, Weizenbaum charged, was a sign, not of prodigy, but of
pathology. "The compulsive programmer," he insisted, "is merely the proverbial mad
scientist who has been given a theater, the computer, in which he can, and does, play out
his fantasies."

Minsky and others rose to the hackers' defense, pointing out that they should be
considered with some of the same suspension of normal standards that society reserves
for artists. And just as it is true that a hollow-eyed dropout is not a particularly pleasant
sight, and perhaps there is truth to the charge that many of them find it easier to relate to
the machine than to other people; isn't there also a chance that they are being unfairly
maligned?

Hackers would rather be judged by their creations than by their behavior, and nobody
cares about van Gogh's habits of dressing, or whether Mozart went without sleep for days
at a time. Minsky deplored public stereotyping and scapegoating of people who happen to
be passionate about programming instead of violin playing or basketball or making
money.

Weizenbaum was undoubtedly right about the temptation to use computers for
stimulating fantasies of omnipotence over fantastically controllable worlds. The
value to society of obsessively converting sophisticated computers into toys and games
has been a matter of extended debate. Nobody would deny that hackers love fantasy. That
these fantasies can be fascinating to nonhackers as well has been an inside secret for
years, ever since the hack known as "Dwarf Hall of Mists, XYZZY and the Infamous
Repository," created by Will Crowther and Don Woods, now more commonly known as
"Adventure," surfaced at MAC and SAIL.

After they introduce you to ELIZA, "Adventure" is what hackers show you when you ask
them why they are addicted to computing. They hit a few keys, sit you down in front of a
monitor and a keyboard, and come back in a few hours to forcibly unplug you. Even in
this age of more dazzling computer-generated effects, the sheer temptation to explore the
computer-stored fantasy remains strong.

After you are told you can give simple instructions like "drop sword," "go up," "cross
bridge," the following words, still famous at every computer center, appear on the screen:
"You are standing at the end of a road before a small brick building. Around you is a
forest. A small stream flows out of the building and down a gully . . ."

 121

http://www.winternet.com/%7Eradams/adventure/history.html
http://tjwww.stanford.edu/adventure/
http://tjwww.stanford.edu/adventure/

Without warning, and without any high-resolution graphics or sound effects, you are
drawn into Colossal Cave, where a labyrinth of chambers containing treasure, dwarfs,
magic, strategy and dangers awaits your command. It can take weeks to finish a game.
More than one commentator has used "Adventure" as a metaphor for hacking: This is a
complex pathway hidden inside the computer, and it is up to the hacker to use all his or
her skill, knowledge, and magic to find the treasure and bring it back.

A high regard for programming skill, a mischievous bent, and a predilection for
playing games seemed to accompany the spread of the hacker culture, along
with Spacewar and Adventure. Weizenbaum might have been the first, but he wasn't
the last computer scientist to voice concern over the possible dangerous side effects of
this way of thinking.

One famous debate erupted at Stanford, years after Weizenbaum's original diatribe.
Stanford has been a West Coast headquarters for hackers since the mid-1960s, although
significant outposts have long existed at UC Berkeley, Los Angeles, San Diego, and
Santa Barbara, at Stanford Research Institute, and even at Rand before the Ellsberg affair.
But LOTS -- Stanford's Low Overhead Time-sharing System -- is where the
undergraduate hackers hang out. It was here that another, more recent major hacker
controversy surfaced, in the form of a dialogue on the medium that was known by the
mid-1970s as "electronic mail." It was the option of everybody on LOTS to post and read
messages, either to specific individuals or groups, or to anyone who was interested, via
the "bulletin board" sector of the mail program. People could read and add messages
whenever they were logged onto the computer.

Sometimes serious issues were discussed in this manner, and sometimes long
impassioned graffiti (known as "flames") were launched against a variety of targets
ranging from the profound to the utterly inconsequential. Sometimes serious issues were
disguised as flames, and vice versa. Branches and subbranches of such exchanges could
continue for months, making up a kind of electronically embedded ad hoc literature. That
was where the "hacker papers" came from.

This particular counterpoint of flames on the subject of hackers, written by hackers, came
to the attention of the "real world" because a Stanford professor of psychology named
Philip Zimbardo discovered the dialogue and published it, with commentary, in
Psychology Today magazine in 1980, twenty years after Rodman met Greenblatt et al. in
Building 26.

The exchange of flames began with a hacker's version of Luther's 95 theses, nailed,
metaphorically, to the door of the electronic temple. A self-sworn ex-hacker who called
himself "G. Gandalf" (the tradition is to give oneself a pseudonym on the public mail
channel, like the "handles" used in the citizen's-band radio subculture) posted a bulletin
entitled "Essay on Hacking," that said, among other things:

In the middle of Stanford University there is a large concrete-and-glass building filled with computer
terminals. When one enters this building through the glass doors, one steps into a different culture. Fifty

 122

http://www-ctl.stanford.edu/lectures/awtts95/zimbardo.html

people stare at terminal screens. Fifty faces connected to fifty bodies connected to 50 sets of fingers that
pound on 50 keyboards ultimately linked to a computer. . . . These are the members of a subculture so
foreign to most outsiders that it not only walls itself off but is walled off, in turn, by those who cannot
understand it. The wall is built from both sides at once.

These people deserve a description. In very few ways do they seem average. First they are all bright, so
bright, in fact, that they experienced social problems even before they became interested in computers.
Second, they are self-contained. Their entire social existence usually centers around one another. . . . Third,
all aspects of their existence reinforce one another. They go to school in order to learn about computers,
they work at jobs in programming and computer maintenance, and they lead their social lives with hackers.
Academically, socially, and in the world of cash, computers are the focus of their existence.

As might well be expected, this diatribe did not go unanswered. As usual, opinion was
heatedly divided. Some -- a minority, of course -- agreed wholeheartedly with the heresy.
Hackers as a group harbor a love for heresy, iconoclasm, and debating whether
something is or is not heretical, even if -- especially if -- the topic relates to hackers
themselves.

Of those who rebutted Gandalf, the one known as "A. Anonymous" offered the West
Coast version of the "Minsky defense":

We are dealing with an infinitely malleable tool. People who choose to develop and use that tool, whether
for work, play, or both, have that choice and cannot be denied it. A person who chooses to be a musician
must devote hours and hours to gain adequate expertise. But would you consider the computer hacker any
less creative than such a person? I certainly wouldn't. The computer serves not only as a workhorse, but
also as an easel for exercising one's creative abilities. Therefore, in my opinion, the hacker has not limited
myself at all. Rather, he has expanded his intellectual horizon because now he has the infinite tool.

As for the charge that it disrupts one's social life, I would tend to agree with this to a point. But it depends
on how controlled the individual is. At any time, he can withdraw to a more normal schedule. Why doesn't
he? The reason is obvious. The infinite tool that knows few boundaries is accessible to a much higher
degree, and thus he can devote more time to it. Why is this wrong? I think it is definitely a bonus, since the
usual restraints of 9-to-5 are eliminated and the person is allowed to expand beyond boundaries to do what
he wants.

Now we come to the human versus the machine factor. Gandalf stresses the necessity of human interaction
and the inherent evil of the machine. Would you stress the evil of instruments in an orchestra, or the
instruments in a laboratory, or the typewriter of an author? All of these occupations demand extraordinary
amounts of time for excellence. But I see no greater human interaction in these fields than in computers. I
feel that people who disparage computers for a seemingly decreased human interaction are not at all
familiar with the true import of the computer. Not only is it the infinite tool, it is also an extremely fluid
medium of communication.

The publication of the controversy set off an avalanche of electronic mail over the
ARPAnet and at local computer centers. The hacker debates had spread to the amateur
"bulletin board computers" by 1983, when the movie WarGames and the real-life young
computer-systems "crackers" who subsequently surfaced brought the word hacker to
widespread public attention, in this newer, unpleasantly restricted sense.

One of the oldest rules of the game is "thou shalt not do unto ordinary computer users
what thou hast done to other hackers." Almost all of the old-time hackers deplore what

 123

the young computer trespassers and crashers did -- "dark-side hacking" -- although the
anarchist minority still insist that the ultimate freedom is the freedom to figure out how
the communication-computing system works, and declare that the burden of protection
against trespassing ought to be on the system programmer who has files to protect, not on
the explorer who might tap in during some midnight jaunt through the network.

Real computer criminals aside, the concern of the noncomputing public over
the hacker controversy does seem a bit strange. After all, these people aren't
accused of mayhem or arson -- just of being very smart when it comes to knowing how to
operate computers. The capacity for scapegoating is very high in a culture where most
people have been led to believe that computers are either smarter than they are or too
complicated for ordinary people to use. James Milojkovic, an associate of Zimbardo's at
Stanford who was writing his psychology doctoral thesis about the cognitive and
motivational impact of the microcomputer, came to the hackers' defense.

In a 1982 interview, Milojkovic said he spent plenty of time around hackers, and saw
nothing pathological about what they were doing. In regard to all the public concern
about what threat (noncriminal) hackers might pose, he said "clearly it's nonsense. I think
what's happening is that there's some sort of fear that maybe what they're doing with the
machines is aimed against us." Like "A. Anonymous," Milojkovic sees nothing wrong
with a little compulsiveness in regard to learning: "I can think of nothing more natural
than to fall in love with knowledge," he said, "and hackers are so deeply in love with
knowledge of the computers that they're just swept off their feet."

A case in point: David Rodman. When last we saw him, lurking in the background of the
MacHack versus Dreyfus match, an acidhead teenage dropout hacker, he was almost
certainly headed for a sunken-eyed, computer-nut future. In fact, quite the opposite
turned out to be the case. He was doing quite well for himself, even at sixteen, as a
freelance programmer. He got some offers to set up computer systems for social service
bureaucrats, so he moved to D.C. in his early twenties.

By 1972, David found himself up to his ears in the same problem that plagued Herman
Hollerith -- handling huge data bases. In fact, designing probes of the U.S. Census
information, now stored on magnetic tape, was David's specialty. He moved back to
Cambridge to work for a software think tank, did more than a few jobs for agencies he
doesn't want to name, and in 1978 he decided it was time to turn what he knew into a
marketable product.

David Rodman ended up creating and marketing a tool for managing data bases, a
program that he designed to be usable by microcomputer owners. Thus he was one of
many formerly sequestered programmers who joined the software business at the
beginning of the consumer computing boom, when it was still possible for a programmer-
turned-entrepreneur to go far and fast. A couple of other, older, MIT hackers put out
VisiCalc in 1978 -- the "electronic spreadsheet" that allows users to ask "what-if"
questions about numerical data -- and millions of people who had never touched a

 124

keyboard before began tackling problems that had formerly been reserved for mainframe
programmers.

I first met David Rodman in the early 1980s, because of his strange grin. I knew his name
because it was stamped onto the plastic card that was pinned to his lapel. His rumpled
suit and convention badge didn't exactly mark him as a high roller, but his smile
projected a self-assurance of almost demented intensity. We were standing in the
magnificent casino that is conveniently located between the Hilton lobby and the indoor
walkway to the Las Vegas convention center. Upward of fifty thousand people attending
Comdex, a national convention for the microcomputer industry, trooped through the
casino every day. The arriving computerists didn't mind spending their money, and they
were an amiable group. A lot of them seemed downright happy. David Rodman, for
example, was still smiling after he turned away from the craps table.

"Why do you look so damn cheerful?" I couldn't help inquiring.

"I was wrong about the dice," he replied, "but I'm too far ahead to complain."

"Craps?"

"Data management systems."

"Not my game," I said. "What's the product?"

"About forty pages of zeroes and ones."

"The market pretty good for zeroes and ones?"

"The software market, as of today, is nothing less than astounding."

Considering the fact that he had just dropped a hundred dollars in less than ten seconds,
he must have been doing very well indeed to be making money at the convention faster
than he was losing it in the casino. The crooked grin on his face, a variant of the slightly
demented expression that attracted my attention at the craps table, made it clear that he
didn't mind talking about his business.

We got to know each other, and eventually I learned about what he did before he was the
prime mover and chief asset of a software corporation. There was no sign that he was an
ex-MAC hacker, ex-acidhead, ex-consultant to unnamed intelligence agencies. He was
freckled, balding, and what hair he had left was short and neatly combed. He was clean-
shaven, and his attire wouldn't have been out of place on an accountant or a widget
salesman. But in his heart, he was still a hacker, and an evangelistic one at that.

By the time we got through the story to the point of talking about his current
product, it was clear that he had not turned his back on the programming
priesthood, but was merely interested in expanding it, to his own profit, by

 125

giving millions of people a direct taste of the same experience that hooked him
back in Building 26.

"I remember the way I learned jazz improvisation, and how that affected my
programming. When I was first learning, I said to myself, 'Here I am in this chord, and
I've got to get to that chord.' The transition, the way you hop from note to note or pass a
variable from procedure to procedure -- that's where the individual style of the musician
or the programmer comes in. Nothing happened, a lot of the time. But when my teacher
showed me something I hadn't realized before, pointed out that a certain note would work
in a way I wasn't expecting, for instance, I would get a little shock of understanding, and
the next time I came to a transition I'd loosen my grip on my conscious effort and try to
recapture that shock, and there would be the note or the line of code I needed.

"Now I think of the person sitting in front of his computer with a keyboard. What this
person needs is a profit and loss statement, or information about sales accounts, or a
breakdown of stock in inventory. What I need to do is to create an environment for that
person, structured in such a way that it is natural and easy to translate his or her desire to
the actual P & L statement, or a sales report or inventory account, and even show them
how they can improvise along the way. Not only should this tool work better than their
old pencil and paper and calculator and filing cabinet -- it should also give the user one of
those pleasurable little shocks. I want my file management system to enable that
person to become a jazz musician.

"A really good program designer makes an artist out of the person who uses the
computer, by creating a world that puts them in the position of 'Here's the
keyboard, and here's the screen. Now once you learn a few rudimentary
computer skills, you can be a superstar.' "

It was an unexpected, but perhaps not inappropriate philosophy to hear from a LISP
hacker turned software vendor. He has yet to carve out an empire like Bill Gates or Steve
Wozniak, but David Rodman knows that most of the potential consumers of
microcomputer software are still in the earliest stages of their progression toward
obsessive software intoxication. David sees a niche for people like himself as toolmakers
and trailblazers, leading the way for the emergence of an entire population of
programming artists. He wants programming to become a performing art.

But long before hackers started thinking about using their computers for intellectual
improvisation -- before David Rodman was born, in fact -- a dreamer out in California
was designing his own kind of mind amplifier.

 126

Chapter Nine:
The Loneliness of a Long-Distance Thinker
Harry Truman was President and Sputnik was a word that only Russian language experts
knew when Doug Engelbart first thought about displaying words and images on radar
screens, storing them in computers, and manipulating them with levers and buttons and
keyboards. For over thirty years, Engelbart has been trying to hasten what he believes
will be the biggest step in cultural evolution since the invention of the printing press. To
hear him tell it today, both the computer establishment and the computer revolutionaries
still fail to understand that the art and power of using a computer as a mind amplifier are
not in how the amplifier works but in what the amplified minds are able to accomplish.

At the end of the summer of 1945, just after the surrender of Japan, Engelbart was a
twenty-year-old American naval radar technician, waiting for his ship home from the
Philippines. One muggy day, he wandered into a Red Cross library that was built up on
stilts, like a native hut.

Vannevar Bush

"It was quiet and cool and airy inside, with lots of polished bamboo and books. That was
where I ran across that article by Vannevar Bush," Engelbart recalls. More than three
decades later, he still fondly remembers the room where he first encountered the dream
that has dominated most of his life. At that time, the news of Hiroshima was still fresh
and searing. He found himself wondering whether the same inventiveness that produced
nuclear bombs might be used to prevent such destruction in the future. Engelbart started
designing computer-based problem-solving systems in 1951. He hasn't stopped yet.

The earliest and one of the clearest articulations of the idea that information
processing technology could be used to amplify human memory and thinking
was the one Doug found that day in 1945, in an article entitled "As We May
Think," published toward the end of the war in The Atlantic Monthly. The
author was the highest-ranking scientific administrator in the U.S. war effort,
Vannevar Bush.

Bush, the son and grandson of Yankee seafarers, was the same mathematician who had
constructed analog computers at MIT in the 1930s. He was also in charge of over 6000
U.S. scientists during World War II, as director of the Office of Research and
Development. His two most important goals were starting the Manhattan project and
finding a means to stop German bombing, goals that both directly hastened the invention
of computing machinery. Ironically, Bush didn't mention the potential of the early
computers as information-handling devices when he wrote his article. But he did present
an idea that was to bear fruit many years later -- a description of a science-fiction-like
general-purpose tool to help us keep track of what we know.

 127

http://www.isg.sfu.ca/%7Educhier/misc/vbush/
http://www.isg.sfu.ca/%7Educhier/misc/vbush/

Looking toward the postwar world, Bush foresaw that recent breakthroughs in
science and technology were going to create problems of their own. With all
these scientists producing all this knowledge at an unprecedented rate, how was
anyone to keep track of it all? How would this rapidly expanding body of
knowledge benefit anybody if nobody knew how to get the information they
needed?

"The summation of human experience is being expanded at a prodigious rate,
and the means we use for threading through the consequent maze to the
momentarily important item is the same as was used in the days of square-
rigged ships," Bush wrote.

He urged men of science to turn their efforts to making the increasingly unwieldy
accumulation of human knowledge more accessible to individuals.

But the future technology that Bush foresaw extended beyond the borders of science to
the ordinary citizenry. The day was coming when not only scientists but ordinary citizens
would be required to navigate through ever-more complicated realms of information. In
the pages of the Atlantic, Bush proposed that a certain device should be developed, a
device to improve the quality of human thinking. Because one of its functions was to
extend human memory, Bush called his hypothetical machine a memex. But Bush was
one of the first to see that rapid access to large amounts of information could serve as
much more than a simple extension of memory. Although he described it in terms of the
primitive information technologies of the 1940s, the memex was functionally similar to
what is now known as the personal computer -- and more.

Some ideas are like seeds. Or viruses. If they are in the air at the right time, they will
infect exactly those people who are most susceptible to putting their lives in the idea's
service. The notion of a knowledge-extending technology was one of those ideas. Fifteen
years after Bush published his Atlantic article, J. C. R. Licklider published his article
about making computers into a communication medium. But only five years after Bush's
article, Doug Engelbart, infected by the idea of creating a mind-extending tool, incubated
his own ideas about how to use machines to augment human intelligence.

After the war, with an electrical engineering degree and his experience with radar,
Engelbart found a job at Ames Laboratory in California, working on contracts for one of
NASA's ancestors, the National Advisory Committee on Aeronautics. After a couple of
years at Ames, he asked a woman he met there to marry him.

"The Monday after we got engaged," Engelbart remembers today, "I was driving to work
when I was hit with the shocking realization that I no longer had any goals. As a kid
who had grown up in the depression, I was imbued with three goals -- get an
education, get a steady job, get married. Now I had achieved them. Nothing
was left."

 128

http://www.rheingold.com/texts/tft/7.html

Doug Engelbart tends to think seriously about things when he finds something worth
thinking about. And his own life is certainly not exempt from being an object of serious
thinking. While he drove along a two-lane paved road that is now a freeway, he
reckoned that he had about five and a half million working minutes remaining
in his life. What value did he really want from that investment? At the age of
twenty-five, in December of 1950, he started to think about what new goals he might set
for himself.

"I dismissed money as a goal fairly early in the decision process. The way I grew up, if
you had enough money to get by, that was okay; I never knew anybody who was rich.
But by 1950, it looked to me like the world was changing so fast, and our problems were
getting so much bigger, that I decided to look for a goal in life that would have the most
payoff for mankind."

For several months after he made the decision to commit himself to an appropriately
humanitarian enterprise, Doug searched for the right one. He contemplated his situation
and skills and thought about the various kinds of crusades he might join. With his radar
training, and what he was beginning to learn about computers, Engelbart was also
looking for a cause that wouldn't require him to retread his engineering education, or
move too far away from his new home. He had a challenging job and a pleasant drive to
work. Santa Clara Valley was still the world's largest prune orchard, and the electronics
industry had only recently moved out of a couple of garages in Palo Alto. The drive gave
him time to think.

Ultimately, the kinds of crusades that appealed to him still didn't satisfy his needs: there
weren't clear-cut ways of organizing one's thoughts to run a crusade. He was an engineer,
not a political organizer, and the world was becoming too complicated for anything but
the most well-organized crusades. Suddenly, Doug recognized that he was running into
the same fundamental issue over and over again.

Engelbart realized, as had Vannevar Bush, that humankind was moving into an
era in which the complexity and urgency of global problems were surpassing
time-honored tools for dealing with problems. He also began to understand, as did
Licklider a few years later, that handling the informational by-products of problem-
solving had itself become the key to all the other problems. The most important task
no longer lay in devising new ways to expand our accumulation of knowledge,
but in knowing where to look for the answers that were already stored
somewhere. "If you can improve our capacity to deal with complicated problems,
you've made a significant impact on helping humankind. That was the kind of payoff I
wanted, so that's what I set out to do."

Although many of the details took decades to work out, the main elements of what he
wanted to achieve came to him all at once: "When I first heard about computers, I
understood, from my radar experience, that if these machines can show you information
on punchcards and printouts on paper, they could write or draw that information on a

 129

screen. When I saw the connection between a cathode-ray screen, an
information processor, and a medium for representing symbols to a person, it
all tumbled together in about half an hour.

"I started sketching a system in which computers draw symbols on the screen
for you, and you can steer it through different domains with knobs and levers
and transducers. I was designing all kinds of things you might want to do if you
had a system like the one Vannevar Bush had suggested -- how to expand it to a
theater-like environment, for example, where you could sit with a colleague
and exchange information. God! Think of how that would let you cut loose in
solving problems!"

After thirty often-frustrating years of pursuing a dream that the computer industry has
long ignored, Doug Engelbart still can't keep the excitement out of his soft voice and the
faraway look out of his eyes when he talks about the prospects he foresaw at twenty-five,
and has pursued ever since. But he's not sure whether today's generation of computerists,
with all their fancy hardware, are getting any closer to the real issues.

Although history has proved him to be an accurate visionary in many ways, but perhaps a
less-than-ideal manager of projects and people, and even his friends use the word
"stubborn" in describing his attitudes about his theories, Doug Engelbart still wields the
power of a quiet person. The magnetism of his long-envisioned goal is still strong for
him, so strong that a good deal of it still radiates when he talks about it. In 1971, his
friend Nilo Lindgren described him in Innovation magazine:

When he smiles, his face is wistful and boyish, but once the energy of his forward motion is halted and he
stops to ponder, his pale blue eyes seem to express sadness or loneliness. Doug Engelbart's voice, as he
greets you, is low and soft, as though muted from having traveled a long distance, as though his words have
been attenuated by layers of meditation. There is something diffident yet warm about the man, something
gentle yet stubborn in his nature that wins respect.

"He reminds me of Moses parting the Red Sea," is the way Alan Kay describes
Engelbart's gentle charisma. Of course, the original Moses never set foot in the promised
Land. And he never had the reputation of being an easy man to work with.

In 1951, Engelbart quit his job at Ames and went to graduate school at the University of
California at Berkeley, where one of the first von Neumann architecture computers was
being built. That was when he began to notice that not only didn't people know what he
was talking about, but some presumably "objective" scientists were overly hostile. He
started saying the wrong things to people who could affect his career, things that simply
sounded strange to the other electrical engineers.

"When we get the computer built," this young engineer kept asking, "would it be okay if I
use it to teach people? Could I hook it up to a keyboard and get a person to interact with
the computer? Maybe teach the person typing?" The psychology people thought it was

 130

http://www.rheingold.com/texts/tft/1.html1

great, but computers were hardly their department. The engineering people said, "There's
no way that kind of idea is going to fly."

The interactive stuff was so wild that the people who knew about computers
didn't want to hear about it. Back then, you didn't interact with a computer, even if
you were a programmer. You gave it your question, in the form of a box of punched
cards, and if you had worked very hard at stating the question correctly, you got your
answer. Computers weren't meant for direct interaction. And this idea of using
them to help people learn was downright blasphemy.

After he got his doctorate, Engelbart came to another one of those internally triggered
decision points in his life that his dream continued to bring his way. Nobody in his
department wanted to listen to talk about building a better way to solve complex
problems, and he felt that he would have to construct a whole new academic discipline
before he could begin the research he really wanted to do. The university, Engelbart
decided, was a place to get his journeyman's card, but not a place to follow his vision.

Thus, young Doctor Engelbart went to the commercial world, looking for an opportunity
to develop electronic systems that would eventually help him do what he wanted in terms
of augmenting human intellect, and would pay his room and board as he contributed to
the development of marketable devices as well. Engelbart brought some of his ideas to a
progressive young company down the road in Palo Alto. For a change, here were some
people looking to the future. Not too much more than a decade out of electrical
engineering school themselves, Bill Hewlett, David Packard, and Barney Oliver (their
head of research and development) were enthusiastic about Doug's proposal. A deal was
offered. Engelbart drove home, elated. On the way home, in typical Engelbart fashion,
Doug started thinking about it.

"I pulled the car over to the first phone booth and called Barney Oliver and said that I just
wanted to check my assumption that they saw a future in digital technology and
computers -- which I thought was a natural path for their electronic instrumentation
company to follow. I had assumed that they knew that the ideas I proposed to them that
afternoon were only a bridge to digital electronics. And Barney replied that no, they
didn't have any plans for getting into computers. So I said 'Well, that's a shame, because I
guess it cools the deal. I have to go the digital route to pursue the rest of what I want to
do.'"

"So my deal with Hewlett-Packard was called off," Doug says, wrapping up the
reminiscence with one of his famous wry smiles, adding: "the last time I looked they
were number five in the world of computers."

Doug kept looking for the right institutional base. In October, 1957, the very month of
Sputnik, he received an offer from an organization in Menlo Park, "across the creek"
from Palo Alto, then known as the Stanford Research Institute. They were interested in
conducting research into scientific, military, and commercial applications of computers.
One of the people who interviewed him for the SRI job had been a year or two ahead of

 131

http://www.hp.com/abouthp/history.html
http://www.sri.com/

Doug in the Ph.D. program at Berkeley, and Doug told him about his ideas of getting
computers to interact with people, in order to augment their intellect.

"How many people have you already told about that?" he asked Doug.

"None, you're the first one I've told," said Doug.

"Good. Now don't tell anybody else. It will sound too crazy. It will prejudice people
against you."

So Doug kept quiet about it. For about a year and a half, he earned his living and learned
the ropes in the think-tank business and thought about putting his ideas into a written
proposal. Then he told his superiors that he was willing to work hard to pay his way at
the institute but he really had to have a framework to cultivate his idea -- an augmentation
laboratory where people and machines could experiment with new ways of creating and
sharing knowledge, or at least a project to describe exactly what an augmentation
laboratory might be. There was some friction, but eventually he was given the go-ahead.

The U.S. Air Force Office of Scientific Research, ever vigilant for new knowledge about
how humans operate machines, provided a small grant. Doug finally got what he wanted -
- the freedom to explore a field in which he still had no colleagues. "It was lonely work,
not having anybody to bounce the ideas off, but I finally got it written down in a paper I
finished in 1962 and published in 1963."

Total silence from the community greeted the announcement of the conceptual
framework Engelbart had thought about and worked to articulate for over a decade. But
the few people who happened to be listening happened to be the right people. Bob
Taylor, a young fellow at NASA who was one of the bright technological vanguard of the
post-Sputnik era, one of the new breed of research funders who didn't fear innovation as a
matter of reflex, pushed some of the earliest funding of Doug's project.

Fortunately, by that time another one of the few people who were able to understand
Engelbart's vision, J. C. R. Licklider, was moving ahead with his ARPA funding blitz. As
a result of Licklider's support, time-sharing was coming along rapidly. By the early
sixties, some of the low-level hardware and software tools to build Doug's dreamed-of
high-level methodological and conceptual structures were being tested. Licklider and
Taylor thought Engelbart was just the kind of forward-thing researcher they
wanted to recruit for the task of finding new and powerful uses for the
computational tools their research teams were creating. They were particularly
interested in the same paper of Doug's that the mainstream of computer science had
chosen to ignore.

The paper that attracted the attention of ARPA and met such a thundering silence from
the wider community of computer theorists in 1963 was entitled "A Conceptual
Framework for the Augmentation of Man's Intellect." In its introduction, Engelbart

 132

http://www.rheingold.com/texts/tft/10.html
http://www.rheingold.com/texts/tft/10.html

presented the manifesto by which he meant to launch an entire new field of human
knowledge:

By "augmenting man's intellect" we mean increasing the capability of a man to approach a complex
problem situation, gain comprehension to suit his particular needs, and to derive solutions to problems.
Increased capability in this respect is taken to mean a mixture of the following: that comprehension can be
gained more quickly; that better comprehension can be gained; that a useful degree of comprehension can
be gained where previously the situation was too complex; that solutions can be produced more quickly;
that better solutions can be produced; that solutions can be found where previously the human could find
none. And by "complex situations" we include the professional problems of diplomats, executives, social
scientists, life scientists, attorneys, designers -- whether the problem situation exists for twenty minutes or
twenty years. We do not speak of isolated clever tricks that help in particular situations. We refer to a way
of life in an integrated domain where hunches, cut-and-try, intangibles, and the human "feel for a situation"
usefully coexist with powerful concepts, streamlined technology and notation, sophisticated methods, and
high-powered electronic aids.
It was no accident that "hunches, cut-and-try, intangibles," were listed early and "high-
powered electronic aids" was listed last. Although he knew that widespread access to
digital computers was the only means by which our society could make use of an
augmented knowledge system, Engelbart also understood that the hardware was a low-
level component of the total system he meant to augment. Human intellect uses tools, but
the power of the human mind is not itself limited to the tools the human brain
automatically provides.

Our culture has given us sophisticated procedures for dealing with problems, procedures
that augment our innate capacity for learning new things by giving us the benefit of what
others before us have learned. These ways of doing things are the software that creates
civilization. A member of a preliterate culture of the remote New Guinea highlands, for
example, possesses the same innate mental capabilities as a Western city-dweller, but
something else must be added to the repertoire of what that New Guinea highlander
knows how to do before he can drive a car, check out a book from a library, or write a
letter.

The "something extra" Engelbart emphasized, is not a property of the tool. It isn't the
nervous system of the individual that separates the "civilized" person from the
"primitive." To certain cultures that we deem primitive, the most sophisticated urbanite is
decidedly lacking in the necessary survival skills. If the cultural situation of the previous
paragraph were reversed, the same ignorance on the part of the displaced person would
be evident: If you drop a lifelong New Yorker into the New Guinea Highlands, don't
expect him or her to know how to build a grass shelter or what to do in a tropical storm.
Somebody who knows what to do in those situations has to teach survival skills to the
newcomer, thus augmenting his or her innate capacities. It is here that the original
augmentation of human intellect comes in -- the tools and procedures that
cultures make available to individuals:

Our culture has evolved means for us to organize and utilize our basic capabilities so that we can
comprehend truly complex situations and accomplish the processes of devising and implementing problem
solutions. The ways in which human capabilities are thus extended are here called augmentation means,
and we define the four basic classes of them:

 133

1. Artifacts -- physical objects designed to provide for human comfort, the manipulation of things or
materials, and the manipulation of symbols.

2. Language -- the way in which the individual classifies the picture of his world into the concepts that his
mind uses to model that world, and the symbols that he attaches to those concepts and uses in consciously
manipulating the concepts ("thinking").

3. Methodology -- the methods, procedures, and strategies with which an individual organizes his goal-
centered (problem-solving) activity.

4. Training -- the conditioning needed by the individual to bring his skills in using augmentation means 1,
2, and 3 to the point where they are operationally effective.

The system we wish to improve can thus be visualized as comprising a trained human being together with
his artifacts, language, and methodology. The explicit new system we contemplate will involve as artifacts
computers and computer-controlled information-storage, information-handling, and information-display
devices. The aspects of the conceptual framework that are discussed here are primarily those relating to
those relating to the individual's ability to make significant use of such equipment in an integrated system.

The biggest difference between the citizen of preliterate culture and the
industrial-world dweller who can perform long division or dial a telephone is
not in the brain's "hardware" -- the nervous system of the highlander or the
urbanite -- but in the thinking tools given by the culture. Reading, writing,
surviving in a jungle or a city, are examples of culturally transmitted human
software. The hypothetical transplanted native, Engelbart points out, can move
step by step through an organized program by which he or she may learn to
drive a car or check out a book from a library.

How do we adapt to new ways of thinking? Engelbart used the metaphor of a toolkit, and
proposed that we organize our intellectual problem-solving tools in a hierarchy:

It is likely that each individual develops a certain repertory of process capabilities from which he selects
and adapts those that will compose the processes that he executes. This repertory is like a toolkit. Just as the
mechanic must know what his tools can do and how to use them, so the intellectual worker must know the
capabilities of his tools and have suitable methods, strategies, and rules of thumb for making use of them.
All of the process capabilities in the individual's repertory rest ultimately on basic capabilities within him
or his artifacts, and the entire repertory represents an integrated, hierarchical structure (which we often call
the repertory hierarchy).

As an example, Engelbart offered the process of issuing a memorandum -- a task that
involves putting specific information in a formal package and distributing it to other
people. The reason for writing the memo, the memowriter's role in the organization, the
intended audience, the importance of the subject matter of the memo to the organization's
goals -- these are the higher level components of the hierarchy.

At an intermediate level are the skills of marshaling facts, soliciting opinions, thinking,
formulating ideas, weighing alternatives, forecasting, making judgments, that go into
framing the memo, and all the communication skills that go into putting the memo into

 134

form. Toward the bottom of the hierarchy are the artifacts used to prepare the memo and
the medium by which it is communicated -- typewriter, pencil, paper, interoffice mail.

Engelbart proposed a hypothetical method for boosting the effectiveness of the
whole system by introducing an innovative technology into a relatively low
level of the hierarchy. "Suppose you had a new writing machine," he wrote, "a
high-speed electric typewriter with some very special features." In a few words,
he proceeded to describe what is known today as a "word processor."

What might be the effect of such a machine on the memo-writing process? Engelbart's
1963 speculations sound like advertising copy for word processing systems of the 1980s -
- and more:

This hypothetical writing machine permits you to use a new process for composing text. For instance, trial
drafts can rapidly be composed from rearranged excerpts of old drafts, together with new words or passages
which you insert by hand typing. Your first draft may represent a free outpouring of thoughts in any order,
with the inspection of foregoing thoughts continuously stimulating new considerations and ideas to be
entered. If the tangle of thoughts represented by the draft becomes too complex, you can compile a
reordered draft quickly. It would be practical for you to accommodate more complexity in the trails of
thought you might build in search of the path that suits your needs.

You can integrate new ideas more easily, and thus harness your creativity more continuously, if you can
quickly and flexibly change your working record. If it is easier to update any part of your working record to
accommodate new developments in thought or circumstance, you will find it easier to incorporate more
complex procedures in your way of doing things. . . .

The important thing to appreciate here is that a direct new innovation in one particular capability can have
far-reaching effects throughout the rest of your capability hierarchy. A change can propagate up through
capability hierarchy, higher-order capabilities can now reorganize to take special advantage of this change
and of the intermediate higher-capability changes. A change can propagate down through the hierarchy as a
result of new capabilities at the high level and modification possibilities latent in lower levels. These latent
capabilities may have been previously unusable in the hierarchy and become usable because of the new
capability at the higher level.

While Engelbart was, in fact, suggesting that computers could be used to automate a low-
level task like typewriting, the point he wanted to make had to do with changes in the
overall system -- the capabilities such an artifact would open up for thinking in a more
effective, wider-ranging, more articulate, quicker, better-formatted manner. That is why
he distinguished his proposed new category of computer applications by using the term
augmentation rather than the more widespread word automation.

From Engelbart's point of view, the fact that it took over fifteen more years for word
processing to catch on was not as important as the fact that people continue to myopically
concentrate on the low-level automation and ignore the more important leverage it makes
possible at higher levels. The hypothesis he presented in the 1963 framework was
that computers represent a new stage in the evolution of human intellectual
capabilities. The concept manipulation stage was the earliest, based in biological

 135

capabilities of the brain, followed by the stage of symbol manipulation based on speech
and writing, and the stage of manual external symbol manipulation, based on printing.

The computer-based typewriter was an example of the coming fourth stage of automated
external symbol manipulation, to be brought about by, but not limited to, the application
of computers to the process of thinking and communicating:

In this stage, the symbols with which the human represents the concepts he is manipulating can be arranged
before his eyes, moved, stored, recalled, operated upon according to extremely complex rules -- all in very
rapid response to a minimum amount of information supplied by the human, by means of cooperative
technological devices. In the limit of what we might now imagine, this could be a computer, with which
individuals could communicate rapidly and easily, coupled to a three-dimensional color display within
which extremely sophisticated images could be constructed, the computer being able to execute a wide
variety of processes on parts or all of these images in response to human direction. The displays and
processes could provide helpful services and could involve concepts not hitherto imagined (e.g., the
pregraphic thinker would have been unable to predict the bar graph, the process of long division, or card
file systems).

. . . we might imagine some relatively straightforward means of increasing our external symbol-
manipulation capability and try to picture the consequent changes that could evolve in our language and
methods of thinking. For instance, imagine that our budding technology of a few generations ago had
developed an artifact that was essentially a high-speed, semiautomatic table-lookup device, cheap enough
for almost everyone to afford and small enough to be carried on the person. Assume that the individual
cartridges sold by manufacturers (publishers) contained the lookup information, that one cartridge could
hold the equivalent of an unabridged dictionary, and that a one-paragraph definition could always be
located by the average practices individual in less than three seconds. What changes in language and
methodology might not result? If it were so easy to look things up, how would our
vocabulary develop, how would our habits of exploring the intellectual
domains of others shift, how might the sophistication of practical organization
mature (if each person could so quickly and easily look up applicable rules),
how would our education system take advantage of this new external symbol-
manipulation capability of students and teachers and administrators?

At the end of the 1963 paper, Engelbart proposed that the hypothesis should be
tested by constructing an augmentation laboratory in which humans could use
new information processing artifacts to explore the new languages, methods,
and training made possible by the computer systems then coming into existence
in Cambridge, Lexington, Berkeley, and Santa Monica. Since the ultimate product
was to be for everyone, not just computer experts, people who were involved in editing,
designing, and other knowledge-related fields would have to be recruited to join the
electrical engineers and programmers. Because the goal was to enhance the power of the
human mind, and to learn how to introduce such enhancements to human organizations, a
psychologist would also be needed.

The laboratory itself would have to be a consciously designed bootstrapping tool, because
the very tools this team would be constructing first were the tools needed to do their own
jobs better. Before they could hope to augment other people's tasks, they had to augment
their own jobs. Bootstrapping -- building the tools to build better tools, and

 136

testing them on yourself as you go along, was a central component of
Engelbart's strategy, intended to match the pace of anticipated developments in
computer technology. SRI management had few illusions about obtaining the funding
necessary to implement such a scheme.

In 1964, Bob Taylor, who by that time had moved from NASA to ARPA, told Engelbart
and SRI that the Information Processing Techniques Office was prepared to contribute a
million dollars initially to provide one of the new time-sharing computer systems, and
about a half a million dollars a year to support the augmentation research. It came as a
surprise to Engelbart's superiors, who were eager to procure government contracts for
developing new computer technologies, but who didn't exactly regard his grandiose plans
for a mind-extending laboratory as their most promising candidate for large-scale
funding. One can imagine the SRI brass pulling out the organization chart after the
ARPA funders left, to find out who and where Doug Engelbart happened to be.

Here was the support Engelbart had been seeking for years, coming right at the point
where the conceptual framework for the system had already been worked out and the
technology he needed was becoming available. The next step was to assemble the team
who would build the first prototype.

Perhaps the Augmentation Research Center's greatest effect on computer
culture for generations to come was in the succession of remarkable people
who passed through that laboratory and on to other notable research projects.
Dozens of gifted individuals over the span of a decade dedicated themselves to
putting into action the system Engelbart and Licklider had dreamed about in
previous years. Many of those former Engelbart protégés are now leaders of
their own research teams at universities or the R & D divisions of commercial
computer manufacturers.

The Augmentation Research Center (ARC) consisted of the "engine room," where the
new time-sharing computers were located, a hardware shop where the constantly
upgraded computer systems and experimental input-output devices were built and
maintained, and a model "intellectual workshop" that consisted of an amphitheater-like
space in which a dozen people sat in front of large display terminals, creating the
system's software, communicating with each other, and navigating through dimensions of
information by means of what was known as NLS (for oNLine System).

NLS was an exotic and intoxicating new brew of ARPA-provided gadgetry,
homebrewed software wizardry, and altogether new intellectual skills that were
partially designed in advance and partially thrown together as the designer-subjects of the
experiment went along. After four years of stumbling, backtracking, leaping forward,
then more confidently exploring this new territory, after hardware crises and software
crises and endless argumentation about how to go about doing what they all agreed ought
to be done, NLS was beginning to fulfill the hopes its builders had for it. It was time to
gamble.

 137

Whenever he consulted the feeling in his stomach, Doug Engelbart had no doubt that it
was a gamble. Sitting all alone on that stage in San Francisco, watching his support team
scramble around the hastily woven nest of cables and cameras surrounding the base of the
platform, facing an audience of several thousand computer experts, it was all too evident
to Doug that any number of possible accidents -- a thunderstorm, a faulty cable, a
concatenation of software glitches -- could effectively kill their future chances of
obtaining research funds.

But he had begun to lose his patience, waiting for decades for the rest of the world to
catch on to something as important as augmentation. And his colleagues shrared
Engelbart's confidence in the delicate coalition of people, electronic devices, software,
and ideas they called the NLS system.

Doug's painstakingly thought-out conceptual framework, the prototype hardware,
systems he and Bill English developed, and his bootstrapping laboratory of systems
programmers, computer engineers, psychologists, and media specialists were only
corroborating what Doug had known for years -- computers can help intellectual workers
think better. By the late 1960s, the problem lay in getting his ideas and the meaning of his
team's accomplishments across to people in the wider computer world.

The augmentation center, as planned, had grown to seventeen people by 1968. They were
on their third upgraded computer system, and the software was evolving from the first
crude experimental versions to a real working toolkit for information specialists. In a
matter of months, the SRI Augmentation Research Center was due to become
the Network Information Center for ARPA's experiment in long-distance
linking of computers -- the fabled ARPAnet.

In the fall of 1968, when a major gathering of the computer clans known as the
Fall Joint Computer conference was scheduled in nearby San Francisco, Doug
decided to stake the reputation of his long-sought augmentation laboratory in
Menlo Park -- literally his life's work by that time -- on a demonstration so
daring and direct that finally, after all these years, computer scientists would
understand and embrace that vital clue that had eluded them for so long.

Those who were in the audience at Civic Auditorium that afternoon remember how
Doug's quiet voice managed to gently but irresistibly seize the attention of several
thousand high-level hackers for nearly two hours, after which the audience did something
rare in that particularly competitive and critical subculture -- they gave Doug and his
colleagues a standing ovation.

The audience, in the same room where the first "computer faire" for microcomputer
homebrew hobbyists was held some years later, witnessed a kind of media
presentation that nobody in the computer milieu had ever experienced before.
State-of-the-art audiovisual equipment was gathered from around the world at the behest
of a presentation team that included Stewart Brand, whose experience in mind-altering

 138

http://www.well.com/user/sbb/

multimedia shows was derived from his production of get-togethers a few years before
this, held not too far from this same auditorium, known as "Acid Tests."

Doug's control panel and screen were linked to the host computer and the rest of the team
back at SRI via a temporary microwave antenna they had set up in the hills above Menlo
Park. While Doug was up there alone in the cockpit, a dozen people under the direction
of Bill English worked frantically behind the scenes to keep their delicately transplanted
system together just long enough for this crucial test flight. For once, fate was on their
side. Like a perfect space launch, all the minor random accidents canceled each other. For
two hours, seventeen years ago, Doug Engelbart finally got his chance to take his
peers -- augmentation pioneers and number crunchers as well -- on a flight
through information space.

Fortunately for the historical record, a film of the event was made. Those who were at the
original event say that the sixteen-millimeter film is a poor shadow of the original show.
During the original presentation, an advanced electronic projection system provided a
sharply focused image, twenty times life sized, on a large screen. Doug was alone on the
stage, the screen looming above and behind him as he sat in front of his CRT display,
wearing the kind of earphone-microphone headsets that radar operators and jet pilots use,
his hands resting on an unusual-looking control console connected to his chair.

The specially designed input console swiveled so he could pull it onto his lap. A standard
typewriter keyboard was in the center, and two small platforms projected about six inches
on either side. On the platform to his left was a five-key device he used for entering
commands, and on the platform to the right was the famous "mouse" that is only
now beginning to penetrate the personal computing market -- a device the size of a pack
of cigarettes, with buttons on the top, attached to the console with a wire. Doug moved it
around with his right hand.

In front of him was the display screen. The large screen behind him could alternate, or
share, multiple views of Doug's hands, his face, the information on the display screen,
and images of his colleagues and their display screens at Menlo Park. The screen could
be divided into a number of "windows," each of which could display either text or
image. The changing information displayed on the large screen, activated by his fingertip
commands on the five-key device and his motions of the mouse, began to animate under
Doug's control. Everyone in the room had attended hundreds of slide presentations before
this, but from the moment Doug first imparted movement to the views on the screen, it
became evident that this was like no audiovisual presentation anyone had attempted
before.

Engelbart was the very image of a test pilot for a new kind of vehicle that
doesn't fly over geographical territory but through what was heretofore an
abstraction that computer scientists call "information space." He not only looked
the part, but acted it: The Chuck Yeager of the computer cosmos, calmly putting the new

 139

system through its paces and reporting back to his astonished earthbound audience in a
calm, quiet voice.

Imagine that you are in a new kind of vehicle with virtually unlimited range in both space
and time. In this vehicle is a magic window that enables you to choose from a very large
range of possible views and to rapidly filter a vast field of possibilities -- from the
microscopic to the galactic, from a certain word in a certain book in a certain library, to a
summary of the entire field of knowledge.

The territory you see through the augmented window in your new vehicle is not the
normal landscape of plains and trees and oceans, but an informationscape in which the
features are words, numbers, graphs, images, concepts, paragraphs, arguments,
relationships, formulas, diagrams, proofs, bodies of literature and schools of criticism.
The effect is dizzying at first. In Doug's words, all of our old habits of organizing
information are "blasted open" by exposure to a system modeled, not on pencils
and printing presses, but on the way the human mind processes information.

When the new vehicle for thought known as Arabic numbers was introduced to the West,
and mathematicians found that they didn't have to fumble with Roman numerals in their
calculations anymore, the mental freedom must have been dizzying at first. But not
nearly as dizzying as this. There is a dynamism of the informationscape that needs no
explanation, that needs only to be experienced to be understood. In that sense, Doug
knew he had no choice but to take the risk of putting it up on the big screen and letting
his audience judge for themselves.

Even the chewing-gum-and-bailing-wire version Doug was attempting to get off the
ground in 1968 had the ability to impose new structures on what you could see through
its windows. The symbolic domain, from minutiae to the grandest features, could be
arranged at will by the informationaut, who watched through his window while he
navigated his vehicle and the audience witnessed it all on the big screen. Informational
features were reordered, juxtaposed, deleted, nested, linked, chained, subdivided,
inserted, revised, referenced, expanded, summarized -- all with fingertip commands, A
document could be called up in its entirety, or the view could be restricted to only the
first line or first word of each paragraph, or the first paragraph of each page.

One of the example tasks he demonstrated involved the creation of the presentation he
was giving at the moment, from the outline of the talk to the logistics of moving their
setup to the Civic Auditorium. The content of the information displayed on the screen
referred to the lecture he was giving at the moment, and the lecture referred to the
information on the screen -- an example of the kind of self-referential procedure that
programmers call "recursion."

Doug moved his audience's attention through the outline by the way he manipulated their
"views" of the information. His manipulations maneuvered the screen display and the
audience's consciousness through categories of information, zoomed down to
subcategories, broke them into their atomic components, rearranged them, then zoomed

 140

back up the hierarchy to meet the vocal narration at a key point in the story, when the
words on the screen and the words coming from the narrator merged before branching off
again. It was an appropriately dramatic presentation of a then-novel use of computers.
While it appeared to be a radically sudden innovation to many of those in the audience, it
was the culmination of careful experimentation at ARC that had already spanned most of
a decade.

It is almost shocking to realize that in 1968 it was a novel experience to see
someone use a computer to put words on a screen, and in this era of widespread
word processing, it is hard to imagine today that very few people were able to
see in Doug's demonstration the vanguard of an industry. When time-sharing
systems first allowed programmers to interact directly with computers, in the early 1960s,
the programmers developed tools known as "text editors" to help them write
programming code. (The first one at MIT had a hand-lettered sign that dubbed it
"expensive typewriter.") But "word processing" for non-programmers was still far in the
future, despite Engelbart's demonstration of its potential.

The quality of video display technology in 1968 was also amazingly primitive by today's
standards. The letters and numbers on Doug's screen looked as if they were handwritten -
- closer to crude swaths "painted" onto a radar screen than the crisp pixels we are
accustomed to seeing today on video display terminals.

In seeking a domain where a small success would mean a large boost in effectiveness,
and where success would attract a large-scale research and development effort, Doug
chose to augment the "humdrum but practical and important sorts of tasks" that
occupy an increasing proportion of the people in our society: preparing, editing,
and publishing documents. This area of document preparation and communication
was but a small slice from the grand range of applications he envisioned, but it was one
tool that the augmentation team itself needed immediately, and one that every laboratory
and office in the world would want -- as soon as people understood that computers
weren't just calculators.

The seventeen members of the Augmentation Research Center, Engelbart explained
during their 1968 show, were attempting to create a medium that would be useful to the
other ARPA computer researchers and eventually to anyone who works with information.
At the same time, this was a behavioral science experiment as well as a
computer systems experiment, because the project team would be the subjects
as well as the architects of the research. Making computers do what they
wanted was only the beginning. The really difficult work was adjusting
themselves to new ways of working and thinking.

Consequently, one of the first projects was to create a system to make it easy for the
members of the research team -- and eventually for other intellectual workers -- to
compose, store and retrieve, edit, and communicate words, numbers, and graphics. "Text

 141

editing" had to become more amenable to non-programmers and more suited for the
expression of thoughts and composition of prose.

They needed to invent display devices and adapt the computer and write the programs;
then they had to use what they had invented to compose a description of the system. The
hardware and software specialists worked on representing symbols on screens and storing
them in the computer's memory. Then the communications specialists used the text
editors to write the manuals to instruct future members of the growing project in the use
of new tools.

The text-editing system was the first stage of Doug's long-term plan. The actual use of
the system to design and describe the next generation was the second stage. Both stages
were accomplished by 1968. Even as early as 1968, NLS was not limited to what we now
call a word processing system. The third-stage goal was to build an entire toolkit for
intellectual tasks, and develop the procedures and methods by which those tools could be
used, individually and collectively, to boost the performance of people who did
information-related work. The toolkit would then be used to develop new modes of
computer-aided human collaboration.

Software was created to connect the text-editing system with a special kind of electronic
filing arrangement that would serve as a unifying memory, record, and medium for their
individual efforts. The software journal through which individuals and groups
could have access to a shared thinking and communicating space had been in
development since 1965-1966; it enabled individuals to insert comments into the group
record of the augmentation experiments (or browse through them), and enabled
programmers to trace the way system features had evolved. The journal, along with
shared screen telephoning to enhance real-time, one-to-one communications, was part of
the overall dialogue support system designed to help increase effectiveness of group
communication and decision making.

The idea of the journal predated the development of computer networks and
teleconferencing, originating as it did with a dozen terminals connected to a single
multiaccess computer. It was an important first try at "reaching through" the toolkit to
engage in communication with another human user of the system. It was a theoretical
precursor to the "electronic mail" medium that was to evolve when the ARPA
network became operational in the early 1970s. When ARPAnet came along, connecting
many computers in different locations into a shared computational "space," it wasn't such
a shocking new medium to those few ARC pioneers who had been working on a smaller,
localized version for years.

The journal was designed to bring order to a stream of dialogues, notes, and publications
generated in the process of building the system and finding out how to work it. Besides
serving as an electronic logbook that would be useful to human factors specialists and
systems programmers, the journal was meant to be a medium for a formal dialogue
among users that would serve the same purpose as today's traditional libraries and

 142

professional journals -- but would do so in such an amplified manner that it would
become a uniquely powerful method of transmitting knowledge.

For example, scientific journals in every field follow a form in which a paper describing
research results is refereed, then published, after which subsequent papers can cite the
previous paper. The record in any field of scientific knowledge -- and the forum in which
the significance of findings is debated -- consists of a growing list of journal citations and
accompanying text. It takes time for new innovation and comments to circulate, and it
takes a relatively long time for individuals to thread their way through a branching
history of citations. In the NLS version, it is very easy to jump directly and quickly from
any article to the text of cited articles and back -- reducing to seconds or minutes
procedures that would take hours or months in even the most efficient library/journal
system.

Publication and distribution are radically changed by a computerized system, since it is so
easy to automatically notify everybody on a certain kind of reading list material matching
their interest profile is now available. Distribution lists can be members of distribution
lists -- you can designate a list to be the recipient of an announcement, and every member
of the designated list will receive your message. Messages and articles can contain lists of
citations, and catalogs and indices can be message forms of their own. Ideas and
hypotheses could be conveyed by telling interested members of the community to read a
certain list of cited articles in a particular order.

This more formal and highly structured kind of intellectual discourse is essential to
science, but is not the usual mode of communication used in the day-to-day affairs of
ordinary citizens. As Licklider and Taylor, Doug's long-time colleagues and
principal funders, pointed out in 1968, the new interactive computers and new
intercomputer networks would make it possible to use tools like NLS to
construct a computer-aided community in which not only intellect but
communication could be augmented.

At the most fundamental level, communication begins when two or more people need to
share information, transact business, make decisions, resolve differences, reach
agreements, solve problems, communicate plans. One of the early creations in the NLS
collection of software levers and pulleys and skyhooks brought the other capabilities of
the system to bear on communications. ARC developed a "mode of teleconferencing"
whereby:

. . . two or more people, positioned at separated display consoles, can link their displays so that all see the
same image, and at option any can exercise control. When simultaneously talking on the telephone the
resulting dialogue can be uniquely effective -- corresponding to an in-person conference around a collective
assemblage of their scratch pads, working records, and individual support facilities. . . .

But consider the great potential already existing when some of the participants -- or even a single
participant -- can effectively use computer tools to work with the relevant materials and processes. There
is a great value in merely conducting themselves as though they were

 143

http://www.rheingold.com/texts/tft/command?stat+vcc+vc

congregated at a magic blackboard -- each easily able to pull forth materials
from his notes or familiar reference sources, copy across into his private
workplace any material offered from what the other brings forth.

In 1969, ARC became one of the original nodes of the ARPAnet system that connected
defense-related research computers around the country into a network. The network, Bob
Taylor's brainchild, used common-carrier communication lines to interconnect computers
in different parts of the country. While the separate time-sharing communities were busy
exchanging data, programs, and messages, the ARC people saw their participation in the
network as an opportunity to put their knowledge to good use, and to extend their
experiment beyond their SRI laboratory to include everyone around the country who was
connected to the network.

As the network grew, ARC branched out from its primary activity of continually
redesigning itself. It began serving as the Network Information Center, offering
referencing and organizing services for the distributed community of ARPAnet users. No
longer languishing in a half-forgotten Quonset somewhere on the huge SRI
grounds, the augmentation laboratory, equipped with the latest time-sharing
hardware, was by 1970 the proud subject of VIP tours.

After so many years of solitary envisioning, Engelbart had become even more optimistic
about the ultimate significance of their enterprise than he had been when he started. In the
spring of 1970 he told his colleagues at the Interdisciplinary conference on multi-access
Computer Networks:

. . . It has been my business to struggle with these concepts for two decades now, and the signs that I read at
least tell me that the changes in our ways of thinking and working will be more pervasive and extreme than
ANY OF US appreciates -- a revolution like the development of writing and the printing press lumped
together. . . .

It will take explorers of this domain decades even to map its currently visible dimensions. The real rush
hasn't begun: this Conference is a meeting of suppliers looking for the prospector trade; we haven't really
been giving attention to the developments that will follow the prospecting.

My research group is now moving into a next stage of work that we call "team augmentation."
Here, instead of just the individual facilitating his private domain searching,
studying, thinking and formulating, as his office place provides for him, we are
exploring what can be done for a team of "augmented individuals" who have in
common a number of terminals, a set of computer tools, working files, etc. (as
we do), to facilitate their team collaborations.

The problem-solving assistance Engelbart had dreamed about alone in the 1950s became
the "integrated working environment" he proposed in 1963, which in turn grew into the
toolbuilders' toolkit that he and his small group of colleagues used to build an
"intellectual workshop" throughout the remaining seven years of the decade. By the early
1970s, the wider community of ARPA-funded computer researchers and representatives

 144

of the business world were joining the bootstrapping process. Paradoxically, just when
their leader decided that "team augmentation" would be their goal, his own team began to
react negatively to growing pressures -- technological, psychological, and social.

Doug had always warned that "the larger augmentation system is much more complex
than the technological 'subsystem' upon which it depends," and the 1970s were the era
when ARC began to practice what Engelbart had preached. During the first decade of the
laboratory's existence, computer technology had progressed at an astonishing pace, and
the SRI crew were doing their utmost to use the innovations as quickly as they came
along.

The "rule of two" (that computer power would double every two years) and the
Engelbart-induced zeal of the augmentation team kept them fueled for an effort to
bootstrap and continually adjust themselves to the capabilities of their upgraded tools --
an effort that required extraordinary intensity. The bootstrapping and readjusting
continued with unabated enthusiasm, at least until the early 1970s, when the idea of
building a system that was meant to "transcend itself every six to eight months" to keep
pace with hardware and software advances turned out to be more pleasant to contemplate
than to carry out. It had been a challenging and exhilarating to build this new system for
augmenting thought -- but it wasn't as much fun having one's work habits augmented at a
forced-march pace.

When both the old-timers and newcomers to the growing project faced the task
of learning new roles, changing old attitudes, adopting different methods, on
regular basis, just because the system enabled them to do so, the great
adventure became more arduous than any of the ARC pioneers/experimental
subjects had anticipated. So a psychologist was brought in to consult about those parts
of the system that weren't found in the circuitry or software, but in the thoughts and
relationships of the people who were building and using the system.

Dr. James Fadiman joined ARC as an observer-catalyst-therapist. Fadiman was
particularly interested in the ways human consciousness and behavior change in new
situations, and it didn't take him long to realize that the process of "being augmented"
was in fact a new, nonchemical form of altered consciousness.

Several of the things Fadiman learned about the "augmentation experience" have taken
more than a decade to filter out to people who design computers for nonexperts. One
thing he learned almost immediately was that most people resist change, especially in the
workplace, and resistance works both ways -- people who are resistant to learning an
augmentation system are equally resistant to giving it up once they have adopted it. The
initial resistance is partially grounded in a general fear of the unknown.

Doug Engelbart, of course, saw these things on his own scale, and through the eyes of an
engineer. There would be rough spots, software and interpersonal bugs, arguments and
conflicts, to be sure -- but the master plan was progressing nicely, considering all those

 145

years he had worked alone. The toolkit had become a workshop, and they knew the
workshop indeed worked because they had been their own guinea pigs for a decade.

In the same 1970 address in which he referred to the multiaccess computing community
as a "meeting of suppliers looking at the prospector trade," Engelbart also predicted
that the future would see "a steadily increasing number of people who spend a
significant amount of their professional time at terminals," and speculated that
the future of dispersed personal augmentation systems linked together into
network communities would create new kinds of societal institutions: "In
particular, there will emerge a new 'marketplace,' representing fantastic wealth
in commodities of knowledge, service, information, processing, storage, etc."

In his usual forge-ahead manner, Engelbart was already bringing members of the
business community into the ARC experiment. Business managers and management
scientists had been working at ARC, experimenting with using NLS tools to manage the
steadily growing ARC project. In proper bootstrapping style, they looked at their attempts
to apply the system to their own research management as yet another experiment. Richard
Watson and James C. Norton worked closely with ARC to develop their experimental
discoveries into a system that would be usable by people who were not computer experts
but whose occupations involved the manipulation of information.

Sometime in the early 1970s, Engelbart was inspired by a book, just as he had been
enthused by magazine articles by Bush and Licklider in years past. This time, it was the
theory proposed by business management expert Peter Drucker in the late 1960s.
Knowledge, by Drucker's definition, is the systematic organization of information; a
knowledge worker is a person who creates and applies knowledge to productive
ends. The rapid emergence of an economy based primarily on knowledge,
Drucker predicted, would be the most significant social transformation of the
last quarter of the twentieth century.

Drucker noted something about the future of knowledge in the American economy that
seemed to converge, from an unexpected but not unpredictable direction, with the course
Engelbart had plotted for the augmentation project at the beginning of its second decade.
Drucker was one of the first of a growing number of social scientists who have claimed
that an examination of labor statistics reveals a great deal about the role of knowledge
work in everybody's future.

In 1973, ten years after his solo "Framework . . . ," Engelbart, Watson, and Norton
presented a paper on "The Augmented Knowledge Workshop" to the National Computer
Conference. Acknowledging their debt to Drucker's ideas, the authors pointed out that the
special computer systems that had been evolving at ARC were designed to alleviate the
problems associated with "the accelerating rate at which knowledge and knowledge work
are coming to dominate the working activity of our society':

 146

http://www.mag.keio.ac.jp/%7Ederick/drucker.html
http://www.pangea.ca/%7Edayre/kwork.html
http://www.pangea.ca/%7Edayre/kwork.html

In 1900 the majority and the largest single group of Americans obtained their livelihood from the farm. By
1940 the largest single group was industrial workers, especially semiskilled machine operators. By 1960,
the largest single group was professional, managerial, and technical -- that is, knowledge workers. By
1975-80 this group will embrace the majority of Americans. The productivity of knowledge has already
become the key to national productivity, competitive strength, and economic achievement, according to
Drucker. It is knowledge, not land, raw materials, or capital, that has become the central factor in
production.

Noting Drucker's use of terms such as "knowledge organizations" and "knowledge
technologies," Engelbart, Watson, and Norton specified an augmented knowledge
workshop that was nothing less than a totally redesigned working environment for
everybody in the "knowledge sector." The authors acknowledged that ordinary
knowledge workshops -- offices, boardrooms, libraries, universities, studios --
have existed for centuries. Augmented knowledge workshops, however, existed
only as prototypes, and would not come into widespread usage until the
technologies pioneered at ARC (and by then, at a new place across the creek,
called PARC) grew economical enough to sell as office equipment. This was the
origin of an idea that was later adapted by others in a truncated version known as "The
Office of the Future."

The authors described the technology they had built and used for augmenting their own
knowledge as individuals and in groups, but emphasized that the tools were only the first
part of a total transformation of the system -- including changes in methods, attitudes,
roles, lifestyles, and working habits. They knew from their own experience that the
psychological and social adjustments would be the most intense and volatile changes set
off by the introduction of these systems into existing organizations.

In 1975, after twelve years of continuous support, ARPA dropped ARC. The staff quickly
shrank from a high of thirty-five to a dozen, then down to a few, and finally down to
Doug Engelbart and a large amount of software. A decade of useful work is an unheard
of length of time in the hyperaccelerated world of software technology, but bootstrapping
had kept NLS continually evolving as it expanded its usefulness, as it moved up to
machines with larger memories and faster processors, and as the community thought of
new things to do with it.

Even before ARPA drastically reduced its funding, ARC had started a subscription
service to several corporations who wanted to experiment with using the services of the
augmentation system. The way Engelbart saw it, it was time to bring the system out of
the research world, after its extended gestation, to test it on a community of real-world
users. The way SRI saw it was that the whole project was obviously finished as a magnet
for research funds, and they might as well sell it. In 1977, SRI sold the entire
augmentation system to Tymshare Corporation, and Engelbart went with it. The system,
renamed "Augment," is now marketed by Tymshare as one of their office automation
services.

Nobody disputes that Engelbart's vision was the single factor that stayed stable through
twenty of the most turbulent years of computer science, and those few colleagues who

 147

http://www.rheingold.com/texts/tft/10.html

know of his importance to the evolution of computing are loathe to speak unkindly of
him, yet the tacit consensus is that Doug Engelbart the visionary allowed
himself to remain fascinated by an obsolescent vision. NLS was powerful but
very complex, and the notion of a kind of knowledge elite who learned
complex and difficult languages to operate information vehicles is not as
fashionable in the world of less sophisticated but more egalitarian personal
computers created by Engelbart's students.

The twelve years of ARC's heyday at SRI, from 1963 to 1975, were technologically wild
years. That period was one of enormous historical, social, and cultural upheavals, as well.
Mistakes, conflicts, blind alleys, and other pitfalls were unavoidable during the course of
a project that began in the Kennedy administration and continued throughout the years of
the Vietnam war, campus revolts, assassinations, the emergence of the counterculture, the
advent of women's liberation, Watergate, and ended during the Carter administration.

As individuals, and as a group, ARC wasn't immune to the conflicts that affected the rest
of the culture, although it was privy to its own mutated forms of it. Before the
counterculture made its media splash and thousands of affluent American offspring
started acting weird and growing their hair long, places where powerful computers
were to be found had already spawned their own brand of weirdo -- the hacker.
The advent of this new subculture within the computer subculture was not the
direct cause of ARC's downfall, but it was symptomatic of the problems
Engelbart faced in the 1970s.

Engelbart found himself caught between the conservatism of his employers and the
radicalism of his best students. ARC had seemed a bit strange to the old-line data-
processing types at SRI, and these new people hanging out at Doug's lab added cultural
as well as technological differences to an already strained relationship. To say that SRI is
conservative is an understatement. Although some of the subjects their researchers pursue
can be unorthodox, their clients are such straitlaced institutions as the Defense
Department, the intelligence community, and the top one hundred corporations.

Hackers were barely tolerated in the long, clean, high-security halls of SRI. But when the
counterculture started to infiltrate, and the rumors started about some of the hackers
augmenting their consciousness in more ways than one, SRI brass became extremely
uncomfortable.

There was trouble from within, as well as from above. Some of the experiments in "new-
age" social organization, encouraged by Engelbart himself, threatened to split the ARC
group into two camps -- those who were still techies at heart, concerned only with the
advancement of the state of computing art, and those who saw augmentation as an
integral part of the wider countercultural revolution that was going on around them. And
there were those who felt that even Doug's technological ideas, although they might have
once been radical and futuristic, were becoming outmoded. The idea of augmentation

 148

teams and high-level time-shared systems began to seem a bit old-hat to the younger
folks who were exploring the possibility of personal computers.

In the early 1970s, some of Engelbart's first and most important recruits, who had helped
him create the first NLS system, left SRI for PARC, the new research center Xerox was
putting together. The new Xerox facility was a hotbed of augmentation-oriented thought,
but with a major difference -- the advent of large-scale integrated circuitry made it
possible to dream of, and even design, high-powered computers that could fit on an
individual's desk. This emphasis on one person, one computer made for important
philosophical and technical differences with Engelbart's approach.

For a while, Engelbart at SRI and his former students at Xerox were engaged in
collaboration, but eventually PARC and ARC drifted apart. Doug still dreamed of
creating augmentation centers in universities and industries, providing a service for any
team of people who worked with information. The former ARC members were looking
forward to an even wider potential computer-using population. The idea at Xerox was to
use the new integrated circuit technology to create computers more powerful than the
previous generations of minicomputers -- and to devote an entire computer to each
person, instead of sharing it among thirty or forty users.

PARC, as we shall see, went on to become the new mecca for those who saw the
computer as a tool for augmenting the human intellect. ARC never seemed to make it to
the promised land, and the former point-man for radical technology seemed to be more
and more isolated in an interesting but less than influential backwater. As more and more
of Engelbart's earlier dreams became realities in other institutions, this judgment seemed
to be less than fair. It is impossible to tell if there would have been a PARC if there hadn't
been an ARC, and while the miniaturization revolution made personal computers
inevitable in a technical sense, there is good reason to question whether the kind of
personal computing that exists today would ever have been developed if it had not been
for the pathfinding work accomplished by Engelbart and his colleagues.

Doug Engelbart and the people who helped him build ARC did not succeed in building a
knowledge workers' utopia. Some hackers do seem to be pathologically attached to
computers. These facts might have very little to do with the way other people will use the
descendants of the tools they created. In fact, if you think about it, some of the wildest
and woolliest of the MAC and ARC hackers were following in a long tradition of people
who weren't exactly run-of-the-mill citizens -- from Babbage and Lovelace to Turing and
von Neumann.

It must be remembered that MAC and ARC were only part of a larger effort to raise
computing to a whole new level, and hackers weren't the only scientist-artisans involved
in that effort. Whatever future historians decide about the personalities of the people
involved in carrying out this unprecedented exercise in planned breakthrough, they will
have to consider the role of the hackers who created time-sharing, computer
networks, and personal computers in the 1960s and early 1970s, not out of sick

 149

obsession or in-group frivolity, but out of a serious desire to construct a new
medium for human communication.

For the time being, Doug Engelbart still works away at his original goals, adapting the
core of NLS to the new kind of computers that have come to use in the 1980s. To
Tymshare Corporation's customers, the Augment system seems less science-fiction-like
and more practical in this age of office automation. People in the business world are
beginning to pay attention to what Doug is saying, for the first time since he
started saying it, decades ago.

Still, Doug is neither rich nor famous nor powerful -- not that these were ever his goals.
All he seems to hunger for is all he ever hungered for -- a world that is prepared
for the kind of help he wants to give. Ironically, his office at Tymshare in
Cupertino, California, is merely blocks away from the headquarters of Apple
Corporation, where icons and mice and windows and bit-mapped screens and
other Engelbart-originated ideas are now part of a billion-dollar enterprise.

 150

Chapter Ten:
The New Old Boys from the ARPAnet
Bob Taylor's office window at Xerox Corporation's Palo Alto Research Center (PARC)
overlooked the red-tiled towers of Stanford and the flat roofs of research parks stretched
out to the horizon. The electronic window next to his desk overlooked another kind of
world. While he started talking to me, he was also interacting with colleagues in his
building and elsewhere in the global information community.

In 1983, it was not unusual to see an executive, especially a manager in a
computer research organization, using a personal computer in his office. The
unique thing about this personal computer was that it was an Alto -- the first
personal computer. Taylor and his group had been using it since 1974. A small
cable connected the Alto to the Ethernet -- a medium that linked the researchers
at PARC with each other and with colleagues around the world.

The screen was taller than most computer displays, and it looked different from other
computer screens, even when seen from across the room. Instead of a single screen-
sized frame filled with numbers or letters or graphs, there were a number of
squares of various sized, known in Xerox parlance as windows, that looked like
overlapping pieces of paper on a desk. The symbols and images were also distinctly
sharper than what I was accustomed to seeing on a computer screen.

The mouse, an update of Engelbart's innovation, was connected to the Alto
with a thin wire. As Taylor slid the mouse around the desk surface next to the
screen, a small dark pointer shaped like an arrow moved around the screen.
When he clicked one of the buttons on top of the mouse or moved the pointer into a
margin, the pointer changed shape and things happened on the screen. In 1984, Apple
corporation's Macintosh computer introduced a mass market to this way of handling an
electronic desktop. To Taylor, it wasn't particularly futuristic. Altos and Ethernets had
been in operation since 1974 around here.

By 1983, Bob Taylor was only half-satisfied with his progress toward what he and a few
others set out to achieve twenty years ago, because he believed that the new technology
was only halfway built. Despite the fact that the office he was sitting in, the electronic
workstation at his fingertips, and the research organization around him were functioning
examples of what the augmentation community dreamed about decades ago, Taylor
thought that it might take another ten or twenty years of hard work before the
interactive informational communities foretold by Bush and Licklider would
truly affect the wider population.

In 1965, at the age of thirty-three, Robert Taylor worked out of his office in the Pentagon,
as deputy director, then as director, of the ARPA Information Processing Techniques

 151

http://www.parc.xerox.com/
http://www.rheingold.com/vc.book
http://www.rheingold.com/vc.book

Office. His job was to find and fund research projects involving time-sharing, artificial
intelligence, programming languages, graphic displays, operating systems, and other
crucial areas of computer science. "Our rule of thumb," he remembers, "was to fund
people who had a good chance of advancing the state of information processing by an
order of magnitude."

Bob Taylor was also responsible for initiating the creation of the ARPAnet -- the
prototype network community of computers (and minds) created by the Department of
Defense, an effort that began in 1966 and became an informal rite of passage for the
nucleus of people who are still advancing the state of the computing art. Larry Roberts,
who was responsible for getting the network up and running, succeeded Taylor when
Taylor left ARPA in 1969. After a year at the University of Utah, Taylor joined the
research effort Xerox Corporation was assembling near Stanford.

In 1970, a combination of growing opposition to the Vietnam war, and the
militarization of all ARPA research, meant that an extraordinary collection of
talent in the new fields of computer networks and interactive computing were
looking for greener pastures at a time when one corporation decided to provide
the greenest pastures imaginable.

In 1969, Peter McColough, CEO of Xerox Corporation, announced his
intention to make Xerox "the architect of information" for the future. To that
end, a research organization was assembled in Palo Alto, in the early 1970s. McColough
put a man named George Pake in charge. One of the first things Pake did was hire the
best long-term computer visionary, research organizer, and people-collector he could find
-- Bob Taylor. At first, the newly recruited engineers, hackers, and visionaries worked in
temporary quarters located in the Palo Alto flatlands, near the Stanford University
campus. In the mid 1970s construction began on a prime piece of ground above Hewlett-
Packard, next to Syntex, in that fertile enclave known as "The Stanford Industrial Park."

If there was ever a model environment for the technological cutting edge of the
"knowledge sector," PARC was it. From the physicists in the laser laboratories and
the engineer-artisans in the custom microchip shops to the computer language designers,
artificial intelligence programmers, cognitive physiologists, video jockeys, sound
engineers, machinists, librarians, secretaries, cooks, janitors, and security guards, you got
a nice, model-utopian feeling from everybody you encountered.

The physical plant itself is an inescapable exercise in innovation. It took me a
while to stop thinking of the place as being upside down. Since the terraced glass-
and-concrete structure was built halfway embedded in Coyote Hill, Zuni Pueblo style, the
main entrance is on the top floor. To get to the second floor from the ground floor, you go
down. The linked quadrangles of offices, laboratories, and meeting rooms wind around
atriums and gardens. The cafeteria overlooks Palo Alto; you can take your tray out to the
terrace and look down on the bay from the vantage of this twenty-first-century cliff
dwelling.

 152

Off the corridors that wind around the quadrangles are office cubicles, many with their
doors open. Inside the open cubicles, various people talk on telephones or stare at their
distinctively oblong Alto screens. Some cubicles have plants, posters, bean-bag chairs
(advertisement), stereos, bicycles. They all have bookshelves with rows of books and the
bright blue and white binders used on the reports PARC publishes for the outside world.
Many of the cubicle dwellers are young. A larger proportion of them than you might
expect are women. It has always been a multinational-looking crowd.

I had no problem distinguishing Taylor from the assorted scientists, engineers, professors,
hackers, longhairs, and boy and girl geniuses around him. The few differences in style
were subtle but visible, nevertheless. While many of his colleagues opt for sandals, down
jackets, techno-hippie ponytails, blue jeans, and rumpled cords with or without bicycle
clips, Taylor is likely to be found in a pressed tweed jacket and unrumpled slacks. His
blond hair is casual but neat. When he's trying to see if you are following his line of
thought, he tilts his forehead in your direction and targets you with pale blue eyes over
what would pass for granny glasses if his shirt were denim instead of oxford cotton. He
smiles often, sometimes as a form of punctuation. A trace of Texas drifts into his voice at
times.

It is Taylor's belief that the idea of personal computing was a direct outgrowth of what
Licklider started in the early 1960s with time-sharing research. Time-sharing, like the
first high-level languages, was a watershed for computer science and for the
augmentation approach. It also created a new subcommunity within the
computation world, a community of interests that cut across the boundaries of
military, scientific, academic, and business computing. It was a relatively small
subculture within the larger community of computer scientists and computer systems
builders. They were bonded by a common desire for a certain kind of computer they
wanted for their own use, and by a decade of common experiences as a part of the ARPA
research effort to build the kind of computers they were then using. Many of the time-
sharing veterans who started out as undergraduate hackers at project MAC or as ARPA-
funded engineers in Berkeley and Santa Monica were to meet later, in the research
sanctums of Bell, SRI, Rand, and (mostly) at PARC.

Time sharing was an early and effective application of the philosophy that the
existing means of using computers should be tailored to the way people
function, rather than forcing people who want to use them to conform to
mechanical constraints. Without the development of multiaccess computing in
the early sixties, the idea of personal computing would never have been more
than a dream.

In the early 1960s, data processing was what one was expected to do with a computer,
and one hardly ever did it directly. First, a program and its raw data had to be converted
to a shoebox full of punched cards. The cards were delivered to a data processing center,
where a system administrator decided how and when they were to be fed into the main
computer. (These fellows were, and still are, a rich source of anecdotes in support of the

 153

http://www.thebeanbagchairoutlet.com/
http://www.rheingold.com/texts/tft/8.html

"programming priesthood" mythology.) You came back an hour or a day or a week later
and retrieved a thick printout and a hefty bill. The keypunch-submit-wait-retrieve ritual
was called "batch processing."

By 1966, groups in California and Massachusetts were well on the way toward raising the
art of computer programming to a high enough level to do some truly interesting things
with computers. Licklider and a few others suspected that if they could make the power
of computers more directly accessible to people writing and running programs,
programmers might be able to construct new and better kinds of software at far greater
speed than heretofore possible.

Among the capabilities that came with the increasingly sophisticated electronic hardware
and software were powers to model, represent, and search through large collections of
information. With sufficient speed and memory capacity, computers were gaining the
power to assist the creative aspects of communication. But serious obstacles had to be
overcome to bring that power out where people could use it.

It is hardly possible to interact dynamically with your program when you have to dump
boxes of punchcards into readers, then decipher boxes of printout. Since a large part of
the process of building a program is a matter of tracking down subtle errors in complex
lists of instructions, the batch processing ritual put an effective limit on how much
programmers could do, how fast they could do it, and the quality of the programs they
could produce.

Batch processing created two problems: The computers could handle only one
program (and one programmer) at a time, and programmers weren't able to interact
directly with the computer while their programs were running. Time-sharing was made
possible because of the enormous gap between the speed of computer operations and the
rate of information transfer needed to communicate with a human. Even the fastest typist,
for example, can enter only a single keystroke in the length of time it would take the
computer to perform millions of operations. Time-sharing gives each of the 20, 50, or
100 or more people who are using the computer the illusion that he or she has the
computer's exclusive "attention" at all times, when in reality the computer is switching
from one user's task to another's every few millionths of a second.

When the first programmers gained interactive access to the computer, they also gained a
new freedom to create ever more powerful programs and see the results more quickly
than ever before. Programmers of the first multiaccess computers of the sixties were able
to submit programs a piece at a time and receive responses a piece at a time, instead of
trying to make the whole programming job work, for better or worse, in a single batch.
By eliminating the "wait and see" aspect of batch-processing, time-sharing
made it possible for programmers to treat their craft as a performing art.

"When I became director of the ARPA Information Processing Techniques Office, the
time-sharing programs were already running," Taylor recalls, "but they weren't complete,
so the work continued while I was director. It was clear, though, that this was an

 154

http://www.rheingold.com/texts/tft/7.html

important breakthrough in information processing technology, so I became involved in
the technology transfer between the different experimental systems, and eventually to
military and civilian computer applications.

"We came up against some rigid attitudes when we talked to many people in the industry.
IBM ignored the ARPA stuff at first. They simply didn't take it seriously. Then GE
agreed to cooperate with MIT and Bell Laboratories to develop and market a large time-
sharing system. IBM said, 'Whoops, something's happening here,' and they went off with
a crash project to retrofit one of their 360 systems to time-sharing. They took orders for a
few and the system bombed. They couldn't make the software work because hadn't been
down the same roads that the ARPA funded groups had been down years before."

Time-sharing research caused a kind of schism in the corporate research field.
The first-generation priesthood seemed to be missing out on the inside action, for a
change. Companies that paid attention to the time-sharing experience gained in the long
run. It made Digital Equipment the "second name" in the industry. DEC paid attention to
the ARPA-funded work and hired people when they got out of school, and profited from
time-sharing.

The first thing Taylor went after, once the time-sharing project was on its way to
completion, was a way of interconnecting the time-sharing communities. He had a
privileged overview of the then-fragmented computer research world, since a good deal
of his time was spent traveling to universities and think tanks, finding and funding
researchers. Progress in the separate subfields of computer research was accelerating
through the early 1960s. By 1966, the time was approaching when the pieces of the
puzzle would be ready for assembly, and the separated teams would have to be in close
communication.

"Within each one of the time-sharing communities people were doing a variety of
different kinds of computer research," says Taylor, "so the overall project of making the
time-sharing system itself work was much more global than any one of the individual
research fields that were being explored by different members of the time-sharing
community -- AI research, computer hardware architecture, programming languages,
graphics, and so forth.

"We were surprised time and time again by applications of the time-sharing
system that nobody planned but somebody invented anyway. The ability to have
files and resources within a time-sharing system was one difficult problem to be solved.
On the way to solving it, people discovered a new way of communicating with each other
-- something that was unexpected and became a unique medium in the research
community." Fifteen years since computer jockeys started having fun with it, that
medium has become the commercial version known as "electronic mail."

Taylor saw the necessity of connecting to one another those isolated research
communities that Licklider had seeded and Sutherland had nurtured. Many of the people
in related fields but different institutions knew of each other, and many more did not. By

 155

1956-1966, ARPA was supporting most of the nonindustrial systems research in the
country, and thus Bob Taylor and his colleagues had a more up-to-date and
comprehensive picture of the state of computer research than any individual researchers.

The people Taylor funded then undertook the planning and creation of a
network of computers, located in different parts of the country, linked by
common-carrier communication lines, capable of sharing resources and
interacting remotely with the growing community of computer researchers. The
people who were to build and ultimately make use of the system began to get together in
person to talk about the technology needed to link resources in the manner they
envisioned. Instead of working in isolation, a small group of leaders from the time-
sharing research effort began to work in concert to design the first on-line, interactive
communities.

A truly interoperating community capable of freely sharing resources across the
boundaries of individual machines or geographical locations was more difficult to bring
into existence than is suggested by the simplified general idea of plugging computers
together via telephone lines. Very serious hardware and software problems had to be
solved, and the "user interface" where the person meets the machine had to be further
humanized.

Every year, starting in 1966, following a tradition established by Licklider and
Sutherland, Taylor called a meeting of all the principal investigators of all his projects. It
would be held in a dramatic place far removed from the usual locales of Cambridge,
Berkeley, or Palo Alto. With all these meetings, Taylor, who was neither an engineer
nor a programmer (he was, in fact, a philosophy major and an experimental
psychologist by training), began the all-important mixing and sifting of ideas he knew
would be necessary to the cohesion of such a large, dispersed, and ambitious project.

"I constructed the meetings so they all had to get to know one another and
argue with one another technically in my presence," Taylor recalls. "I would
ask questions that would force people to take sides on technical issues. Lasting
friendships were built from the give and take. I asked them difficult questions.
Then, after they went back to their laboratories and campuses, their
communications increased in both quality and quantity, because they knew
each other."

Taylor also initiated annual conferences of graduate students. The best graduate students
of the old ARPA researchers had meetings of their own, away from the "older" folks like
Taylor, who was, after all, in his midthirties. Like the bands of roving builders who
planned the Gothic cathedrals of Europe, many of the computer-system builders who
participated in the ARPA grad students' meetings were to meet again later at SAIL
(Stanford Artificial Intelligence Laboratory) and PARC, and later still at Apple and
Microsoft.

 156

Taylor's idea of connecting the researchers by connecting their computers was inspired
by a phrase he read in one of Licklider's 1966 papers, in which he proposed the idea of a
very large-scale time-sharing system that he called "an intergalactic network." Taylor
took it a step farther: If you could build a communication network, why not a computer
network?

Instead of building larger numbers of longer-range communication lines between
terminals and their time-sharing systems, Taylor saw potentially greater benefits in
creating technology for different time-sharing systems to communicate with each other
over long distances. Taylor sold ARPA on he idea, then hired a young Lincoln Lab
researcher named Larry Roberts as project manager. The meetings and separate research
projects continued for three years, before the first bits were sent over the ARPAnet in
1969. By this time, Taylor's opposition to the Vietnam war was growing, and he was
reasonably certain that the project he had initiated was nearing completion, so he left
ARPA.

While the number crunchers, batch processors, and electronic bookkeepers continued to
hold sway over the computer industry, the core members of the interactive computing
community were beginning to experiment with their computers-and with themselves --
through this unique new prototype of an interconnected computer community. It quickly
turned out, to the delight of all participants and to nobody's surprise, that the
experimental network was evolving into a stimulating environment for
communicating and sharing research information and even for transporting and
borrowing computer programs.

The implications for human communication that were beginning to emerge from the
experience of this computer-connected research community were discussed in an article
published in April, 1968, titled "The Computer as a Communication device." The
principal authors were none other than J.C.R. Licklider and R. Taylor.

Although the Department of Defense had an obvious interest in fostering the
development of the technology they created in the first place, and the interconnection of
computers had certainly become a necessity in conducting advanced weapons research,
Licklider and Taylor were not applying the network idea to the Strategic Air
Command or nuclear weapons research, but to the everyday communications of
civilians.

The authors emphasized that the melding of communication and computation
technologies could raise the nature of human communication to a new level. They
proposed that the ability to share information among the members of a
community and the presence of significant computational power in the hands of
individuals were equal components of a new communicating and thinking
environment they envisioned for the intermediate future. The implications were
profound, they felt, and not entirely foreseeable: "when minds interact, new ideas
emerge," they wrote.

 157

The authors did not begin the article by talking about the capabilities of computers;
instead, they examined the human function they wished to amplify, specifically
the function of group decision-making and problem-solving. They urged that the
tool to accomplish such amplification should be built according to the special
requirements of that human function. In order to use computers as communication
amplifiers for groups of people, a new communication medium was needed: "Creative,
interactive communication requires a plastic or moldable medium that can be modeled, a
dynamic medium in which premises will flow into consequences, and above all a
common medium that can be contributed to and experimented with by all."

The need for a plastic, dynamic medium, and the requirement that it be accessible to all,
grew out of the authors' belief that the construction and comparison of informational
models are central to human communication. "By far the most numerous, most
sophisticated, and most important models," in Licklider's and Taylor's opinion, "are those
that reside in men's minds."

Collections of facts, memories, perceptions, images, associations, predictions, and
prejudices are the ingredients in our mental models, and in that sense, mental models are
as individual as the people who formulate them. The essential privacy and variability of
the models we construct in our heads create the need to make external versions that can
be perceived and agreed upon by others. Because society, a collective entity, distrusts the
modeling done by only one mind, it insists that people agree about models before the
models can be accepted as fact.

The process of communication, therefore, is a process of externalizing mental
models. Spoken language, the written word, numbers, and the medium of printing were
all significant advances in the human ability to externalize and agree upon models. Each
of those developments, in their turn, transformed human culture and increased collective
control over our environment. In this century, the telephone system added a potent new
modeling medium to the human communication toolkit. Licklider and Taylor
declared that the combination of computer and communication technologies, if
it could be made accessible to individuals, had the potential to become the most
powerful modeling tool ever invented.

As an example of how a prototype computer communication system could be used to
boost the process of decision-making, Licklider and Taylor described an actual meeting
that had taken place on just such a system. It was a project meeting involving the
members of a computer-science research team. Although all the participants in the
meeting were in the same room, they spent their time looking at their display screens
while they talked. A variety of diagrams, blocks of text, numbers, and graphs passed
before their eyes via those screens.

The facility was, in fact, Doug Engelbart's Augmentation Research Center. The machine
in another room that made the meeting possible was the latest kind of multiaccess
computer that the time-sharing research of the last few years had produced.

 158

http://www.rheingold.com/texts/tft/9.html

Using the project meeting as a model, Licklider and Taylor showed how computers could
handle the informational housekeeping activities involved with a group process. More
importantly, they demonstrated how this subtle kind of communication augmentation
could enhance the creative informational activity that took place. The ability to switch
from microscopic details to astronomical perspectives, to assemble and reassemble
models, to find and replace files, to cut and paste and shuffle, to view some information
publicly and make private notes at the same time, to thumb through the speaker's files or
check his references while he is talking, made it possible for people to communicate with
each other through the computer system in a way not possible in a nonaugmented
meeting.

"In a few years," the authors predicted, in the very first words of their article,
"men will be able to communicate more effectively through a machine than
face to face." Referring to their model technical meeting at SRI, Licklider and Taylor
estimated that "In two days, the group accomplished with the aid of a computer what
normally might have taken a week."

This small group -- the people together with the hardware and software of a multiaccess
computer -- constituted what Licklider and Taylor identified as one node of a larger,
geographically distributed computer network. The key idea, Taylor and Licklider now
recall, had been proposed by Wesley Clark in a cab ride to Dulles Airport, after a
1966 meeting about the network Taylor was trying to put together. The problem lay in
deciding which levels of the existing computer and communication systems had to be
changed to couple incompatible machines and software.

Many of the planners believed that a huge "host" computer in the center of the
country would have to be specially designed and programmed to act as a
translator. Clark suggested that a small, general-purpose computer at each node
could be turned into a "message processor." Through long distance common-carrier
communications, these "interface message processors" (known eventually as "imps") and
their local multiaccess computer communities could be integrated into a kind of
supercommunity.

The imps would take care of all the behind-the-scenes traffic controlling and error-
checking functions needed to ensure accurate transmission of data -- a significant task in
itself -- so the individual users wouldn't have to worry about whether the files they want
to read or the programs they need to use are a thousand miles away or down the hall.

The resulting communication system became part of a new kind of computing system
that was not confined to any single computer. Teams of ARPA-supported scientists found
that they could invoke the use of a program residing in a computer located in Berkeley,
California, feed the program with data stored in Los Angeles, then display the result in
Cambridge, Massachusetts. The network was suddenly more important than the
individual computers, as the computers became "nodes" in a geographically
distributed supercomputer.

 159

It began to be possible to think of a computer network that was not centrally controlled
from any one place, in which the traffic control and data communication and behind-the-
scenes number crunching required were invested in the software instead of the hardware.
Instead of a huge host computer in the center of it all that received a stream of
information from one computer, translated the stream into a form that could be decoded
by another computer, and relayed the translated information to the receiving computer,
the smaller imps at each node would accept and pass along information packets that had
been translated into a common format by the imp connected to the originating computer.

The controlling agent in a "packet switched" network like the ARPAnet was not
connected to a central computer somewhere, nor even the "message processors" that
mediated between the computers, but the packets of information, the messages
themselves. Like the addresses on letters, the code by which information was packaged
for transmission put into each packet all the information necessary for getting the
message from origin to destination, and for translating between different kinds of
computers and computer languages.

While the networking technology was evolving rapidly the number of computer terminals
proliferated and the accepted way of using computers was beginning to change. By 1968,
the punchcards and printouts of 1960 were being replaced by ever-more interactive
means of communicating with the computer: a keyboard and teletype printer and, in some
exotic quarters, a graphic display screen were becoming standard input and output
devices for programmers.

To old-liners who were used to submitting punched cards and receiving machine code
printouts on huge fanfolds from line printers, the ability to type a command on a
keyboard and see the computer's immediate response on their own printer was nothing
short of miraculous. Through the rapidly spreading use of time-sharing, many people
were able to use individual terminals to directly interact with large computers. To these
who knew about the plans to connect their time-sharing communities into a
supercommunity, 1968 was a time of exciting and rapid change in a field that was still
virtually unknown to the outside world.

The idea of a community that could be brought into existence by the
construction of a new kind of computer system was perhaps the most radical
proposal in the 1968 paper. The ARPAnet was not on-line until 1969, but at that point
the time-sharing groups had constructed enough of the superstructure for the outlines of
the new network to be known and visible.

Taylor and Licklider were more concerned about the further development of this test-bed
for advanced communications and thought amplification than they were dedicated to the
use of the network as an operational entity for conducting weapons research. Writing
with the knowledge that ARPAnet was to begin operation within a year, and would
probably be unknown outside defense or computer science circles, Licklider and Taylor
pointed out:

 160

. . . Although more interactive multiaccess computer systems are being delivered now, and although more
groups plan to be using these systems within the next year, there are at present perhaps only as few as half a
dozen interactive multiaccess computer communities.

These communities are socio-techno pioneers, in several ways out ahead of the rest of the computer world:
What makes them so? First, some of their members are computer scientists and engineers who understand
the concept of man-computer interaction and the technology of interactive multiaccess systems. Second,
others of their members are creative people in other fields and disciplines who recognize the usefulness and
who sense the impact of interactive multiaccess computing upon their work. Third, the communities have
large multiaccess computers and have learned to use them. and fourth, their efforts are regenerative.

The authors were looking beyond the networks of their day, and the computer systems
that were commercially available, to the technology they knew would be possible and
affordable on a large scale within decades. Convinced that the technology they and their
colleagues had created, and the community of users that had grown up around that
technology, were the forerunners to far more powerful and more widely usable systems,
they called for the development of a version of certain time-sharing systems into a tool
that could be used to amplify human communications:
. . . These new computer systems we are describing differ from other computer systems advertised with the
same labels: interactive, time-sharing, multiaccess. They differ by having a greater degree of open-
endedness, by rendering more services, and above all by providing facilities that foster a working sense of
community among their users. The commercially available time-sharing services do not yet offer the power
and flexibility of software resources -- the "general purposeness" -- of interactive multiaccess systems of
the System Development Corporation in Santa Monica, the University of California at Berkeley,
Massachusetts Institute of Technology in Cambridge and Lexington, Mass. -- which have been collectively
serving abut a thousand people for several years.

The thousand people include many of the leaders of the ongoing revolution in the computer world. For over
a year they have been preparing for the transition to a radically new organization of hardware and software,
designed to support many more simultaneous users than the current systems, and to offer them -- through
new languages, new file-handling systems, and new graphic displays -- the fast, smooth interaction required
for truly effective man-computer partnership.

Time-sharing, tremendously exciting as it was to programmers, was seen as only a means
to an end by those who were aiming to build communication amplifiers. To those who
were gung-ho about the future of multiaccess computing, Taylor and Licklider talked
about the ultimate goal of the various projects they had initiated: the creation of
tools to enhance the thinking of individuals and augment communications
among groups of people.

Engelbart's group at SRI, Ivan Sutherland's computer graphics work at MIT and Harvard,
David Evans and his students at the University of Utah, the Project MAC hackers at MIT,
and other groups scattered around the country were constructing pieces of a whole new
technology. Foreseeing the day when such systems would be practical on a large scale,
Licklider and Taylor reminded their colleagues that the new information processing
technology could revolutionize not only research centers and universities, but offices,
factories, and ultimately schools and homes.

Looking toward what was then the long-term future, Licklider and Taylor projected a
positive attitude about the possible impact of supercommunities that might include not

 161

only computer scientists and programmers but housewives, schoolkids, office workers
and artists:

But let us be optimistic. What will on-line interactive communities be like? In most fields
they will consist of geographically separated members, sometimes grouped in small clusters and sometimes
working individually. They will be communities not of common location but of
common interest. In each field, the overall community of interest will be large enough to support a
comprehensive system of field-oriented programs and data.

In each geographical sector, the total number of users -- summed over all the fields of interest -- will be
large enough to support extensive general-purpose information processing and storage facilities. All of
these will be interconnected by telecommunications channels. The whole will constitute a labile
network of networks -- ever changing in both content and configuration.

The authors envisioned the creation of an interconnected system of software-based tools
that would provide "investment guidance, tax counseling, selective dissemination of
information in your field of specialization, announcements of cultural, sport, and
entertainment events that fit your interests, etc. In the later group will be dictionaries,
encyclopedias, indexes, catalogues, editing programs, teaching programs, testing
programs, programming systems, data bases, and -- most important -- communication,
display, and modeling programs." They could have been describing from life the facilities
that were available at PARC, ten years later.

Licklider and Taylor were most emphatic that the impact would be great, on both
individuals and organizations, when all the elements, which they could only speculate
about in 1968, were perfected sometime in the future:

First, life will be happier for the on-line individual because the people with
whom one interacts most strongly will be selected more by commonality of
interests and goals than by accidents of proximity. Second, communication will
be more effective, and therefore more enjoyable. Third, much communication will be with
programs and programmed models, which will be (a) highly responsive, (b) supplementary to one's own
capabilities, rather than competitive, and (c) capable of representing progressively more complex ideas
without necessarily displaying all the levels of the structure at the same time -- and which will therefore be
both challenging and rewarding. And fourth, there will be plenty of opportunity for
everyone (who can afford a console) to find his calling, for the whole world of
information, with all its fields and disciplines, will be open to him -- with programs ready to guide him
or to help him explore.

For the society, the impact will be good or bad, depending mainly on one
question: Will "to be on-line" be a privilege or a right? If only a favored
segment of the population gets a chance to enjoy the advantage of "intelligence
amplification," the network may exaggerate the discontinuity in the spectrum of
intellectual opportunity.

 162

On the other hand, if the network idea should prove to do for education what a
few have envisioned in hope, if not in concrete detailed plan, and if all minds
should prove to be responsive, surely the boon to humankind would be beyond
measure.

Strangely lyrical and surprisingly romantic prose coming from two computer-research
organizers in the Pentagon. But by 1971, when Taylor recruited fifty or sixty of the best
people in the field for the Computer Science Laboratory at PARC, the cream of the
interactive computer designers had enough engineering and software research behind
them from the time-sharing and ARPAnet projects to make them confident that such a
utopian scenario might be possible -- especially if a corporation with the resources of
Xerox was willing to take the high-stakes gamble.

The people who built the first interactive, multiaccess computers, the first intellectual
augmentation systems, and the first packet-switching computer networks were gathering
under the same roof for the first time, in order to turn those dreams into prototypes as
soon as possible. Butler Lampson, Chuck Thacker, Jim Mitchell, Ed McCreight, Bob
Sproull, Jim Morris, Chuck Geschke, Alan Kay, Bob Metcalfe, Peter Deutsch, Bill
English -- to those who knew anything about the esoteric world of computer design, the
PARC computer science founders constituted an unprecedented collection of talents.

It wasn't the kind of shop where old-style hierarchies and pecking orders would do any
good. You don't run an outfit like that as much as you mediate it -- which is where
Bob Taylor came in. The kind of thing they were building, and the kind of people it took
to build it, required a balance between vision and pragmatism, the kind of balance that
couldn't be enforced by artificially imposed authority.

What they all agreed upon was what they wanted to get their hands on, in the way of a
first-rate research facility. The potential of computers as tools to be used by individuals,
and the communications possibilities opened by linking computers, were what motivated
the PARC team. It was time to demonstrate that the theories about using personal
computers to manage personal communications could work in an office like theirs. If they
could demonstrate that such devices could speed their own work, they would be on the
way to selling the rest of the world on the vision they held form the time-sharing days.

The first thing they needed in order to retool the world of information work was a
computer designed for one person to use, something that went far beyond previous
attempts. Because they knew that vision was the human sense capable of the most
sophisticated informational input, the PARC computerists knew they wanted a
sophisticated graphic screen to bring the computer's power to the user. Complex,
dynamic, visual models required a large amount of computer power, so the decision to
emphasize the visual display meant that the hardware would have a great deal
more memory and speed than anyone else in the computer world had heretofore
put at any one individual's command.

 163

"We wanted hardware as capable as we could afford to build," Taylor recalls, "because
we needed capable computing tools to design an entire software architecture that nobody
in the world yet knew how to make. We wanted for our own use what we thought other
information workers would eventually want. We needed the computing power and the
research environment to build something expensive but very flexible and growable that
would someday be much less expensive but even more capable. We all understood when
we planned the Alto that the main memory of what we wanted might cost $7000 by the
time it was produced, in 1974, but would drop to about $35 ten years later."

The hardware shop at PARC was only set up to produce small batches for the PARC
software designers, but eventually 1500 Altos were built for Xerox executives and
researchers, for associates at SAIL and SRI, as well as for the U.S. Senate, House of
Representatives, certain other government agencies, and even the White House Staff. It
was the first machine designed to put significant computing power on a person's desk.

The job the Alto designers did was all the more remarkable when compared with the first
"personal computers" the outside world was to learn about years later. The 1975 Altair,
the granddaddy of the homebrew computers, had all of 1/4K main memory (also known
as RAM, this represents the amount of storage space the computer devotes to "working
memory," and thus indicates the rough limit of how much work it can do with reasonable
speed). The first Apple models sold, in 1977, had 8K. When IBM introduced its personal
computer, in 1981, the standard model had 16K. The Alto, in 1974, started with 64K and
was soon upgraded to 256K. The distinctive bit-mapped screen and the mouse pointing
device weren't to be seen on a non-Xerox product until 1983, when Apple produced Lisa.

The hardware, of course, was just a part of the story. These devices were built for the
people whose job it was to create equally spectacular software innovations. And the
personal computers themselves weren't enough for those who longed for the kind of
community they had known with the ARPAnet.

"We didn't start talking about the hardware and software until we talked about what we
wanted to do personally with such a system," Taylor remembers. "We knew there were
technical problems to solve, and we would challenge them in due time. First we had to
consider the human functions we wanted to amplify. For example, people use their
eyes a great deal to assimilate information, so we wanted a particularly powerful kind of
display screen. Then all the time-sharing veterans insisted they wanted a computer that
didn't run faster at night."

What Taylor meant was that the time-sharing programmers had all been accustomed in
the mid 1960s to doing their serious computing in the middle of the night, when the
amount of traffic on the central computer was light enough to perform truly large
information processing tasks without delay. The first radical idea they agreed upon was
that each Alto had to have as much main memory as one of the central computers from
the time-sharing systems of only a few years back. And it had to be fast.

 164

"People can give commands to a computer much more rapidly and easily by seeing and
pointing than by remembering and typing, so we adopted and then adapted the mouse,"
added Taylor. "It is hard for people to learn artificial languages and even harder for
machines to learn natural languages. The existing computer languages didn't give first-
time users and experimental programmers equal power to interact with the computer, so
we created new kinds of languages."

"Most importantly, people often need to do things in groups. There are times when we
want to use the Alto as a personal tool, and times when we want to use it as a
communication medium, and times when we want to do both. Our purpose in bringing
all that computing power to individuals was not to allow them to isolate
themselves. We wanted to provide the gateway to a new communication space,
and ways to fly around in it, and a medium for community creativity, all at the same
time."

When time-sharing first got going, and hackers began to proliferate late at night in the
corners of university computer departments, the subcult of computerists found that while
they could all communicate with the central computer at the same time, they couldn't all
necessarily communicate with each other, or share each other's programs or files. It took
some effort, but the time-sharing systems programmers eventually solved the problem.

The solution to the difficult problem of sharing resources among different users of a
multiaccess computer became no less difficult when it had to be translated to the problem
of sharing resources between many equally powerful, geographically separated, often
incompatible computers (as with ARPAnet). The carefully designed connectivity of time-
sharing could not be patched onto the new system.

The PARC network had to be built from the ground up, along with the personal
workstations and shared servers for filing, printing, and mail. The server notion meant
that certain otherwise stock-model Altos would be programmed for the tasks of
controlling these network services, instead of building separate devices to perform these
tasks. The concept of the resulting Ethernet, as it was called, stemmed from the
determination to make the network itself a tool at the command of the individual user.

The PARC folks were hungry for personal computing power, but they didn't want to give
up that hard-won and effort-amplifying community they were just beginning to know on
the ARPAnet. Dan Swinehart, an SRI alumnus who joined PARC early in the game,
remembers that "From the day the Alto was proposed, Butler Lampson and Bob Metcalfe
pointed out that if we were going to give everybody at PARC a self-contained computer
instead of hooking them all into a central time-sharing system, we'd need a connecting
network with enough communicating and resource-sharing capability that the people at
the personal work stations wouldn't be isolated from each other."

Thus, the companion to the ALTO was the Ethernet, the first of the "local area networks."
With the advent of network technology, the hardware became less important and the
software became more important, because such a network consists of a relatively simple

 165

hardware level, where a small box plugs the individual computer into the network, and a
series of more sophisticated software levels known as protocols that enable the different
devices to interoperate via a communication channel.

With common-carrier networks -- the kind where teenage hackers use their telephones to
gain access to Defense Department computers -- the small box is known as a modem and
works by translating computer bits into a pattern of tones that the public telephone system
uses to communicate information. A local area network uses a different kind of small box
that converts computer data into electrical impulses that travel from computer to
computer via a short cable, rather than the audio tones that are sent over common-carrier
communication lines.

Local area networks are meant for environments like PARC -- any campus or laboratory
or group of offices where many machines are distributed over a small geographical area.
Several local networks can also be linked over long distances via "message processors"
known as gateways to the common-carrier-linked internetwork. This scheme embeds
local networks in more global supernetworks.

Today's network technologies use the packet-switching techniques originally developed
during the creation of the ARPAnet -- exactly the kind of coding of information that
Shannon predicted in 1948. Information is transported and processed in packets of
information -- bursts of coded on-off pulses -- that carry, in addition to the core data of
the message, information on how the message is to be transmitted and received. If your
computer uses the right kind of hardware and software translators, your data will find its
own way through the network according to the control and routing information embedded
in the packets.

The technical details of packet switching won't matter to the vast majority of the people
who will end up using network systems in the future, but the notion of "distributed
computing" signals an important change to a new phase in the evolution of computation.
Distributed systems, in which a number of people, each with their own significantly
powerful personal computers, join together into even more powerful computational
communities, are altogether different from the centrally controlled and highly restricted
computers of the early days.

Where we will all choose to go, or be forced to go by human nature or historical
circumstances, once we are given access to such a system, is a wide-open question, once
you get beyond the revolutionary but relatively simple applications to office work.
Almost all the augmentation pioneers now use the analogy of the early days of
automobiles to describe the present state of the system. Engelbart and Taylor agree
that the personal computers millions of enthusiasts are using today are not even at the
stage the automobile industry reached with the model T. More important, there is not
yet a widespread transportation support structure for the messages between
individuals.

 166

http://www.rheingold.com/texts/tft/6.html

There are no standard ways to build or drive the informational vehicles that have been
devised only recently. The existing highways for large-scale, high-bandwidth information
transportation don't even cover a fraction of the countryside. There are no service stations
or road maps. The tire industry and the petroleum industry of the knowledge age don't
exist yet. There may be prototypes of mind-extending technologies at places like PARC,
but there is not yet an infrastructure to support their use in wider society.

The researchers at PARC were wildly successful in their efforts to build powerful
personal computers, years before the business and consumer communities were prepared
to accept them, but Xerox marketing management failed to take advantage of the head
start achieved by their research and development teams by quickly turning the prototypes
into products. The failure of Xerox to exploit the research at PARC was partially a result
of the lack of the kind of infrastructure described by the automobile analogy. Technology
transfer in such a fast-moving field as microelectronic devices is a tough enough gamble.
The problem gets more complicated when those devices are intended to affect the way
people think. Building a system from scratch and showing that it works is still a
long way from convincing most of the people in the work force to change the
way they've always done things.

By the mid 1970s, the nation's smartest computer researchers realized that the Alto,
Ethernet, and Smalltalk (an equally advanced computer language) prototypes created at
PARC had advanced the state of interactive computing far beyond the level achieved by
the ARPA-sponsored time-sharing projects that had revolutionized computers a decade
previously. By the late 1970s, Xerox management was ready to think about turning
PARC's successes into a product.

While the PARC whiz kids raced ahead on advanced research into dozens of information-
related sciences and technologies, the Star and the Ethernet were readied for market. Star
was designed to be much more than a production-model Alto: The main memory was
512K, twice as much as the enhanced Alto, and the Star's processor was built to run three
times as fast as the Alto. The Star's software included a language named Mesa (created in
Taylor's lab), along with a whole toolkit of application programs for editing, filing,
calculating, computing, creating graphics, distributing electronic mail.

One of the clichÈs of the computer industry in the early 1980s was that "if Xerox had
marketed the Star when it was technically ready to go, they would have stolen an industry
out from under IBM and Apple." As it happened, April, 1981, when the Star 8010
Information System was announced, was still too early for the larger segments of office
professionals to realize that they were information workers. Xerox marketing
management insisted that the workstation was not only a breakthrough in providing tools
for individuals, but a part of an integrated office system of interconnected components
that shared mail, printing, and filing services. But nobody outside a few privileged
test sites knew what that meant.

Until word processing came out of nowhere (as far as the people in offices were
concerned) to replace most of the typing pools in the early 1980s, it wasn't clear to the

 167

people who bought office equipment for corporations that computers and office workers
were bound to get acquainted rapidly. To the first knowledge workers at aerospace firms,
it was very clear that there was a major difference between these machines and the
devices they had formerly known as computers.

The place where the mind meets the machine, the long-neglected frontier of computer
development, was advanced to a new high level by those at ARC and PARC who created
the partially psychological, partially computational engineering of the user
interface. The dreams of the augmentation pioneers were finally materialized in the
products of their students, who took the first steps with the Star to engineer the machine
to the minds of the potential users. The Star designers reiterated the connection between
sophisticated visual representation and the ability to amplify thought:

During conscious thought, the brain utilizes several levels of memory, the most important being the "short-
term memory." Many studies have analyzed the short-term memory and its role in thinking. Two
conclusions stand out. (1) conscious thought deals with concepts in the short-term memory . . . and (2) the
capacity of short-term memory is limited. . . . When everything being dealt
with in a computer system is visible, the display screen relieves the load on the
short-term memory by acting as a sort of "visual cache." Thinking becomes
easier and more productive. A well designed computer system can actually
improve the quality of your thinking. . . .

A subtle thing happens when everything is visible: the display becomes the reality. The user model
becomes identical with that which is on the screen. Objects can be understood purely in terms of their
visible characteristics.

The idea that the right kind of computer systems could affect the way people think -- the
seed planted by Vannevar Bush and nurtured by Licklider and Engelbart -- was not lost
on the Xerox interface builders. In regard to the principle that they called "consistency,"
the Star team noted:
One way to get consistency into a system is to adhere to paradigms for operations. By applying a
successful way of working in one area to other areas, a system acquires a unity that is both apparent and
real. . . .

These paradigms change the very way you think. They lead to new habits and models of behavior that are
more powerful and productive. They can lead to a human-machine synergism.

After ten years, PARC had achieved its technological goals, and more. The Mesa and
Smalltalk languages were both significant advancements of the software art. If bold and
imaginative research were all that the success of a company depended on, Xerox would
have been in a position to challenge even the dominating force of the information
industry. But Peter McCollough was no longer the CEO, and Xerox top management
failed to comprehend the ten-year technological lead their research division had handed
them.

Some of the most important members of the starting team left PARC in the early 1980s to
join other companies or to start their own firms. Such job changes at the higher levels of

 168

the electronics and computer industries were far from unknown in Silicon Valley; in fact
PARC was distinguished from similar institutions for many years because of the unusual
lengths of time put in by its principal scientists. But when Xerox failed to become the
first name in the industry, and the hobbyist side of personal computing had grown to the
point where some of the original hobbyists were recruiting PARC scientists and building
their own personal computer empires, the first high-level PARC defectors began to
seed the rest of the industry with the user interface concepts embodied in the
Star.

Bob Metcalfe, the man responsible for the creation of the Ethernet, left to start 3-Com, a
company specializing in local area network technology. Alan Kay, whose Smalltalk team
made impressive contributions to the Star interface, left to become the chief scientist at
Atari. John Ellenby, who helped reengineer the Alto 2, became the chairman of Grid. In
the fall of 1983, Bob Taylor resigned, after thirteen years leading the laboratory team he
had built.

Several of the PARC alumni became associated with those industry newcomers who had
emerged from the homebrew computer days. Some of the former whiz kids from PARC
were making alliances with the next generation of whiz kids. Charles Simonyi, by then in
his early thirties, who was in charge of producing the word processing software for the
Alto, left PARC to join Bill Gates, the twenty-seven-year-old chairman of Microsoft, a
company that started out as a software supplier to the computer hobbyists in the Altair
days of 1975, and is now the second-largest microcomputer software company in the
world.

Steve Jobs, chairman of Apple, then in his late twenties, visited PARC in 1979. He was
given a demonstration of the Alto. Larry Tesler, the member of the PARC team that gave
Jobs that demonstration, left PARC in 1980 and joined Apple's new secret project that
Jobs promised would redefine the state of the art in personal computers. In 1983 Apple
unveiled Lisa -- a machine that used a mouse, a bit-mapped screen, windows, and other
features based on the Star-Alto-Smalltalk interface. The price for the system was around
$10,000. This was $6000 less than the more powerful Star, but still hardly in the range of
the consumer market. In 1984, Apple brought out a scaled-down, cheaper version of Lisa,
the Macintosh, with the same user interface, and revolutionized the personal computer
market.

If time-sharing research had been the unofficial initiation ceremony and the ARPAnet
was the rite of passage, the PARC era was the end of the apprenticeship era for
the augmentation community. New generations of researchers and entrepreneurs were
entering the software fray through the infant computer industry. By the early 1980s, it
didn't take a computer prophet to see that big changes were going to continue to happen
as the mass market began to awaken to the potential of personal computing. Although the
hardware and the software of the first tens of millions of personal computers fell far short
of what the PARC veterans were working toward, the stakes of the game had
changed with the emergence of a mass market.

 169

http://www.rheingold.com/texts/tft/1.html1

The beginnings of a much wider computer-using community also meant the end of arcane
jargon and software designs that required complex interactions with the computer. The
design principles demonstrated by the Star and the Lisa pointed the way for the future
computer designers. At PARC, they were already onto the Dorado, the Dolphin, and
other post-Star computers. Now that truly capable computing machinery was becoming
available, it was becoming more widely known that the commercially successful
programs of the future would be those that succeeded in bringing the power of the
computer out to the person who needs to use it.

The "rule of two" is, incredibly, still in effect, promising even more powerful and less
expensive computer hardware in the late 1980s. In 1984, Bob Taylor, now with Digital
Equipment Corporation, started doing what he does best -- assembling a computer
systems research team for a final assault on the objective. Some of the key members of
his team were graduate students when ARPA funded time-sharing, and had been involved
in the ARC and PARC eras. The latest arena for their ongoing effort to bootstrap
interactive computation technology to the threshold of truly powerful personal computing
was named "Systems Research Center" -- or SRC, pronounced "circ" ("as in circus").

"Come to my office in five years," Taylor challenged me, at the beginning of this gun-lap
in the augmentation quest, "and I'll show you a desktop machine twice as fast as the
biggest, most expensive supercomputer made today. Then it will become possible to
create the software that can take advantage of the capabilities we've known about for a
long time."

Taylor now believes that three factors will lead to the most astonishing plateau
in information processing we've seen yet: first, a new level of systems software will
be able to take advantage of computer designs that make each personal
workstation into a kind of miniature distributed network, with multiple parallel
processors inside working in coordination; second, large scale integration processors will
be small and cheap enough to put fast, vast memory into desktop machines; third,
and most important, the people who built time-sharing, graphics, networks, personal
computers, intelligent user interfaces, and distributed computing are now at the height of
their powers, and they have put hundreds of thousands of person-hours into learning how
to build new levels of computer technology.

Advances in network technologies, graphics, programming languages, user interfaces,
and cheap, large-scale information storage media mean that the basic capabilities
dreamed of by the designers of the first personal computers are likely to become widely
available before the turn of the century. One hopes that we will be ready to use them
wisely. It would be a sad irony if we were to end up creating a world too complicated for
us to manage alone, and fail to recognize that some of our own inventions could help us
deal with our own complexity.

 170

Chapter Eleven:
The Birth of the Fantasy Amplifier
When millions of portable, affordable, imagination amplifiers fall into the hands of eight-
year-old children, look for Alan Kay somewhere in the plot. He has always been too
impatient to wait for someone else to bring him what he wanted. And he's always found
ways to create what he wanted if it didn't exist. For the past fifteen years, his sights have
been set on handheld, full-color, stereophonic, artificially intelligent, information
representation toys. And he wants them by the tens of millions. They don't exist yet, so
he's enlisted some formidable allies to help him create them.

Fame, fortune, or even the more esoteric career ambitions of top-notch software
professionals do not seem to motivate Dr. Kay, now a "research fellow" for Apple,
formerly "chief scientist" at Atari Corporation. Becoming another Silicon Valley
millionaire or accepting the offer of an endowed chair at MIT have not
interested him as much as the prospect of putting the power to imagine into the
hands of every bright kid who got thrown out of a classroom.

Ever since he learned to read at the age of two and a half, Alan Kay has been accustomed
to doing things his own way and letting the rest of the world catch up later. At the same
time he was close to flunking out of the eighth grade, primarily for insubordination, he
was one of television's original "Quiz Kids." Ten years before he coined the term
"personal computer," before Atari or PARC existed, and before another pair of bright
insubordinates named Wozniak and Jobs created a new meaning for that good old
American word "Apple," Alan Kay was demonstrating FLEX, a personal computer in all
but name, to the ARPA graduate students' conference.

Alan is now in his early forties, and is acknowledged by his peers, if not yet the general
public, as one of the contemporary prophets of the personal computer revolution.
Now his goal is to build a "fantasy amplifier," a "dynamic tool for creative
thought" that is powerful enough, small enough, easy enough to use, and
inexpensive enough for every schoolkid in the world to have one. He has the
resources and the track record to make you believe he'll do it.

Alan Kay doesn't fit the popular image of the arrogant, antisocial hacker, the fast-lane
nouveau micromillionaire, or the ivory tower computer scientist. He wears running shoes
and corduroys. He has a small, meticulous moustache and short, slightly tousled dark
hair. He's so imageless you could pass him in the halls of the places he works
and not notice him, even though he's the boss. Which isn't to say that he's
egoless or even modest. He loves to quote himself, and often prefaces his
homilies with phrases like "Kay's number one law states"

 171

When I first encountered him, between his stint as director of the legendary "Learning
Research Group" at Xerox PARC, and his present position as a kind of "visionary at
large" for Apple, Dr. Kay and his handpicked team at Atari were working under tight
secrecy, with a budget that was rumored to be somewhere between $50 million and $100
million, to produce something that nobody in the corporation ever described to anybody
outside the corporation. But anybody who has ever talked to him, or read something he
has written about his dreams, can guess the general thrust of Kay's Atari project, and the
probable direction of his current work at Apple. He has been moving toward realizing his
dream, project by project, prototype by prototype, innovation by innovation, ever since he
was a graduate student.

Being the kind of person he is didn't make it easy for Alan to get an education. At the
beginning, he knew more than all of his classmates and most of his teachers, and he didn't
mind demonstrating it aloud -- a trait that got him thrown out of classrooms and beaten
up on playgrounds.

Fortunately for him and for all of us who may benefit from his creations in the future,
Alan was already well armored in his mind and imagination, where it really counted, by
the time his teachers and classmates got ahold of him. For Alan, being ahead of
everybody else started out as a pleasure and quickly turned into a survival trait -- which
meant he didn't do too well in school, or anyplace else, until the summer of his fifteenth
year, when "a music camp in Oneonta, New York, changed my entire life."

Music became the center of his life. In many ways, it still is. He commutes to Silicon
Valley from his home in Brentwood, 300 miles away, mostly because he
doesn't want to be away from his homemade pipe organ for too long. And he still
goes to music camp every summer. He never understood why his two favorite toys --
books and musical instruments -- could not be combined into a single medium capable of
dealing with both sounds and symbols. He worked as a professional jazz and rock
guitarist for ten years. When it looked like he was about to be drafted, Kay joined the
U.S. Air Force as a navigational cadet. In the Air Force, he "wore out a pair of shoes
doing insubordination duty," but he also learned that he had a knack for computer
programming.

After he finished his Air Force duty, the National Center for Atmospheric Research was
eager to use Kay's programming talent to pay his way through the University of
Colorado. He earned a degree in biology, but his college grades were as mixed as they
had always been, because of his habit of concentrating intently on only those things that
interested him. Through what Alan now calls "sheer luck," he came to the attention of
somebody smart enough to actually teach something to a smartass like Alan
Kay -- and bold enough to admit a student with an undergraduate record that
read more like a rap sheet than a transcript.

The man who gambled on Kay's checkered history in academia was David Evans, the
chairman of the computer science department at the University of Utah, a place that was
to become one of the centers of the augmentation community by the mid-1960s. Like so

 172

many others who assumed positions of leadership in the field of interactive computer
systems design, Evans had been involved in early commercial computer research and
with the ARPA-funded groups that created time-sharing.

"Those career pathways of ARPA project leaders and their graduate students repeatedly
intertwined," Kay recalls. "An enormous amount of work was done by a few people who
kept reappearing in different places over the years. People frequently migrated back and
forth from one ARPA project or another. ARPA funded people rather than projects, and
they didn't meddle for an extended period. Part of the genius of Licklider and Bob
Sproull was the way this moving around contributed to the growth of a community."

One of the people Evans managed to recruit for the Utah department who had an impact,
not only on Alan Kay but on the entire course of personal computing was Ivan
Sutherland, the graduate student and protégé of Claude Shannon and J. C. R. Licklider
who single-handedly created the field of computer graphics as a part of his MIT
Ph.D. thesis -- the now legendary program known as "Sketchpad."

People like Alan Kay still get excited when they talk about Sketchpad: "Sketchpad had
wonderful aspects, besides the fact that it was the first real computer graphics program. It
was not just a tool to draw things. It was a program that obeyed laws that you wanted to
be held true. So to draw a square in Sketchpad, you drew a line with a lightpen and said:
'Copy-copy-copy, attach-attach-attach. That angle is 90 degrees, and these four things are
to be equal.' Sketchpad would go zap! and you'd have a square."

Another computer prophet who saw the implications of Sketchpad and other heretofore
esoteric wonders of personal computing was an irreverent, unorthodox, counterculture
fellow by the name of Ted Nelson, who has long been in the habit of self-publishing
quirky, cranky, amazingly accurate commentaries on the future of computing. In The
Home Computer Revolution Nelson had this to say about Sutherland's pioneering
program, in a chapter entitled "The most important computer Program Ever Written":

You could draw a picture on the screen with the lightpen -- and then file the picture away in the computer's
memory. You could, indeed, save numerous pictures in this way.

For example, you could make a picture of a rabbit and a picture of a rocket, and then put little rabbits all
over a large rocket. Or, little rockets all over a large rabbit.

The screen on which the picture appeared did not necessarily show all the details; the important thing was
that the details were in the computer; when you magnified a picture sufficiently, they would come into
view.

You could magnify and shrink a picture to a spectacular degree. You could fill a rocket picture with rabbit
pictures, then shrink that until all that was visible was a tiny rocket; then you could make copies of that,
and dot them all over a large copy of the rabbit picture. So that when you expanded the big rabbit till only a
small part showed (so it would be the size of a house, if the screen were large enough), then the foot-long
rockets on the screen would each have rabbits the size of a dime.

 173

http://www.kzoo.edu/%7Eabrady/CS400/bioW96/soulier.html
http://www.kzoo.edu/%7Eabrady/CS400/bioW96/soulier.html
http://www.rheingold.com/texts/tft/6.html
http://www.rheingold.com/texts/tft/7.html
http://www.rheingold.com/texts/tft/1.html4

Finally, if you changed the master picture -- say, by putting a third ear on the big rabbit -- all the copies
would change correspondingly.

Thus Sketchpad let you try things out before deciding. Instead of making you position a line in one specific
way, it was set up to allow you to a number of different positions and arrangements, with the ease of
moving cut-outs around on a table.

It allowed room for human vagueness and judgment. Instead of forcing the user to divide things into sharp
categories, or requiring the data to be precise from the beginning -- all those stiff restrictions people say
"the computer requires" -- it let you slide things around to your heart's content. You could rearrange till you
got what you wanted, no matter for what reason you wanted it.

There had been lightpens and graphical computer screens before, used in the military, but Sketchpad was
historic in its simplicity -- a simplicity, it must be added, that had been deliberately crafted by a cunning
intellect -- and its lack of involvement with any particular field. Indeed, it lacked any complications
normally tangled with what people actually do. It was, in short, an innocent program,
showing how easy human work could be if a computer were set up to be really
helpful.

As described here, this may not seem very useful, and that has been part of the problem. Sketchpad was a
very imaginative, novel program, in which Sutherland invented a lot of new techniques; and it takes
imaginative people to see its meaning.

Admittedly the rabbits and rockets are a frivolous example, suited only to a science-fiction convention at
Easter. But many other applications are obvious: this would do so much for blueprints, or electronic
diagrams, or other areas where large and precise drafting is needed. Not that drawings of rabbits, or even
drawings of transistors, mean the millennium; but that a new way of working and seeing was possible.

The techniques of the computer screen are general and applicable to everything -- but only if you can adapt
your mind to thinking in terms of computer screens.

Sutherland was Twenty-six when he succeeded Licklider as director of ARPA's
Information Processing Techniques Office. Then he was succeeded by Bob Taylor when
he left for Harvard in the mid-1960s, to work on 3-D head-mounted displays (like
miniature televisions in eyeglass frames) and other exotic graphics systems. When David
Evans tried to lure him to Utah, Sutherland said he would do it if Evans agreed to become
a business partner -- and thus the pioneering computerized flight simulation and image
generation company of Evans & Sutherland was born.

Kay showed up at Utah in November of 1966. His first task was to read a pile of
manuscript Evans gave him -- Ivan Sutherland's thesis. The way Evans ran the graduate
program, you weren't supposed to be around campus very long or very much. You were
supposed to be a professional and move on to high-level consulting jobs in industry. The
job he found for Alan Kay was with a hardware genius named Ed Cheadle. Ed had an
idea about doing a tabletop computer. Kay worked on FLEX -- his first personal
computer software design -- from 1967 to 1969. While some of the founders of today's
personal computer industry were still in high school, Kay was learning how to design
personal computers.

 174

http://www.es.com/

Technically, Cheadle and Kay were not the first to attempt to build a personal computer.
Wes Clark, from Whirlwind and Lincoln Lab's TX-2 and "imps," had constructed a desk-
size machine a few years before, known as "LINC." FLEX was an attempt to use the
more advanced electronic components that had recently become available to bring more
of the computer's power out where the individual user could interact with it. FLEX was a
significant innovation technically, but it was complicated and delicate, and in Kay's
words, "users found it repellent to learn." The problem wasn't in the machinery as
much as it was in the special language the user had to master in order to
command the power of the machine to accomplish useful tasks. That was when
Kay first vowed to make sure his personal computer would come at least part of the way
toward the person who was to use it, and when he realized that software design would be
the area in which this desire could be fulfilled.

Although he didn't fully realize it yet, Alan Kay was beginning to think about
designing a new programming language. The kind of language he began to
yearn for would be a tool for using the computer as a kind of universal
simulator. The problem was that programming languages were demonically esoteric.
"There are two ways to think about building an instrument," Kay asserts. "You
can build something like a violin that only a few talented artists can play. Or
you can make something like a pencil that can be used quickly and easily for
anything from learning the alphabet to drawing to writing a computer
program." He was convinced that 99 percent of the problem to be solved in making a
truly usable personal computer program were software problems: "By 1966, everyone
knew where the silicon was going."

Besides FLEX, Kay's other project at Utah was to make some software work. He got a
pile of tape canisters on his desk, along with a note that the tapes were supposed to
contain a scientific programming language known as Algol 60, but they didn't work. It
was a maddening software puzzle that was still far from solved when Kay figured out that
it wasn't Algol 60 but a language from Norway, of all places, called Simula. In a 1984
interview, Kay described what happened when he finally printed out on paper the
program listings stored in those mysterious canisters and figured out what was on those
tapes:

We couldn't understand any of the papers, they were sort of transliterated from the Norwegian. . . . We
spread out the program listings and actually went through the machine code to try to figure out what was
happening -- and I suddenly realized that Simula was a programming language to do what Sketchpad did. I
had never really understood what Sketchpad was. I get shivers now thinking of it. It rotated my point of
view through a different dimension and nothing has been the same since. I suddenly understood the purpose
of higher level languages.
Alan was one of the enthralled audience at Engelbart's 1968 media show. He was excited
by it because it demonstrated what you could really do with a computer augmented
representation system. It also made it clear to Alan what he didn't want to do. "The
Engelbart crew were all ace pilots of their NLS system," Kay remembers. They had
almost instant response -- like a very good video game. You could pilot your way through
immense fields of information. It was, unfortunately for my purposes, something elegant

 175

http://www.rheingold.com/texts/tft/9.html

and elaborate that these experts had learned how to play. It was too complex for my
tastes, and I wasn't interested in the whole notion of literacy as a kind of fluency.

Logo

In the course of preparing his Ph.D. thesis, Alan began to explore the world of artificial
intelligence research, which brought him into closer contact with two more computer
scientists who were to heavily influence his own research -- Marvin Minsky and Seymour
Papert, who were then codirectors of MIT's pioneering artificial intelligence research
project. In the late 1960s, Papert in particular was doing something that irrevocable
influenced Alan's goals. Papert was creating a new computer language. For
children.

Papert, a mathematician and one of the early heroes of the myth-shrouded Project Mac,
had spent five years in Switzerland, working with the developmental psychologist Jean
Piaget. Piaget had triggered his own revolution in learning theory by spending time --
years and decades -- watching children learn. He concluded that learning is not simply
something adults impose upon their offspring through teachers and classrooms, but is a
deep part of the way children are innately equipped to react to the world, and that
children construct their notions of how the world works, from the material available to
them, in definite stages.

Piaget was especially interested in how different kinds of knowledge are acquired by
children, and concluded that children are scientists -- they perform experiments,
formulate theories, and test their theories with more experiments. To the rest of us, this
process is known as "playing," but to children it is a vital form of research.

Papert recognized that the responsiveness and representational capacity of
computers might allow children to conduct their research on a scale never
possible in a sandbox or on a blackboard. LOGO, the computer language developed
by Papert, his colleague Wallace Fuerzing, and others at MIT and at the consulting firm
of Bolt, Bernack & Newman, was created for a purpose that was shockingly different
from the purposes that had motivated the creation of previous computer languages.
FORTRAN made it easier for scientists to program computers. COBOL made it easier for
accountants to program computers. LISP, some might say, made it easier for computers
to program computers. LOGO, however, was an effort to make it easier for children to
program computers.

Although its creators knew that the LOGO experiment could have profound implications
in artificial intelligence and computer science as well as in education, the project was
primarily intended to create a tool for teaching thinking and problem-solving skills to
children. The intention was to empower rather than to suppress children's natural desire
to solve problems in ways they find fun and rewarding. "The object is not for the

 176

http://brainop.media.mit.edu/people/minsky.html
http://www.multimedia.hosting.ibm.com/mmtoday/magazine/papert-1.html
http://www.multimedia.hosting.ibm.com/mmtoday/magazine/papert-1.html
http://www.rheingold.com/texts/tft/8.html
http://el.www.media.mit.edu/groups/logo-foundation/

computer to program the student, but for the student to program the computer,"
was the way the LOGO group put it.

Beginning in 1968, children between the ages of eight and twelve were introduced to
programming through the use of attractive graphics and a new approach that put the
power to learn in the hands of the people who were doing the learning. By learning how
to use LOGO to have fun with computers, students were automatically practicing skills
that would generalize to other parts of their lives.

Papert had observed from both his computer science and developmental psychology
experience that certain of these skills are "powerful ideas" that can be used at any age, in
any subject area, because they have to do with knowing how to learn . This is the key
element that separated LOGO from the "computer assisted instruction" projects that had
preceded it. Instead of treating education as a task of transferring knowledge from the
teacher to the student, the LOGO approach was to help students strengthen their ability to
discover knowledge on their own.

One of the most important of these skills, for example, is the idea of "bugs" -- the word
that programmers use to describe the small mistakes that inevitably crop up in computer
programs, and which must be tracked down before the program will work. Instead of
launching students on an ego-bruising search for the "right" answer, the task of
learning LOGO was meant to encourage children to solve problems by daring
to try new procedures, then debugging the procedures until they work.

The first revolutionary learning instrument introduced in LOGO was the "turtle," a device
that is part machine and part metaphor. The original LOGO turtle was a small robot,
controlled by the computer and programmed by the child, that could be instructed to
move around, pulling a pen as it moved, drawing intriguing patterns on paper in the
process. Alan Kay was one of several software designers who realized that this process
was more than just practice at drawing pictures, for the ability to manipulate symbols --
whether the symbols are turtle drawings, words, or mathematical equations -- is central to
every medium used to augment human thinking.

The abstract turtle of today's more advanced display technology is a triangular graphic
figure that leaves a video trail behind it on a display screen. Whether it is made of metal
and draws on paper, or made of electrons and draws on a video screen, the turtle is what
educational psychologists call a transitional object -- and what Papert calls an "object-to-
think-with."

Instead of "programming the computer" to draw a pattern, children are encouraged to
"teach the turtle" how to draw it. They start by "pretending to be the turtle" and trying to
guess what the turtle would do in order to trace a square, a triangle, a circle, or a spiral.
Then they give the turtle a series of English-like commands, typed in through a keyboard,
to "teach the turtle a new word."

 177

If the procedure followed by the turtle in response to the typed commands doesn't achieve
the desired graphic effect, the next step is to systematically track down the "bug" that is
preventing success. The fear of being wrong is replaced in this process by the immediate
feedback of discovering powerful ideas on one's own.

After decades of research, Papert summarized the results of his LOGO work for a general
audience in Mindstorms: Children, computers, and powerful ideas. In this manifesto of
what has grown into an international movement in both the educational and computing
communities, Papert reiterated something important that is easy to lose in the
complexities of the underlying technology -- that the purpose of any tool ought to be
to help human beings become more human:

In my vision the computer acts as a transitional object to mediate relationships that are ultimately between
person and person. . . .

I am talking about a revolution in ideas that is no more reducible to technologies than physics and
molecular biology are reducible to the technological tools used in laboratories or poetry to the printing
press. In my vision, technology has two roles. One is heuristic: The computer presence has catalyzed the
emergence of ideas. The other is instrumental: The computer will carry ideas into a world larger than the
research centers where they have incubated up to now.

When he came across the LOGO work, during the time he was meditating
about the fact that he had put two years into the FLEX machine only to find
that it wasn't amenable to humans who tried to use it, Alan Kay recalls that "it
was like a light going on in my head. I knew I would never design another
program that was not set up for children."

One of the first things he understood was that a program or a programming language that
can be learned by children doesn't have to be a "toy." The toy can also serve as a tool. But
that transformation doesn't happen naturally -- it comes about through a great deal of
work by the person who designs the language. Kay already knew that the most important
tools for creating personal computing were to be found in the software, but now it
dawned on him that the power those tools would amplify would be the power to learn --
whether the user is a child, a computer systems designer, or an artificial intelligence
program.

Although he knew he had a monstrous software task ahead of him if he was to create a
means by which even children could use computers as a simulation tool, his FLEX
experience and his exposure to LOGO convinced Kay that there was far more to it than
just building an easy-to-operate computer and creating a new kind of computer language.
It was something akin to the problem of building a tool that a child could use to
build a sandcastle, but would be equally useful to architects who wanted to
erect skyscrapers. What he had in mind was an altogether new kind of artifact: If he
ended up with something an eight-year-old could carry in one hand and use to
communicate music, words, pictures, and to consult museums and libraries, would the
device be perceived as a tool or as a toy?

 178

Kay began to understand that what he wanted to create was an entirely new
medium -- a medium that would be fundamentally different from all the previous static
media of history. This was going to be the first dynamic medium -- a means of
representing, communicating, and animating thoughts, dreams, and fantasies as well as
words, images, and sounds. He recognized the power of Engelbart's system as a toolkit
for knowledge workers like editors and architects, scientists, stockbrokers, attorneys,
designers, engineers, and legislators. Information experts desperately needed tools like
NLS. But Kay was after a more universal, perhaps more profound power.

One of the concepts that played a big part in Papert's LOGO project, and thus influenced
Alan Kay and others, was derived from the thinking of John Dewey, whose work
encouraged generations of progressive educators. Dewey developed a theory that Piaget
later elaborated -- that the imaginative play often mistakenly judged by adults to
be "aimless" is actually a potent tool for learning about the world. Kay wanted to
link the natural desire to explore fantasies with the innate ability to learn from
experimentation, and he knew that the computer's power to simulate anything that could
be clearly described was one key to making that connection.

Alan wanted to create a medium that was a fantasy amplifier as well as an
intellectual augmentor. First he had to devise a language more suited for his purposes
than LOGO, a "new kind of programming system that would attempt to combine
simplicity and ease of access with a qualitative improvement in expert-level adult
programming." With the right kind of programming language, used in conjunction with
the high-powered computer hardware he foresaw for the near future, Kay thought that an
entirely new kind of computer -- a personal computer -- might be possible.

Such a software advance as the kind Kay envisioned could only be accomplished by
using hardware that didn't exist yet in 1969, since the computing power required for each
individual unit would have to be several hundred times that of the most sophisticated
time-sharing computers of the 1960s. But at the end of the 1960s, such previously
undreamed-of computing power seemed to be possible, if not imminent. The year 1969
was pivotal in the evolution of personal computing, as well as in Alan Kay's career. It
was the year that the ARPAnet time-sharing communities began to discover that they
were all plugged into a new kind of social-informational entity, and enthusiastically
began to use their new medium to design the next generations of hardware and software.

After he finished his thesis on FLEX, Kay began to pursue his goal of designing a new
computer language in one of the few places that had had the hardware, the software, and
the critical mass of brain power to support his future plans -- the Stanford Artificial
Intelligence Laboratory. He had a lot to think about. There were many great
programmers, but very few great creators of programming languages.

The programming language for the eventual successor to FLEX was his primary interest,
not only because he knew that the hardware would be catching up to him, but
because he knew that programming languages influence the minds of the

 179

http://www.cs.stanford.edu/profile/ai.html
http://www.cs.stanford.edu/profile/ai.html

people who use computers. In 1977, after the task of creating his new programming
language, Smalltalk, was accomplished, Kay described the importance of this connection
between a programming language and the thinking of the person who uses it:

The particular structure of a symbolic language is important because it provides a context in which some
concepts are easier to think about than others. For example, mathematical notation first arose to abbreviate
concepts that could be expressed only as ungainly circumlocutions in natural language. Gradually it was
realized that the form of an expression and manipulation could be of a great help in the conception and
manipulation of the meaning for which the expression stood. . . .

The computer created new needs for language by inverting the traditional
process of scientific investigation. It made new universes available that could
be shaped by theories to produce simulated phenomena.

The "inverting" of "the traditional process of scientific investigation" noted by Kay was
the source of the computer's power of simulation. And the ability to simulate ideas in
visible form was exactly what a new programming language needed to include in order to
use a computer as an imagination amplifier. If Piaget was correct and children are both
scientists and epistemologists, a tool for simulating scientific investigation could have
great impact on how much and how fast young children and adult computer programmers
are able to learn.

According to the rules of scientific induction, first set down by Francis Bacon three
hundred years ago, scientific knowledge and the power granted by that knowledge are
created by first observing nature, noting patterns and relationships that emerge from those
direct observations, then creating a theory to explain the observations. With the
creation of a machine that "obeyed laws you wanted to be held true," it became
possible to specify the laws governing a world that doesn't exist, then observe
the representation created by the computer on the basis of those laws.

Papert called these simulated universes "microworlds," and used LOGO-created
microworlds to teach logic, geometry, calculus, and problem-solving to ten-year-olds.
Part of the fascination of a good video game lies in the visual impact of its microworld
representation and the amount of power given to the player to react to it and thus learn
how to control it. In Smalltalk, every object was meant to be a microworld.

Computer scientists talk about computational metaphors in computer languages --
alternative frameworks for thinking about what programming really does. The most
widespread and oldest metaphor is that of a recipe, the kind of recipe you create for
a very stupid but obedient servant -- a list of definite, step-by-step instructions that could
provide a desired result when carried out by a mindless instruction-following mechanism.
The sequence of instructions is an accurate but limiting metaphor for how a computer
operates. It is a reflection of the fact that early computers were built to do just one thing
at a time, but to do it very fast and get on to the next instruction.

 180

This model, however, is not well suited to computers of the future, which will
perform many processes at the same time (in the kind of computation that is called
parallel processing). Languages based on the dominant metaphors of numerical, serial
procedures are much better suited for linear processes like arithmetic and less well suited
for exactly those tasks that computers need to perform if they are to serve as
representational media. Parallel processing is also a better model of the way
human brains handle information.

Starting from concepts set forth in LOGO and in Simula, Kay began to devise a new
metaphor in which the string of one-at-a-time instructions is replaced by a
multidimensional environment occupied by objects that communicate by sending one
another messages. In effect, he started out to build a computer language that
would enable the programmer to look at the host computer not as a serial
instruction follower, but as thousands of independent computers, each one able
to command the power of the whole machine.

In 1969 and 1970, the growing impact of the Vietnam war and the pressure by
congressional critics of what they interpreted as "frivolous research" contributed to the
death of the "ARPA spirit" that had led to the creation of time-sharing and computer
networks. The "Mansfield Amendment" in 1970 required ARPA to fund only projects
with immediately obvious defense applications. Taylor was gone. The AI laboratories
and the computer systems designers found funding from other agencies, but the central
community that had grown up in the sixties began to fragment.

The momentum of the interactive approach to computing had built up such intensity in its
small following by the late 1960s that everybody knew this fragmentation could only be a
temporary situation. But nobody was sure where, or how, the regrouping would take
place. Around 1971, Alan began to notice that the very best minds among his old friends
from ARPA projects were showing up at a new institution a little more than a mile away
from his office at the Stanford AI laboratory.

By the beginning of 1971, Alan Kay was a Xerox consultant, then a full-time member of
the founding team at the Palo Alto Research Center. By this time, the hardware
revolution had achieved another level of miniaturization, with the advent of integrated
circuitry and the invention of the microprocessor. Xerox had the facilities to design and
produce small quantities of state-of-the-art microelectronic hardware, which allowed the
computer designers unheard-of power to get their designs up and running quickly. It was
precisely the kind of environment in which a true personal computer might
move from dream to design stage. Alan Kay was already thinking about a
special kind of very powerful and portable personal computer that he later came
to call "the Dynabook."

Everybody, from the programmers in the "software factory" who designed the software
operating system and programming tools, to the hardware engineers of the Alto prototype
machines, to the Ethernet local-area-network team who worked to link the units, was

 181

http://www.rheingold.com/texts/tft/1.html0

motivated by the burning desire to get a working personal computer in their own
hands as soon as possible. In 1971, Alan wrote and thought about something that
wasn't yet called a Dynabook but looked very much like it. Kay's Learning Research
Group, including Adele Goldberg, Dan Ingalls, and others, began to create Smalltalk, the
programming "environment" that would breathe computational life into the hardware,
once the hardware wizards downstairs cooked up a small network of prototype personal
computers.

One of the most important features of the anticipated hardware was the visual resolution
of the display screen. One of the things Alan had noticed when watching children
learn LOGO was that kids are very demanding computer users, especially in
terms of having a high-resolution, colorful, dynamic display. They were accustomed to
cartoons on television and 70-mm wide-screen movies, not the fuzzy images then to be
found on computer displays. Kay and his colleagues knew that hardware breakthroughs
of the near future would make it possible to combine the interactive properties of a
graphical language like Sketchpad with very high-resolution images.

The amount of image resolution possible on a video display screen depends on how many
picture elements are represented on the screen. Kay felt that the threshold number of
picture elements needed to most strongly attract and hold the attention of a large
population of computer users, and give the users significant power to control the
computer, would be around one million dots. (The resolution of a standard snapshot is the
equivalent to about four million dots.) The Alto computer being constructed for PARC
researchers -- which the Learning Research Group called "an interim Dynabook" --
would have around half a million dots.

The technique by which the Alto would achieve its high-resolution screen was
called "bit-mapping," a term that meant that each picture element, each dot of light on
the display screen, was connected to one bit of information in a specific place in the
computer's memory, thus creating a kind of two-way informational map of the screen. If,
for example, a specific bit in the computer's "memory map" was turned off, there would
not be a dot of light at the location on the screen. Conversely, an "on" bit at a coordinate
in the memory map would produce a dot of light at the designated screen location. By
turning on and off parts of the bit map through software commands, recognizable graphic
images can be created (and changed) on the screen.

Bit-mapping was a major step toward creating a computer that an individual could use
comfortably, whether the user is an expert programmer or a beginner. The importance
of a visual display that is connected directly to the computer's memory is
related to the human talent for recognizing very subtle visual patterns in large
fields of information -- undoubtedly a survival trait that evolved way back
when our ancestors climbed trees and prowled savannas.

Human information processors have a very small short term memory, however,
which means that all computers and no humans can extract the square roots of

 182

thousand-digit numbers in less than a second, no computers and all humans can
recognize a familiar face in a crowd. By connecting part of the computer's
internal processes to a visible symbolic representation, bit-mapping puts the
most sophisticated part of the human information processor in closer contact
with the most sophisticated part of the mechanical information processor.

Bit-mapping created more than a passive window on the computer's internal processes.
Just as the computer could tell the human who used it certain facts about whatever it had
in its memory, the user was also given the power to change the computer by manipulating
the display. If users change the form of the visual representations on bit-mapped screens,
using keyboard commands, lightpens (á la Sketchpad), or pointing devices like mice (á la
Engelbart), they can also change the computer's memory. The screen is a representation,
but it is also a control panel -- a drawing on a bit-mapped screen can be nothing more
than a drawing, but it can also be a kind of command, even a program, to control the
computer's operations.

If, for example, you were to use a mouse to move a video pointer on the screen to touch a
visual representation of a file folder or an out basket, and you could call the folder, for
example, from the computer's memory and display a document from it on your screen
simply by pointing to it, or send the contents of the computer-stored out basket to
somebody else's in basket, then a person would be able to accomplish the kind of work
done in offices, even if that person knew nothing about computer programming. Which,
after all, was the potential future market that motivated Xerox management to create
PARC and cut their whiz kids loose in the first place.

Creating new kinds of computer input and output devices to help human pattern
recognition mesh with mechanical symbol manipulation is known as "designing
the human interface," an art and science that had to be created in the 1970s in the kind
of human-computer partnership envisioned by Licklider and Engelbart in the 1960s,
which could start to happen by the 1980s. Alan Kay's Smalltalk project played a key role
in the evolution of the Alto interface, and as such was integral to the eventual company
goals in the office automation market. But even at the beginning, Kay started
bringing children into the project.

Part of the Smalltalk project's effect on the early days at PARC was inspirational. It
wasn't long before the rest of the team understood Alan's desire to bring children into the
process of designing the same instrument that he and all the other computer scientists
wanted to use themselves. Another aspect of Kay's contribution was more concrete: the
absolute conviction that they were designing something meant for people to use. That
might not sound too revolutionary today, but even as late as 1971, most of the top-flight
computer scientists who believed that this tool was going to be more than just a gadget
for computer programmers were at PARC.

PARC in the early 1970s was a collection of the worlds best computer scientists,
hardware engineers, physicists, programmers . . . which meant that it was also a

 183

collection of people with strong personalities and definite opinions. Bob Taylor, Alan
Kay, Butler Lampson, Bob Metcalfe, and their colleagues each had his own
unique approach to creating personal computing, but they agreed on one
fundamental assumption -- that their ultimate product should be as generally
useful as a hammer, or pulley, or book. Secretaries and business executives would
one day be able to use the same tool to help them perform the work. Architects and
designers would have the power of modeling, forecasting, and simulation at their
fingertips. A true personal computer, the diverse PARC groups agreed, ought to
be usable by legislators and librarians, teachers and children. And a computer
that could be commanded by looking at images on a screen and pointing to
them by means of a mouse was certainly a lot more widely usable than a
computer that required arcane keyboard-entered commands in order to
function.

The first Alto personal computer prototypes were distributed to PARC researchers in
1974. As they had predicted, the creation of an environment in which every researcher
had, for the first time in history, personal access to a powerful computer, and the means
to communicate with all of his or her colleagues' computers, had a profound effect on
their ability to do their job of designing even more powerful computer systems.

By the late 1970s, yet another generation of even more advanced hardware and software
had been created by a network of nearly a thousand researchers at PARC equipped with
Altos, communicating via Ethernet networks. But the outside world, and many people in
the computer world, were still unaware of the potential of personal computers. The
problem, as PARC alumnus Charles Simonyi was to point out in 1983, an eventful
decade later, was that Xerox management couldn't be faulted for not realizing in 1973
that PARC was more than ten years ahead of an industry that wouldn't even exist until
1975.

Another small cloud on the horizon in the mid-1970s -- the "home-brew" computer
hobbyists who were building their own low-power microcomputers -- became a gathering
storm of popular interest in personal computing by the end of the 1970s. The
microcomputer hobbyists, who assembled the new microprocessor chips into operational
computers, were for the most part unaware of the far more powerful devices that were in
use in Palo Alto years before a tiny company in New Mexico, the now-legendary MITS,
produced the first affordable, do-it-yourself computer -- the Altair.

In March, 1977, Alan Kay and Adele Goldberg condensed a PARC technical report into
an article, the title of which described both the dream and the reality of the Smalltalk
branch of the PARC project: "Personal Dynamic Media" was published in a magazine
named Computer, during a time when computer magazines were for specialists. Like
Bush, Licklider, Taylor and Engelbart before them, Kay and Goldberg did not talk of
circuits or programs, but of media, knowledge, and creative human thought:

 184

http://crl.ucsd.edu/%7Egoldberg/

For most of recorded history, the interactions of humans with their media have been primarily
nonconversational in the sense that marks on paper, paint on walls, even "motion" pictures and television
do not change in response to the viewer's wished. A mathematical formulation -- which may symbolize the
essence of an entire universe -- once put down on paper, remains static and requires the reader to expand on
its possibilities.

Every message is, in one sense or another, a simulation of some idea. It may be representational or abstract.
The essence of a medium is very much dependent on the way messages are embedded, changed, and
viewed. Although digital computers were originally designed to do arithmetic computation, the ability to
simulate the details of any descriptive model means that the computer, viewed as a medium in itself, can be
all other media if the embedding and viewing methods are sufficiently well provided. Moreover, this new
"metamedium" is active -- it can respond to queries and experiments -- so that the messages may involve
the learner in a two-way conversation. This property has never been available before except through the
medium of an individual teacher. We think the implications are vast and compelling.

A dynamic medium for creative thought: the Dynabook. Imagine having your own self-contained
knowledge navigator in a portable package the size and shape of an ordinary notebook. Suppose it had
enough power to outrace your senses of sight and hearing, enough capacity to store for later retrieval
thousands of page-equivalents of reference materials, poems, letters, recipes, records, drawings,
animations, musical scores, waveforms, dynamic simulations, and anything else you would like to
remember and change.

The Learning Research Group introduced students from the nearby Jordan Middle School
in Palo Alto to what they called "interim Dynabooks." Nearly a decade before
keyboards and display screens became familiar appliances, these children were
introduced to a device no child and only a few computer scientists had seen
before -- an Alto computer set up to run Smalltalk. By using the mouse and the
graphics capabilities provided by the hardware and software, these students were able use
Smalltalk to command the computer in much the same way that Papert's students in
Cambridge, years before, had learned to program in LOGO by "teaching the turtle new
words."

The screen was either a "very crisp high-resolution black-and-white CRT or a lower
resolution high quality color display." High-fidelity speakers and sound synthesizers,
five-key keyboards like Engelbart's, and piano-like keyboards were also available. The
system could store the equivalent of 1500 pages of text and graphics, and the processor
was capable of creating, editing, storing, and retrieving documents that consisted of
words, graphic images, sounds, numbers, or combinations of all four symbol forms.

The mouse could be used to draw as well as to point, and an "iconic editor" (another
Smalltalk innovation) used symbols that children who were too young to read
could use to edit graphics; e.g., instead of typing in a command to invoke a graphics
cursor, a child could point to a paintbrush icon.

The interim Dynabook could be used to read or write an old-fashioned book, complete
with illustrations, but it could also do much more: "It need not be treated as a simulated
paper book since this is a new medium with new properties. A dynamic search may be
made for a particular context. The non-sequential nature of the file medium and the use of
dynamic manipulation allows a story to have many accessible points of view; Durrell's

 185

Alexandria Quartet, for instance, could be one book in which the reader may pursue
many paths through the narrative," wrote Kay and Goldberg.

The dynamic nature of the medium was made clear to the users as they became
acquainted with the toolkit for drawing, editing, viewing, and communicating. Smalltalk
was not just a language, and the Alto system was not just a one-person computer.
Together, the hardware, the software, and the tools for the users to learn the
software, constituted an environment -- a small symbolic spaceship that the first-time
user learned to control and steer through a personal universe.

The ability of the users to personalize their representation and use of information became
clear as the children from Jordan Middle School experimented with changing typefonts
for displaying letterforms, and with changing the bit-maps of the computer to create and
animate cartoon images in mosaics, lines, and halftones. The users not only had the
capability to create and edit in a new way, but once they learned how to use the medium
they gained the ability to make their own choices about how to view the universe of
information at their fingertips.

The editing capabilities of the Dynabook made it possible to display and change every
object in the Smalltalk microworld. Text and graphics could be manipulated by pointing
at icons and lists of choices -- "menus" in software jargon -- and multiple "windows" on
the display screen made it possible to view a document or group of documents in several
different ways at the same time. The filing capabilities made it possible to store and
retrieve dynamic documents that could consist of any collection of objects that could be
displayed and have something to do with each other. Drawing tools and painting
programs made it possible to input information freehand as well as through the keyboard.

The structure of the Smalltalk language, the tools used by the first-time user to learn how
to get around in the Dynabook, and the visual or auditory displays were deliberately
designed to be mutable and movable in the same way: "Animation, music, and
programming," wrote Kay and Goldberg, "can be thought of as different sensory views of
dynamic processes. The structural similarities among them are apparent in Smalltalk,
which provides a common framework for expressing those ideas." A "musical score
capture system" called OPUS and a graphic animation tool called SHAZAM were part of
the Smalltalk-Dynabook toolkit.

In 1977, Scientific American's annual theme edition was dedicated to the subject of
"Microelectronics." Alan Kay's contribution to the issue, "Microlectronics and the
Personal Computer," was the only article that directly talked about the meaning of this
new technology for people. The magazine's editors summed up the piece in a two-
sentence subtitle: "Rates of progress in microlectronics suggest that in about a decade
many people will possess a notebook-sized computer with the capacity of a large
computer of today. What might such a system do for them?"

One of the first things Kay pointed out was the connection between the use of interactive
graphic tools and the exercise of a new cognitive skill -- a skill at selecting new ways to

 186

view the world. The metamedium which Kay still saw to be a decade in the future would
only achieve its full power when people use it enough to see what it is about. The power
that the 1977 prototypes granted to the human who used such devices was the
power to create many new points of view.

This freedom to change one's view of a microworld, Kay believed, was one of the most
important powers of the new kinds of representational tools that were being designed and
tested in the late 1970s. In describing the way children learned to use the Smalltalk
system, Kay also described something of the nature of the experience:

Initially the children interact with our computer by "painting" pictures and drawing straight lines on the
display screen with the pencillike pointer. The children then discover that programs can create structures
more complex than any they can create by hand. They learn that a picture has several representations, of
which only the most obvious -- the image -- appears on the screen. The most important representation is the
symbolic model of the picture stored in the memory of the computer. . . .

One of the best ways to teach nonexperts to communicate with computers is to have them explore the levels
of abstraction at which images can be manipulated.

Kay noted that when he gave the same tool that the children used as both an amusement
and an entrance into Smalltalk programming to an adult artist, the artist started out
creating various designs similar to those he was accustomed to making on paper.
Eventually the artist discovered that the properties of the new medium, and his increasing
facility for commanding those properties, made it possible for him to explore graphic
universes that he could never have created with his old media: "From the use of the
computer for the impoverished simulation of an already existing medium," Kay wrote,
"he had progressed to the discovery of the computer's unique properties for human
expression."

This freedom of viewpoint was only meant to be explored and demonstrated in a
preliminary way in Smalltalk: It was Kay's hope that many new metaphors and languages
would evolve as time went on, into what he called "observer languages":

In an observer language, activities are replaced by "viewpoints" that become attached to one another to
form concepts. For example, a dog can be viewed abstractly (as an animal), analytically (as being
composed of organs, cells, and molecules), pragmatically (as a vehicle by a child), allegorically (as a
human being in a fairy tale) and contextually (as a bone's way to fertilize a lawn). Observer languages are
just now being formulated. They and their successors will be the communication vehicles of the 1980s.

Kay set forth his theories about personal computers as the components of a new
medium for human expression , and compares the recent and future emergence of
personal computers with the slower development cycles of past media. He also
predicted that the changes in the human social order that were likely to
accompany a new computerized literacy would be much more sweeping than
the effects of previous media revolutions. The creation of a literate population
would be the first reason for such a change. Out of that literate population, perhaps a few
creative individuals would show the rest of us what could be achieved. He declined to

 187

predict the specific shape of these social changes, noting the failure of previous attempts
at such forecasting:

We may expect that the changes resulting from computer literacy will be as far reaching as those that came
from literacy in reading and writing, but for most people the changes will be subtle and not necessarily in
the direction of their idealized expectations. For example, we should not predict or expect that the personal
computer will foster a new revolution in education just because it could. Every new communication
medium in this century -- the telephone, the motion picture, radio and television -- has elicited similar
predictions that did not come to pass. Millions of uneducated people in the world have ready access to the
accumulated culture of the centuries in public libraries, but they do not avail themselves of it. Once an
individual or a society decides that education is essential, however, the book,
and now the personal computer, can become among the society's main vehicles
for the transmission of knowledge.

The difference between a Dynabook of the future and all the libraries of the past,
however, would depend upon the dynamic nature of this medium. A library is a passive
repository of cultural treasures. You have to go in and dig out your own meanings. A
Dynabook would combine the addictive allure of a good video game with the
cultural resources of a library and a museum, with the expressive power of an
animated fingerpaint set and a synthesized orchestra. Most importantly, it would
actively find the knowledge appropriate for the task of the moment, communicated in the
form and language best suited to each individual who used it.

The intelligence of such devices -- the reason that software breakthroughs in artificial
intelligence research would someday have to intersect with the evolution of personal
computers -- would influence their ability to bring resources to the person who needs
them. When the machines grow smart enough to communicate with eight-year-
olds, then the question will shift from how to build a computer that people can
easily use to what we all do with that kind of power.

What if libraries were able to find out what most interests you and what you
most need to know, and showed you how to find what you wanted? What if you
could say to the library: "I wonder what it would be like to live in the Baghdad of the
Caliphate?" or "I wonder how it feels to be a whale?" and expect the library to show you?
Do you like Van Gogh? How about a simulation of the fields outside his house? Would
you care to sit in with Louis Armstrong or Wolfgang Mozart? What would it do to the
world if we could all see how everybody else lived and share in their cultures?

If the first effect of the coming metamedium was likely to be the creation of a literate
population who shared a new freedom to use symbols and to choose how to view
information, then the second effect lay in the power that would be unique to this medium
-- the power of simulation. Simulation is the power to see what you imagine, to create
worlds that obey your command. The computer can build instant sensory representations.
The user/programmer explores a universe that reacts, in which the degree of the user's
power depends upon and grows with one's understanding of the way the worlds work.

 188

The power of simulation to empower the imagination and give form to whatever can be
clearly discerned in the mind's eye is what makes this kind of device a "fantasy
amplifier." Although there are several homilies that are entitled to be called "Kay's First
Law," the statement that he most often calls "Kay's Second Law" is: "Any time you
build a fantasy amplifier, you have a winner." His reasoning is that game
playing and fantasizing are metaphors for the kind of skill people need to get
around in the world.

"We live in a hallucination of our own devising," Kay is fond of saying. But our illusion
is so complex, so much of the world we experience appears to be beyond our control, and
the operating manual is so difficult to find, that we all tend to get locked into the way our
families, societies, and cultures see the world. "We can't exist without fantasy, Kay
asserts, "because it is part of being a human. A fantasy is a simpler, more controllable
world."

And by practicing how we would control a simpler version of the world, we often figure
out how to operate the world outside the fantasy. A game is both controllable and
challenging. It is entered vicariously, purposefully, and with an open mind about the
outcome. Sports and science and art all involve vicarious, purposeful fantasies in that
sense. That's why he feels that video games were not a fad but a precursor to something
with much more profound power. And that is the most likely reason why he joined Atari
Corporation.

The power of simulation is not necessarily or exclusively a beneficial one, as the legends
of today's system-crashers, obsesses programmers, and dark-side hackers attest, and as
Kay warned in his Scientific American paper:

The social impact of simulation -- the central part of any computing -- must also be considered. First, as
with language, the computer user has a strong motivation to emphasize the
similarity between simulation and experience and to ignore the great
differences that symbols interpose between models and the real world. Feelings of
power and a narcissistic fascination with the image reflected back from the machine are common.
Additional tendencies are to employ the computer trivially (simulating what paper, paints, and a file cabinet
can do), as a crutch (using the computer to remember things that we can perfectly well remember
ourselves) or as an excuse (blaming the computer for human failings). More serious is the human
propensity to place faith in and assign higher powers to an agency that is not
completely understood. The fact that many organizations actually base their
decisions on -- worse, take their decisions from -- computer models is
profoundly disturbing given the current state of computer art

The fact of simulation is so seductive to human perception, and so potentially useful in
"real world" applications, that its widespread use is inevitable, once personal computers
grow sophisticated and inexpensive enough. The ethics of how and for what purposes
simulations should and should not be used are only beginning to be formulated. The
historical events, debates in PTAs and legislatures, and growth in public concern that will
accompany the introduction of this medium will help determine the shape of the future

 189

ethics of simulation. The best place to look for expert guidance, Kay suggests, might be
to those of us who are the least prejudiced by precomputer ways of thinking:

Children's Computer Ethic

Children who have not yet lost much of their sense of wonder and fun have
helped us to find an ethic about computing: Do not automate the work you are engaged in,
only the materials. If you like to draw, do not automate drawing; rather, program your personal computer to
give you a new set of paints. If you like to play music, do not build a "player piano"; instead program
yourself a new kind of instrument.

The way we think about computers -- as machines, as systems that mimic human
capabilities, as tools, as toys, as competitors, or as partners -- will play a large part in
determining their future role in society. In the conclusion of his article, Kay cautions
against the presumptions of present-day minds about what the minds of future
generations may or may not choose to do with the instruments past generations worked to
create:

A popular misconception about computers is that they are logical. Forthright is a better term. Since
computers can contain arbitrary descriptions, any conceivable collection of rules, consistent or not, can be
carried out. Moreover, computers' use of symbols, like the use of symbols in language and mathematics, is
sufficiently disconnected from the real world to enable them to create splendid nonsense. Although the
hardware of the computer is subject to natural laws (electrons can move through circuits only in certain
physically defined ways), the range of simulations the computer can perform is bounded only by the limits
of human imagination. In a computer, spacecraft can be made to travel faster than the speed of light, to time
travel in reverse.

It may seem almost sinful to discuss the simulation of nonsense, but only if we want to believe that what
we know is correct and complete. History has not been kind to those who subscribe to this view. It is just
this realm of apparent nonsense that must be kept open for the developing
minds of the future. Although the personal computer can be guided in any
direction we choose, the real sin would be to make it act like a machine!

Because he started out young in a field that was young itself, Kay was one of the first of
the generation of infonauts, the ones who grew up with the tools created by the pioneers,
and who have been using them to create a medium for the rest of us. One of the things he
learned at ARPA and Utah, Sail and PARC, Atari and Apple, was that putting together a
group of talents and leaving them alone might be the most important ingredient in
invoking the breakthroughs he'll need to complete his dream.

People are beginning to wonder what Kay, now at Apple, intends to do next. "I would
imagine that he feels more than a little frustrated," said Bob Taylor, in 1984, referring to
the fact that Alan Kay hadn't produced anything as tangible as Smalltalk in a number of
years. A hotshot programmer at Apple put it differently: "He deserves to be called a
visionary, because he is. And I love to hang around him because he knows so much about
so many things. But it gets a little tiring the third time you hear him say, 'We already did
that back in '74.' "

 190

Atari was the first institution where Alan Kay played a significant role but didn't make
any breakthroughs. Because of what happened -- or didn't happen -- with the Atari team,
he probably learned that being a member of a team, albeit an inspirational, even visionary
member, doesn't necessarily mean that he is cut out to be a good leader. Before we
explore the end of the dream at Atari, however, another infonaut by the name of Brenda
will give us a glimpse at part of what Kay and his cohorts attempted to accomplish.

 191

Chapter Twelve:
Brenda and the Future Squad
To those of us who don't live and work in futurist sanctums like ARC, PARC, Atari, or
Apple, such activities as flying through information space or having first-person
interactions with a computer are hard to imagine in terms of what one would like to do on
a Friday night. There simply aren't any analogous images available in our cultural
metaphor-bank: Is it like watching television? Playing a video game? Searching through
an infinite encyclopedia? Acting in a play? Browsing through a book? Fooling with
fingerpaints? Flying a plane? Swimming?

My initial encounter with Alan Kay led me to several of the people who worked for him
at the time, and I eventually ended up spending more time with Brenda Laurel and
Colleagues than I did with Alan. Brenda and her friends were interested in the
same questions that puzzled me: what would it feel like to operate tomorrow's
mind-augmenting information-vehicles? My first experience with their work took
place in a guarded, well-equipped room in Sunnyvale, California, home of Atari Systems
Research Group. The following brief scenario is taken from my notes of that first
observation:

The world was grey and silent before Brenda spoke.
"Give me an April morning on a Meadow," she said, and the gray was replaced by
morning sunshine. Patches of cerulean sky were visible between the redwood branches.
Birds chirped. Brooks babbled.
"Uhhmm . . . scratch the redwood forest," Brenda continued: "Put the meadow atop a cliff
overlooking a small emerald bay. Greener. Whitecaps."
Brenda was reclining in the middle of the media room. "The background sounds nice,"
she added: "Where did you get it?"
"The birds are indigenous to the northern California coast," replied a well-modulated but
disembodied female voice: "The babbling brook is from the acoustic library. It's digitally
identical to a rill in Scotland."
"There's a wooded island in the bay," continued Brenda, looking down upon the island
that instantly appeared below her where only green water had been a moment before. She
surveyed the new island from her meadow atop the cliff above the bay, then spoke again:
"Monterey pine, a small hill, a white beach. Zoom into the beach. Let's walk up that path.
There's a well under that banyan tree. I want to dive in and emerge bone-dry in the
Library of Alexandria, the day before it burned."

A few groups on the leading edge of cognitive technology have been trying to find
images to help them in their effort to materialize a mass-marketable version of Bush's
Memex, Engelbart's Augmentation Workshop, and Kay's Dynabook. Those people who
are attempting to design these devices share an assumption that such machines will
evolve from today's computer technology into something that will probably not resemble

 192

the computers we see today. Ideally, we won't see these hypothetical computers of
tomorrow, because they will be invisible, built into the environment itself.

Try to imagine a computer that is nowhere to be seen, and is set up to attend to
your every wish, informationally speaking. You enter a room (or put a helmet
over your head), and the room (or the helmet) provides multisensory
representations of anything, real or imaginary, you can think of to ask it to
represent. Science fiction writers of the past decades have done their share of
speculating on what one might do in such a representationally capable environment. You
could, for example, go skiing in the Alps with wraparound full-color three-
dimensional visual display, authentic panphonic soundtrack, biting cold air, ultraviolet-
rich high-altitude sunshine, spray of powder snow on your cheeks, the feeling of skis
beneath your feet, of being impelled down a slope.

But you shouldn't have to limit your use of such a universal information
medium to a real terrestrial experience. You could explore a black hole in a
neighboring galaxy, navigate through tour nervous system, become a
Connecticut Yankee in King Arthur's court. If you want to extend your senses into
the real world in real time, you can look at quasars with x-ray radiotelescope vision, CAT
scan everything you see, hover above the earth in a weather satellite, zoom down to take
an electron microscopic look at the microbes on a dust mote on a license plate in Kenya.

If you want to communicate with one person or an entire on-line network, you have all
the media at your disposal, along with additional "dialogue support tools" to augment the
interaction. Or the interaction might be private, limited to you and the informationscape -
- for reasons of work or play.

Perhaps you want to know something about blue whales. Everything written in
every magazine, library, or research data base is available to you, and an
invisible librarian is there you help you, if you wish; just focus your eyes on a
reference file and it fills the screen. Ask the librarian questions about what you
want to know, or allow it to ask you questions. But you don't have to just read
about whales. You can listen to them, watch them, visit them. Just ask, and
you'll be underwater, swimming among them, or in a helicopter, watching them
while you hover above the crystalline Baja waters.

The experience won't be strictly passive. You can act out the role of a whale or
Louis XIV (or Genghis Khan, if that is your taste) in a simulated video encounter
and make decisions about the outcome of that encounter. Paint palettes, text editors,
music and sound synthesizers, automatic programming programs, and animation tools
will give you the power to create your own blue whale or ancient Mongolian microworlds
and romp around in them.

 193

Since MIT, Lucasfilm, and Evans & Sutherland were in the bidding for Kay's services
when he left Xerox, one can safely assume that Atari must have offered him something
more. Although his obvious desire was to run an advanced software shop, Kay knew that
his next software dream would require very advanced hardware. "You want hardware
designers? We'll get you hardware designers," you can imagine them saying. Atari got
him nothing but the best -- including Ted Hoff, the legendary Intel scientist who was the
leader of the team that invented the microprocessor chip. Kay assembled his own
software research team.

Brenda Laurel joined Atari Systems Research Group after a stint in their educational
marketing division. When I first met her, she was involved in a research project
that she insisted defied verbal description. She invited me to watch a special kind of
brainstorming session they were just beginning to explore.

The Atari research building was in a typical Sunnyvale flatland industrial park, with the
usual high-tech high-security trappings -- twenty-four-hour guards, laminated color-
coded nametags, uniformed escorts. It was here that I joined Brenda and several of her
colleagues in a group-imagination exercise connected with what they called a media-
room project.

Brenda signed me in, walked me through the gray-walled, gray-carpeted corridors, and
brought me to a large room, bare except for a few industrial-modern couches and chairs,
a videotape setup, and two whiteboards. Inside the room were Eric Hulteen, the project
leader; Susan, a red-haired, soft-spoken young woman; Scott, a quiet, spaced-out preppie
type; Don and Ron Dixon, the Robotic experts; Craig, a somewhat skeptical, bearded
hacker; Jeff, Tom, Brenda, and Rachel, who was videotaping the event.

Rachel was short, had a crewcut, wore a tank-top tee shirt, purple blousy harem pants,
and no shoes. Don and Ron were twins. A few in the group could be as young as twenty-
three or twenty-four, the oldest was no older than thirty-five. Jeans and sandals were
the dominant costume. Nobody wore a tie. Nobody had acne or a speech
impediment. Nobody wore a plastic penholder.

As it was explained to me by Brenda and by Eric, whose project it was, a media room
is an information terminal that a person can walk around inside -- a place where
you can communicate directly with the machine without explicit input devices
like keyboards. The room itself is set up to monitor human communication output. This
presumes that all the hardware and software that are now in experimental or
developmental stages will be working together to do what a good media room does --
without bothering the person who uses it with details of its operations.

Eric came to Atari from MIT's Architecture Machine Group, an innovative group led by
Alan Kay's old friend and Atari consultant Nick Negroponte. The idea of "spatial data
management" that came from the MIT group was a response to the problem of finding a
way to navigate the huge new informational realms opened by computers, by adopting

 194

http://nicholas.www.media.mit.edu/people/nicholas/

the metaphor of information space that the user can more or less "fly" through. The
dominant metaphor in software design viewed large collections of information
through the well-known "file-cabinet" metaphor, in which each piece of
information is regarded as part of a "file folder" that the user locates through
traditional filing methods. But what if the collection of information could be
displayed visually and arranged spatially, so the user could have the illusion of
"navigating" through it?

Perhaps the most well-known demonstration of this metaphor was the "Aspen Map"
created by Negroponte's group. To use this map, you sit in front of a video screen and
touch the screen to steer your way down a photographic representation of the streets and
houses of Aspen, Colorado.

A computer-directed videodisk connects the video steering controls to a very large
collection of photographs of Aspen. The computer translates your position and your
commands into the correct sequence of photographs. If you decide to look to the left, the
screen shows the streets and houses that are located to the left of this position in the real
city. If you decide to stop and take a closer look at one of the houses that are specially
marked, or even open the door and look inside, you can do so.

The kind of simple branching structure of a city's streets represents only the most basic
kind of information base that can be represented spatially. The most important aspect of
this idea doesn't have to do with road maps -- although this is obviously a good way to
learn how to get around in a town you've never seen before. The important point is that
some information domains can be organized around a spatial metaphor, creating a
coherent environment path that each user can move around in by following his own
particular path. A reference work for someone trying to find the problem in an
automobile engine or the plumbing system of a nuclear submarine could just as easily be
mapped in such a way.

Whether they came from MIT, Carnagie-Mellon, or another video game manufacturer,
every person in Kay's Atari group represented the cream of the crop of the best young
minds in fields ranging from robotics to holography to videodisk technology to artificial
intelligence to cognitive psychology to software design. The necessary hardware
components of the media room will become available, everyone hopes, by the time the
really tricky part -- the software design, construction, and debugging -- is on its way to
completion.

The person inside a full-scale media room will have 360-degree visual displays of some
sort -- high-resolution video or holographic images -- computer-generated and archived.
Images can be retrieved from a library (and added to the library), or they can be
constructed by the person or by the computer. There will be a total-sound audio system
ranging into ultralow and ultrahigh frequencies. But the most important element is
not in the sensory displays, which involve straightforward if now-expensive

 195

technology, but in the software -- in the way the room is designed to "know"
what to do.

If the media room is to be the universal medium, the room itself must be able to see and
hear the person inside, and "understand" what it sees and hears well enough to carry out
the person's commands. Ideally, it should understand the person it is dealing with
well enough to actively guide the fantasy or the information search, based on its
knowledge of personal preferences and past performance. Bioelectronic sensors
built into the floors will keep track of the user's mood. The only thing the room is
presumed not to do is read minds.

One of the ways to describe a media room is "a computer with no interface," or "a
computer that is all interface." When the computer interface disappears, you are not at the
control panel of a machine, but walking over the Arctic ice, or flying to Harlem, or
looking through a book in a musty old room. How does one envision the capabilities of a
technology that doesn't exist yet? How do you deal with an invisible computer? If
you don't have to worry about how to tell it what to do, and if its computer-representation
capabilities are too large to worry about, the question shifts from the tool to the task:
"Okay, now that I can go anywhere, including places that don't exist, where do
I want to go?" Brenda, Eric, and their colleagues wanted to know what new
communication styles people might adopt in response to such a system. Most of all, they
wanted to know how it would feel to use such a system.

The night I watched her and her colleagues fantasize in that room in Sunnyvale, Brenda's
idea was to plan the uses of a future technology of this sort by using the same kinds of
tricks that actors use to create imaginary spaces: "Magical kinds of things can happen
through improvisation," she told the group, "because it can trick you into revealing
preverbal ideas. What we each bring to this is our capacity to have inspirations in real
time."

The first improvisations were warm-up exercises. Brenda's trip to the Library of
Alexandria was followed by Scott's visit to a hypermirror that showed him what he
looked like in the infrared and gave him a real-time scan of his brain metabolism in
sixteen colors. He watched the colors of his thought processes as he watched the colors of
his thought processes.

Then the group decided to make Eric play the role of the person using the system, while
everyone else improvised roles as the components of the media room -- input to the user's
vision, mobility, hearing, emotions, thoughts. In the first try, everyone got into their role
with such enthusiasm that Eric was literally swarming with people mimicking him,
giving him advice, grimacing. He spent his time rather defensively trying to figure who
did what. It was like a combination of twenty questions and charades, but it revealed
something about the bewilderment of even a technically sophisticated computer user
when faced with a system that does not explain itself but simply acts.

 196

In the next experiment, Susan, acting as the person in the middle of such a system,
decided to try to take control of the elements, and discovered that all the roles of the
different components could be changed radically by adding a "help agent." The
help agent oriented the user by saying things like "ask her about a place," or "ask him --
he knows what to look for." The idea was to create a kind of "informational butler" that
would observe both the user and the information system, keep a record of that
individual's preferences, strengths, and weaknesses, and actively intervene to help the
user find or do what the user wanted to find or do.

The next day, several of the crew were going to Southern California, to see what a
prominent university cognitive science department could tell them about designing
machines that people can use. About a week later, Brenda and I talked about what she
had learned from the cognitive scientists, and the improvisation exercise.

"The cognitive science people are looking at human-machine interactions. Naturally, the
hired hackers got into the act when the subject of the discussion was how to teach
secretaries to use a file management system. One of the programmers at the staff meeting
summarized the problem by asking, 'how do we get a secretary to understand that slash-
single quote-DEL will delete a file?' That was his understanding of the human interface --
a matter of figuring out how to adapt a human to the esoteric communication protocol
some programmer built into a machine."

That part of a computer game that makes the user step outside the game world, that
doesn't help the user to participate in the pleasure of the game, but acts as a tool for
talking to the program -- that's where distance comes in. That's what happens to
the secretary when the programmer tells her that slash-single quote-DEL means
"erase this." She doesn't want to ask the computer to erase it; she simply wants
to erase it.

What Brenda was getting at seemed so strange and so counter to everything I had been
taught that it took a while for it to sink in: In essence, she was saying that when it comes
to computer software, the human habit of looking at artifacts as tools can get in the way.
Good tools ought to disappear from one's consciousness. You don't try to persuade
a hammer to pound a nail -- you pound the nail, with the help of a hammer. But computer
software, as presently constituted, forces us to learn arcane languages so we can talk to
our tools instead of getting on with the task.

"The tool metaphor gets in the way when it is applied at the level of the larger system that
includes the human operator," Brenda explained. Even though your programmer gives
you a file management system that is functional in a tool-like way, the weird way the
human is forced to act in order to use the tool creates an unnecessary distance between
the action the human is required to perform and the tool's function.

"We also know, however, that there is another set of computer capabilities that aren't at
all tool-like. Games and creating art, for example. So what is it that a computer does, in

 197

that case? My answer is that its function is to represent things. Which, in the case of art
or games, means that the function is at least the same as the outcome, because in art or
games, representation is at least part of the outcome."

Kids don't play video games by the hour because it is a good way to practice hand-eye
coordination, or for any other reason besides the sheer pleasure of playing. On the other
hand, nobody uses a word processing program out of sheer enjoyment of using the
program; they use a word processor because they want to write something. In the case of
the word processor, the outcome is most important. In the video game, there is no
separation from the user/player and the world represented in the game. In the
word processor, the command language of the software creates a distance
between the user and the task.

"One strategy in our research is to find out how to eliminate the part that keeps us
distanced." Brenda explained. "I want to reach my hands right through the screen
and do what I want to do," she added, with the kind of passionate conviction I hadn't
encountered since Engelbart got that faraway look in his eyes and started talking about
what humankind could do with a true augmentation system. I don't want to enter a bunch
of commands," Brenda insisted. "I might not even want to speak a bunch of
commands, if I have to speak them in a way that is different from the way I
normally talk. I want first-person interaction. Great. But first I have to do away
with all this stuff between me and the outcome.

"What metaphors haven't been used? Maybe the interface is the barrier. I think that it is
more than a technological question. You can't expect to solve a problem by building a
better interface if the whole idea of interface is based on an incomplete metaphor. To use
a real artsy metaphor that will probably break down under scrutiny, I like to look at the
computer as a system for making magic portals. Like that moment in The Wizard of Oz
when Dorothy opens the door and everything changes from black and white to color.
That is what I want to happen -- perceptually, cognitively, emotionally. The portal is an
interim metaphor to me. We need something richer. I'm looking for something that will
click into place and re-explain the idea of the interface.

"I want to make a fantasy that I can walk through," Brenda explained. "That is
what an adventure game tries to do. Long before computers were available to regular
folks, hackers on large mainframe computers were hooked on adventure games. Now
there are adventure games that you can play on your home computer. What happens
when you try to build a first-person adventure game?

"The first thing I do in this game I want to walk around in is to look at it. Maybe there are
some graphics on the screen. Perhaps the screen is all around me. Maybe there is some
text to read, or a sound track that reads it to me. All of these are important technical
aspects, but they are peripheral to my concern. All the screen and speakers do is to
establish an environment. Once I look around the environment, however, I want to
interact with it.

 198

"Let's say that the environment of this fantasy is something that a science fiction writer of
the first caliber invented. Say it's a planet that I'm exploring for the United Federation of
Planets. I start walking through this world. Today, with the state of the interface art as it
is, if I want to move to the north and turn over a stone, I'd tell the computer, 'Move north.
Turn stone.' Note that I have to tell the computer. I've just stepped out of the
fantasy. And you destroy a fantasy when you step out of it.

"What kind of system enables me to simple move north and pick up the damn stone? I
don't think it's just a question of making the environment lifelike. It isn't just a technical
question for a fancier projector to solve. It's a question of how the world is established
when it is constructed. How the author established the way in which people can relate to
it.

"Maybe I can look around the planet until I find a guide. Remember the 'help agent' in the
media room improvisation? This description of walking around the world sounds a lot
like a theatrical improvisation. You walk up to the stage, and the director says, 'Okay, this
is a new planet. You play an explorer. Go.' Nine times out of ten, something like that
dwindles away, but if you are lucky you discover something useful about the character.
Very rarely do you look back and say, "That was a wonderful story.'"

According to Brenda's theory, the reason is rarely memorable, even in a good
improvisation, is because the actors are forced to use part of their mind to think about
being playwrights. To achieve an excellent dramatic outcome the actor has to think about
his character and manipulate the plot line at the same time, so that it all comes out in an
interesting way. Unless you are an acting genius, you have to trade part of your acting
power in order to think about the play. And you can't do a great job of crafting a drama if
you have the acting job to juggle.

"This is where I think the computer can assist us," Brenda insists: "I still think one
answer is to put the smarts of the playwright into a first-person fantasy-creating
system.

"It has to be built into the way the imaginary world is constructed. Sitting on top of all
your graphics and voice recognition and speech synthesis is an expert system that can
make informed decisions about the potential of dramatic situations, using a large
enough base of knowledge about the possible situations that can arise and a set of rules
for sifting through the knowledge base."

Less fantastic, but nonetheless powerful versions of the "expert system" Brenda was
talking about do exist now -- and in the next chapter we'll take a look at what another
infonaut thinks about the potential of these "knowledge-transferring" programs. The
hypothetical variation Brenda was describing would be able to learn form experience --
experience with the individual who is using it or with everybody who has ever used it.
Brenda thinks that such a program could approach the kind of analysis that a drama critic
does. "Maybe we can put Aristotle's rules for good drama in the system to start."

 199

Right now, there are expert systems in existence that can help doctors to diagnose
diseases. Those systems are able to apply diagnostic rules adapted from human doctors to
a large collection of data, a knowledge base, regarding known symptoms. Substitute
drama for disease, and the elements of drama (like universality and causality) for
symptoms, and the automatic drama expert in our fantasy will be able to pick out the
most dramatic responses and consequences for actions that the player performs, and
weave them back into the fantasy. It's an idea that seems to be as far ahead of today's
entertainment software as Alan Kay's Dynabook was ahead of the computer hardware of
the 1960s.

Assume that you can simulate a medieval castle and give an audience member a 360
degree, first-person role in the dramatic action, so that every time you step into the
Hamlet world as Horatio or Hamlet or Ophelia, you make different choices about the
outcome. Artificial intelligence research tells us that you don't have to specifically store
all the possible events that could occur in a giant data base if you can structure the
representation of the world in such a way that its characteristics are formulated as
tendencies to go in certain directions. When you pick up a stone, for example, you are
likely to find crawly things under it.

Leaving aside the technical arguments about the feasibility of constructing such a system,
Brenda is most concerned about what effects the experience of encountering such a
system like the one she described might have upon our emotions as well as our
cognitions: How does it feel to experience a world like that? How does it change my
perception to walk through its portals? How do I find out where the edges are? What kind
of transactions can I have with this world?"

The experience Brenda described is the experience at the human interface -- where the
mind and machine meet. The interface hardware and software are what computer
people call the "front end" of the system. The back end is what the system
needs in the way of smarts so that outcomes end up being dramatically
pleasurable. Right now, you can wander around in an adventure game and gather
treasure and kill monsters and finish by winning or being killed. There isn't a sense of
unfolding drama. In order for the front end of an adventure game to convey that sense of
direct, first-person drama, it would have to be based on a very sophisticated back end.

"You use existing technology to make scenes branch according to your decisions, but that
doesn't converge on a dramatic outcome, except in the most mechanical way. But you
could take the same world with the same characters and the same elements and add this
sense of drama, and come out with something that would be more like experiencing a
drama at first hand.

"The kind of system I'm describing has to be able to find out what I want by remembering
what kinds of things I have paid attention to. The system has to have a good enough
model of me, and memory of how I have acted in the past, to make good guesses about
how I'm likely to act in the future.

 200

"I've tried to describe an element from the simplest thing that I think my colleagues and I
will actually be able to do in the near future. Let's look down the road ten years. Say we
really get the system working and we know how to synthesize dramatic outcomes and
orchestrate sound tracks and images and give the person who uses the system a way to
affect these representations.

"We can think of such a system not only as a medium for an interactive fantasy but as a
kind of an interface to information that is not a fantasy. What if the world, instead of
planet X or Shakespeare's Denmark, is the world of whales or the worlds of chemical
reactions? That's a powerful idea that we can see at work right now in the best of
contemporary educational software."

She offered the example of a game in which the players experience the fantasy of being
cadets on a starship. Each cadet would be responsible for running part of the ship. The
players can choose whether they want to specialize in navigation or propulsion or life
support or computer systems. In real time, they run their parts of the ship. Then
something goes wrong -- the life-support systems are threatened, the reactor is
malfunctioning. Or something interesting occurs -- the exobiologists have spotted a
planet to investigate. The players have to find out what to do and how to do it. In the first
person.

"Now let's look at it from the point of view of drama theory," she proposed. "You accept
easily the idea that I am a space cadet. I accept it too. This is what happens when a master
actor impersonates a character. When I am impersonating someone, all of me is
impersonating that character. What has to go away, to disappear from my own behavior
to make that possible? The idea that I am me -- the person who doesn't know what I
haven't learned -- has to go away. The same idea that often gets in the way of learning
anything new.

"A willing suspension of disbelief that accompanies a first-person simulation
enables the person who participates to feel what it would be like to have greater
personal power. A world like that shows us what it's like not to have the limitations that
we think we have in everyday life. When we see how much a kid learns about predicting
simple trajectories and the rules of bodies in motion from playing even simple video
games, I think it is easy to see the educational potential in using these 'fiction
environments' as the door to worlds of information that are as useful or healthy to know
as they are fun to learn about."

Of course, by this time, I was asking the same question that most of the people reading
this chapter must be asking: "When are we going to play with these 'fiction
environments'? How close is Atari to releasing actual products based on this research?"

The answer, unfortunately, is that it is unlikely that Atari is ever going to translate this
research into consumer products. Six months after I talked to Alan Kay and observed
Brenda Laurel's research group, the Systems Research Group was fired en masse. Brenda
and Eric were given five minutes' notice. Alan went to Apple shortly thereafter. Once

 201

again, as in the case of ARC and PARC, it seemed that the management of the
corporation that nurtured the most exciting research in interactive, mind-
augmenting computer systems seemed to fail miserably when it came to
developing products.

After she was fired, Brenda was a lot more willing to talk about the pressures of doing
long-term research for a consumer-product-oriented company. In her opinion, the
explanation for the demise of Atari Research, and the dramatic reversal of Atari
Corporation's fortunes that led to the drastic cutback, is a simple one. "The Warner
people" (who owned Atari), she claims, "never knew anything about innovation. The
people they hired to run Atari were from Burlington Industries, Philip Morris, Proctor
and Gamble -- dog food boys. How often does dog food change?"

Before she was in Systems Research, Brenda was in marketing. She claims that she told
Raymond Kassar (former CEO of Atari) that "what people are going to want from us
is not more deadhead entertainment, but stuff that helps their minds grow. The
largest market of all is the market for personal power, for new equivalents to
opposable thumbs."

Augmentation visionaries like Engelbart, prophets of interactive computing like
Licklider, and infonauts like Alan Kay and Brenda Laurel tend to talk in grand terms
about the ultimate effects of what they are doing -- the biggest change since the printing
press or even since the opposable thumb. They all seem convinced that their projections
will be vindicated by a technology that will inevitably come into existence despite the
myopia of institutions like SRI, Xerox, and Atari.

With the increasing power of home computers, and the growing demand for
entertainment and educational software, it seems likely that smaller groups, working in
entrepreneurial organizations rather than academic or large-scale product-oriented
institutions, will produce the fantasy amplifiers and mind augmentors of the near future.
One of the most controversial areas of entrepreneurial research is in the field of applied
artificial intelligence. The subject of the next chapter is involved in the commercial
development of those intriguing programs that Brenda mentioned, the so-called expert
systems that originated in the pure research that is being conducted at MIT and Stanford,
and which seem to be invading the world of commercial software.

 202

Chapter Thirteen:
Knowledge engineers and Epistemological
Entrepreneurs
". . . It is extremely important that the development of intelligent machines be pursued,
for the human mind is not only limited in its storage and processing capacity but it also
has known bugs: It is easily misled, stubborn, and even blind to the truth, especially when
pushed to its limits.

"And, as is nature's way, everything gets pushed to the limit, including humans. We must
find a way of organizing ourselves more effectively, of bringing together the energies of
larger groups of people toward a common goal. Intelligent systems, built from
communications technology, will someday know more than any individual about what is
going on in complex enterprises involving millions of people, such as a multinational
corporation or a city. And they will be able to explain each person's part of the task. We
will build more productive factories this way, and maybe someday a more peaceful
world. We must keep in mind . . . that the capabilities of intelligence as it exists in nature
are not necessarily its natural limits."

 Are future computers going to become tools for extending the power of our
minds, or are they going to evolve into a new kind of intelligent species that
operates far beyond the limits of biological intelligence? Avron Barr, the author of
the statement quoted at the beginning of this chapter, is exploring one of the most
potentially explosive areas human-computer evolution -- the field that has come to be
known as "knowledge engineering."

To me, Barr's specialty seems to be rooted in the same ides that goes back to Licklider
and Bush -- the inevitability of a human-computer symbiosis. But to many other
people, the idea of artificial intelligence seems to be fundamentally different
from augmentation, in that the artificial intelligentsia appear to be more
interested in replacing human intelligence than extending it.

Knowledge engineering is but one part of that ever-expanding area of hardware and
software research that constitutes the field of AI. Unlike other artificial intelligence
researchers, Avron Barr is not concerned with systems that can direct an optical sensor to
recognize visual patterns, or to help a speech-recognition system to understand natural
languages, or direct a robot in the task of climbing stairs. He and his colleagues are
trying to build systems that can transfer knowledge from experts to novices and
that can use the transferred knowledge to help people make decisions about
specific problems.

Barr's specialty seems to bridge the gap between those who see the future of computers in
terms of "mind tools" and those who see it in terms of "the next step in the evolution of

 203

http://www.the-resource.com/resource/barr.htm

intelligence." Like the other people I met who have been involved in building tomorrow's
software tools, Barr has a firm belief in the epochal quality of the changes we will face
when these experiments filter down to the level of public experience. For example,
consider the following scenario:

A general practitioner in a small town in the Southwest was awakened late one night by
an emergency call -- a six-year-old girl had been admitted to the local hospital. She was
comatose, and she had a high fever. The doctor ordered all clinical tests that were
available at that hour in a one-hospital town and called the pathologist. The symptoms,
and the results of the first tests, weren't anything the GP or the pathologist had seen
before. Drugs were available -- the pharmacy was well equipped, even if specialized
expertise was in short supply. But which drug?

Choosing the proper antibiotic from the hundreds of possibilities was a matter of life and
death for the little girl, and neither the GP nor the pathologist was comfortable about
staking the young patient's life on guesswork. They took their laboratory results over to
the local community college, where one of the young programmers who always seemed
to be around in the middle of the night used a microcomputer and a telephone to put them
in contact with an expert in Palo Alto, California, who knew just the right questions to
ask about a case like this.

"Has the patient recently had symptoms of persistent headache or other abnormal
neurologic symptoms (dizziness, lethargy, etc.)?" asked the specialist in California.

"Yes," replies the local attending physician.

"Has the patient recently had objective evidence of abnormal neurological signs (nuchal
rigidity, coma, seizures, etc.) documented by physician observation or examination?"

"Yes," replied the pathologist.

With the help of clues provided over the telephone by the expert, the local doctors were
able to administer one more test that narrowed their search for the disease-causing
organism down to one of the three possibilities suggested by the specialist. There were
drugs on hand for treating the infection that the long-distance expert had helped them
pinpoint. The little girl recovered. The doctor, the pathologist, and the child's family were
grateful.

The specialist, a computer program named MYCIN residing in a mainframe computer at
Stanford Medical Center, chalked up another diagnostic triumph to its already impressive
record.

Although this particular story is fictional, the dialogue is an excerpt from a real MYCIN
consultation. The program does indeed exist, and is in use as a strictly experimental
diagnostic assistant. It is an example of a whole range of new computer programs
known as expert systems that are now serving as intelligent assistants to human

 204

http://www.eas.asu.edu/%7Edrapkin/556/mycin.html

experts in fields as diverse as medicine and geology, mathematics and
molecular biology, computer design and organic chemistry. Expert systems are
just the first of a whole new variety of software probes that infonauts like Avron Barr are
launching into the unknown regions of human-machine relationships.

These systems are both research tools and commercial products. A program called
PROSPECTOR has recently helped pinpoint a molybdenum deposit worth tens of
millions of dollars. A program named DENDRAL, which started out as an artificial
intelligence experiment, is now owned by a consortium of chemical companies, whose
chemists use it to design and synthesize potentially useful new compounds.

One important difference between an expert system and other kinds of computer
programs is that the program does not simply provide answers to questions, the way a
calculator provides the solutions to equations. Expert systems do, of course, suggest
answers, and eventually they will venture answers accompanied by a numerical statement
of "confidence" in the answer. But they do more than that. The most important part of
an expert system is in the interaction between the program and the person who
uses it.

The human who is faced with a specialized problem can consult the specialized program,
which is able to ask the human questions of its own regarding the particulars of the
problem. The consultation is a dialogue that is tailored to the specific case at hand. The
program simulates the decision process of human experts, and feeds back the
results of that process to the human who consults it, thus serving as a reference and guide
for the person who uses it.

Expert systems as they exist today are made of three parts -- a base of task-
specific knowledge, a set of rules for making decisions about that knowledge, and a
means of answering people's questions about the reasons for the program's
recommendations. The "expert" program does not know what it knows through he raw
volume of facts in the computer's memory, but by virtue of a reasoning-like process of
applying the rule system to the knowledge base; it chooses among alternatives, not
through brute-force calculation, but by using some of the same rules of thumb that human
experts use.

Statistics about how often experts turn out to be right are the ultimate criteria for
evaluating expertise -- whether the expert is a person who has studied for years, or a
computer program that was literally born yesterday. The methodology for conducting
such an evaluation was suggested in the 1950s, by Alan Turing. The "Turing test"
bypasses abstract arguments about artificial intelligence by asking people to determine
whether or not the system they are communicating with via teletype is a machine or a
person. If most people can't distinguish a computer from another human, strictly by the
way the other party responds to questions, then the other party is deemed to be intelligent.
A similar strategy has been employed to judge the efficacy of expert systems. Why not
just ask some human experts to distinguish human from machine diagnoses?

 205

http://www.rheingold.com/texts/tft/3.html

One experiment conducted by the Stanford Medical School began by submitting to
MYCIN case histories of ten patients with different types of infectious meningitis. At the
same time, eight human physicians, including five faculty specialists in infectious
diseases, a research fellow, and a resident, were given the same information that had been
fed to MYCIN. MYCIN's recommendations were sent, along with the human physicians'
recommendations, also unidentified as such, and a record of the therapy the patients
actually received, to eight non-Stanford specialists. The outside specialists gave the
highest rating to MYCIN.

In the 1980s, there is little question that expert systems can be highly effective,
if not superior to human expertise, in certain highly specialized fields. Twenty
years ago, few people, even inside the artificial intelligence community, were confident
that it could be done at all. The normally "pure" research field of artificial intelligence
strayed into this potentially controversial area of applied AI, as it was bound to, because
the questions surrounding expertise are at the core of the effort to simulate human
intelligence.

Edward A. Feigenbaum was one of the people from artificial intelligence research who
decided, in the mid-1960s, that it is important to know how much a computer program
can know, and that the best way to learn something about the question would be to try to
construct an artificial expert. Joshua Lederberg, the Nobel laureate geneticist, suggested
the task of determining the molecular structure of compounds, based on data from mass
spectrography and guided by the rules that are known to govern molecular bonds, was an
appropriately difficult and potentially useful problem for artificial intelligence
techniques. Together with software expert Bruce Buchanan and Nobel laureate
biochemist Carl Djerassi, Lederberg and Feigenbaum started to design DENDRAL, the
first expert system, in 1965, at Stanford University.

Human chemists know that the possible spatial arrangement of the molecules that make
up any chemical compound depends on a number of basic rules about how different
atoms can bond to one another. They also know a lot of facts about different atoms in
known compounds. When they make or discover a previously unknown compound, they
can gather evidence about the compound by analyzing the substance with a mass
spectrograph. The mass spectrograph provides a lot of data, but no clues to what it all
means.

Conventional computer-based systems had failed to provide a tool for discovering
molecular structures, based on spectrographic data. The problem is that the rules allow a
very large number of "near misses" -- possible structures that almost, but not quite, fit all
the data. There appears to be a "complexity gap" when it comes to the task of sifting
through all the near misses. The far simpler computing processes that were used to
discover simple structures are just not adequate for more complex structures. DENDRAL
was designed to find that one "structure in a haystack" that perfectly fit the
spectrographic data and the rules of chemical bonds.

 206

http://www-cs.stanford.edu/profile/people/feigenbaum.html
http://www-camis.stanford.edu/research/history.html#DENDRAL

It turns out that you can't just feed all the known facts into a computer and
expect to get a coherent answer. That isn't the way human experts make decisions,
and apparently that isn't the way you coax a computer into making a decision. What you
need is an "inference engine" to fit together the rules of the game, the body of
previously known facts, the mass of new data, then venture a guess about what
it all means.

Building the right kind of "if-then" program, one with enough flexibility to use the kind
of rules of thumb that human experts employ, was only the first major problem to be
solved. Once you've created the program structure capable of manipulating expert
knowledge, you still have to get some knowledge into the system. After feeding the
computer program lots of data about molecules, and rules about how they can be
combined in molecular structures, the creators of DENDRAL interviewed expert
chemists, trying to specify how the experts made their decisions about which
combinations and structures are likely to be useful. The resulting program became
a milestone in the evolution of software, and the first of a series of software tools for
chemists, biologists, and other researchers.

The process of constructing DENDRAL had another useful, unexpected side effect: The
task of extracting judgment-related knowledge from human experts led to a new subfield
known as "knowledge engineering." "Knowledge engineering" is the art, craft, and
science of observing human experts, building models of their expertise, and
refining the model until the human experts agree that it works. One of the first
spinoffs from MYCIN was EMYCIN -- an expert system for those people whose
expertise is in building expert systems. By separating the inference engine from the body
of factual knowledge, it became possible to produce expert tools for expert-systems
builders, thus bootstrapping the state of the art.

While these exotic programs might seem to be distant from the mainstream of research
into interactive computer systems, expert-systems research sprouted in the same
laboratories that created time-sharing, chess playing programs, Spacewar, and the hacker
ethic. DENDRAL had grown out of earlier work at MIT (MAC, actually) on programs
for performing higher level mathematical functions like proving theorems. It became
clear, with the success of DENDRAL and MYCIN, that these programs could be useful
to people outside the realm of computer science. It also became clear that the kind of
nontechnical questions that Weizenbaum and others had raised in regard to AI were
going to be raised when this new subfield became more widely known. As the first
frighteningly practical applications to the field of medicine proved when they
were created, the field of artificial expertise involves important ethical as well
as philosophical, psychological, and engineering considerations.

The clearest area of potential danger in applying knowledge engineering to human
medicine is the possibility of misuse through misunderstanding. Although the people
who built the system see it as a marvelous but thoroughly fallible tool, many

 207

people tend to give too much weight to the recommendation of a computer
simply because it comes from a computer. Since medical advice often deals in life
and death matters, you have to take into consideration the potential psychological impact
of such an "automatic doctor" when you attempt to build something that gives medical
advice to an expert.

Like all complex issues, the ethics of medical knowledge engineering have another side.
It might be noted by someone from a non-Western, nonindustrial, or nonurban culture
that expertise, particularly medical expertise, is a desperately scarce resource. The few
medical, hygiene, and agricultural experts who are fighting the biggest humanitarian
problems of the world -- epidemics and famine -- are spread too thin and are working too
hard to keep up with scientific progress in their fields. Even in major medical centers,
expertise in certain important specialties is a rare commodity.

While so many of the trappings of "modern medicine" -- like CAT scanners and other
medical imaging technologies -- are so expensive as to be limited to a few wealthy or
well-insured patients, the potential cost per patient of a software-based system is
absurdly low, almost low enough to do some good in a near-future when the number of
critically ill people on earth might number in the hundreds of millions.

Medicine -- with all its promise and all its difficult ethical implications -- appears to be
one of the most promising areas of application for commercial knowledge engineering. In
the mid 1970s, a physician and computer scientist at Stanford Medical School, Dr.
Edward H. Shortliffe, developed MYCIN, the diagnostic system quoted in the earlier
dialogue. The problems associated with diagnosing a certain class of brain infections was
a technically appropriate area for expert-system research, and an area of particularly
pressing human need because the speed with which the infecting agent is identified is
critical to successful treatment.

MYCIN's inference engine (the part of the program that makes decisions by applying
general rules to scientific specific data), known as E-MYCIN, was used by researchers at
Stanford and Pacific Medical Center to produce PUFF, an expert system that assists in
diagnosing certain lung disorders. An even newer system, CADUCEUS (formerly known
as INTERNIST), uses AI techniques to simulate the diagnostic skills of a specific human
physician -- Dr. Jack Meyers of the School of Medicine at the University of Pittsburgh.
Meyers and his partner, Harry Pople, Jr., a Carnagie-Mellon-trained AI expert, have been
storing parts of Meyers' problem-solving style and his knowledge about the entire range
of medicine, along with an impressive body of information from the medical literature.
CADUCEUS is not yet complete, but it can already perform creditably when it is
submitted difficult cases from the medical journals.

People told Katherine Fishman, the author of The Computer Establishment, that their
object is to provide "something the physician would use instead of going to the library or
consulting a specialist. There aren't that many experts available, even at major centers."
Among the sponsoring agencies who have shown interest in CADUCEUS are NASA,
which has an obvious need for such a medical helper in manned space missions, and The

 208

Navy, which could use something similar for nuclear submarines. Special gear for
astronauts and nuclear submariners might sound remote from most people's
daily lives, but in recent history, the transistor radio, handheld calculators, and
many other examples of new technologies have traveled from the exotic
confines of NASA to the breast pockets of teenagers around the world in less
than ten years.

Like the creators of previous technological advances, knowledge engineers first had to
prove that expert systems could be built at all and that they were useful. That took about
ten years. Next, they had to find potential areas of application -- a task that didn't take
nearly as long. About two dozen corporations are currently developing and selling expert
systems and services. TeKnowledge, founded by Feigenbaum and associates in 1981, was
the first. IntelliGenetics is perhaps the most exotic, specializing in expert systems for the
genetic engineering industry. Startups in this field tend toward science-fictionoid names -
- Machine Intelligence Corporation, Computer Thought Corporation, Symbolics, etc.
Other companies already established in non-AI areas have entered the field -- Xerox,
DEC, IBM, Texas Instruments, and Schlumberger among them.

Expert systems are now in commercial and research use in a number of fields. A partial
sampling:

• KAS (Knowledge Acquisition System) and TEIRESIAS help knowledge engineers build expert systems.
• ONCOCIN assists physicians in managing complex drug regimens for treating cancer patients.
• MOLGEN helps molecular biologists plan DNA experiments.
• GUIDON is an education expert system that teaches students by correcting answers to technical
questions.
• GENESIS assists scientists in planning cloning experiments.
• TATR helps the Air Force plan attacks on enemy airbases.

It's hard to argue with a molybdenum deposit or a significantly high rate of successful
diagnoses. As the debate over whether software is capable of acting intelligently
dies down in what mathematicians call an "existence proof," the question of
whether computer technology ought to be applied to such areas as medicine, air
traffic control, nuclear power plant operations, or nuclear weapons delivery
systems is just beginning.

Some critics, prominent members of the artificial intelligentsia among them, have been
sounding alarms over the potential ethical dangers of relying too much on electronic
artifacts like expert systems to make decisions. Joseph Weizenbaum fears that there is
great peril in relying too much on a technology that is very good at mimicing what are
actually much deeper human thought processes. Expert systems are the epitome of
the kind of "imperialism of instrumental reasoning" Weizenbaum rails against -
- the kind of thinking that sees all problems as solvable through the kind of
analytical, mechanical processes a computer uses.

 209

In a 1983 interview, Weizenbaum said: "To think that one can take a very wise teacher,
for example, and by observing her capture the essence of that person to any significant
degree is simply absurd. I'd say people who have that ambition, people who think that it's
going to be that easy or possible at all, are simply deluded."

Avron Barr is a knowledge engineer who does not feel that he is deluded, and
knowledge-based educational systems happen to be one of the areas of his expertise.
Surprisingly, Barr agrees with Weizenbaum about the potential ethical danger of mixing
human lives and artificial intelligence research: "Artificial intelligence doesn't exist yet,"
Barr emphasizes, "but I believe that the kind of research we have started to
explore with knowledge-based expert systems can eventually create a tool that
truly understands human inquiries. And I'm not sure that people are prepared
for the ethical decisions that will accompany that kind of power."

From our conversations, and from my perusal of his written work, it has been evident to
me that Barr also feels that the potential for using this technology to assist humanity is
well worth pursuing, despite the dangers of misuse. Besides developing and distributing
automated expertise to both specialists and ordinary citizens as an informational antitoxin
to life in a complicated world, Barr likes to wonder aloud how else might these software
entries be used to further positive ends. His personal dream is to eventually build an
expert system that is an expert in helping humans reach agreement. If chemists and
physicians can use intelligent assistants, why can't diplomats and arms-control
negotiators avail themselves of the same assistance? Avron Barr's odyssey through
philosophy, psychology, and computer programming has led him to suspect a deep
connection between what we know individually and how we agree collectively.

I met Avron Barr in a short-order restaurant in the heart of artificial intelligence country -
- an establishment named "late for the Train," located next to the Menlo Park train
station. If there is an eavesdropping hit list for technological spies, this
seismographic hotcake-and-sprouts joint has to be in the top five. SRI
International, one of the oldest robotics research centers, and the birthplace of
PROSPECTOR, the molybdenum-sniffing software assistant, is a few shady, tree-lined,
affluent blocks away. The tweedy old fellow buttering a scone at the next table
looked like a central-casting stereotype of a Nobel laureate.

Barr was wearing a white shirt and tie when we met. He appears to be in his midthirties.
His hair is brown and well-groomed, his moustache neatly trimmed -- another one of the
many babyboomers who might have been hippies in the sixties, but who now go to
hairstylists twice a month. He looks like the young man who used to put your groceries in
the bag.

Barr got into programming in the first place because he needed a job, and he
became involved with artificial intelligence because AI programmers seemed to have the
only tools he could find that were capable of helping him to create the kind of programs
he needed in his work for a research team. His need for a job came after he dropped out

 210

of graduate school. His undergraduate work in physics and math at Cornell led to
Berkeley, in 1971, where a few months as a physics graduate student made it clear to him
that he really didn't want to be a physicist, after all.

At that point, a career in computer science wasn't even on his list of goals, but
programming happened to be one of his marketable skills -- he had worked his way
through Cornell doing scientific programming for various faculty members, stumbling
along in FORTRAN, which he taught himself from a book one weekend. After he
abandoned his physics career and he began to look for employment, an announcement for
a research associate with programming experience came to his attention. The Stanford
job called for a resident software handyman in a laboratory that was exploring the
technology of instruction. He took it.

He had become a significant contributor to the research team, as well as the hired
computer jockey, when he joined a small research group at Stanford Institute of
Mathematical and Social Sciences. Over the next several years, he helped design a
program that taught beginners how to program in the language BASIC.

"Which meant that I had to go back to thinking about what kinds of people were going to
be dealing with computers," Barr recalls, "and finding out what kinds of problems those
people might have in the process of learning their first computer language.

"One of the first things that is evident is that computer programs are very different from
most of the things we learn in school because programmers rarely if ever hit the right
answer the first time out. Programming is debugging. So being wrong is not so
much something to be avoided at all costs, but should be seen as a clue to the
right way of doing it. That's why it was actually an environment rather than just an
instructional program. We tried to build a curriculum for teaching BASIC, along with the
handholding help people seemed to need in learning software, right into the BASIC
language interpreter."

An interpreter, it must be remembered, is not a person who specializes in deciphering
computer jargon, but a kind of computer program that can convert programming
commands written in the kind of high-level language that people find easier to write into
a machine-language form that the computer can read.

The very primitive communications between programmer and interpreter created much of
what beginners have always found frustrating about learning old-style programming.
Interpreters cannot create programs that will run successfully on computers unless the
programs are written perfectly, without a single minor error. If a parenthesis is out of
place, the interpreter simply stops operation and puts some spine-chilling message on the
screen -- the infamous "Fatal Error" or the enigmatic "Syntax Error."

The communication between first-time BASIC programmers and the BASIC interpreter
necessary to run their programs was the part of the system Avron Barr and his colleagues
were trying to make easier and less frustrating to the human user: "Usually, interpreters

 211

return cryptic 'error messages' when they are fed a program with a bug in it," Barr
explains. "The program we were building was meant to use the error messages and the
debugging as a way to learn how to program."

In order to build an interpreter that not only is able to identify errors, but also
can give beginning users hints about how to go about solving the problem,
Avron had to go beyond the normal tricks of the programming trade and learn
about some of the exotic new notions that were beginning to emerge from AI
research. This wasn't standard operating procedure for the vast majority of
programmers: To most computer programmers, even scientific programmers,
AI was esoteric hocus-pocus that a clique of obsessed academics did with a lot
of money from the Defense Department.

When the intelligent interpreter project was finished, Barr entered the computer science
department as a graduate student at Stanford, where he encountered Ed Fiegenbaum.
Although he had been working as a professional programmer, and he was surrounded by
artificial intelligence types, and had even picked up a few tricks from AI hackers, this
was Barr's first formal exposure to the field. Feigenbaum had an idea about writing and
editing a book. Avron took on the task. They thought they could produce a general
handbook on AI by the end of the summer. It took five and a half years.

Besides the course requirements of his graduate work, Barr's paying job required him to
produce a general text from the contributions of hundreds of AI researchers, a book that
someone in a noncomputer related field could use to get an overview of the most
significant work that had been done in AI. The job stretched out longer and longer, and
during the time it took to complete his editing duties, he progressed from his master's
degree to a Ph.D. in cognitive science.

By the late 1970s, Barr was not alone in feeling that the exploration and engineering of
knowledge -- learning how it is acquired by humans or machines, how it is represented
in the mind or in software, how it is communicated between humans and computers and
disseminated throughout a culture -- was a central problem in philosophy,
psychology and artificial intelligence that might well be answered in surprising
ways by the new discipline created by the builders of expert systems.

Computers can track large amounts of information, and they can move through that
information very quickly. But when it comes to solving any but the simplest problems --
the kind that a human toddler or a chessmaster can handle easily -- computers run up
against a severe problem. Large is never large enough when it comes to the computer
memory needed, and fast is never fast enough in terms of computational speed. There is
simply too much information in the world to solve problems by checking every possible
solution. The difference between brute-force calculation and human knowledge
is the missing link (and holy grail) of hard-core AI research.

 212

Personal knowledge is a tricky thing to describe, and hence a difficult thing for a
computer to emulate. Knowledge is more than a collection of facts, frozen into some
rationally coded order. How do our minds do all the things they do when we're thinking,
without consciously thinking about how to do it? How do you know which details in a
sea of information are worth your attention? The difference between a novice and an
expert, for example, is not simply a quantitative question of more stored facts about the
area of expertise; the difference hinges, instead, on the ability to make judgments about
novel problems in the field.

Chess has been the classic example of the difficulties of emulating expertise with
computer programs. It is a finite game, with a limited number of clearly allowable moves,
each of which have perfectly specified outcomes. Chess qualifies as a formal system in
the Turing machine sense, and hence can be imitated by a computer. Give the computer
the rules, the starting position, and the opponent's first move, and the computer is capable
in principle, of calculating all the possible responses to that move and formulating a
response based on that calculation.

Yet, after a quarter of a century of effort, nobody has come up with an unbeatable chess
playing program. The reason that brute-force calculation hasn't defeated a human
grandmaster is not rooted so much in technology as in mathematics: the combinational
explosion is the term for the brute-force barrier noted by Shannon back in 1950. Even
with only 64 squares and a limited number of allowable moves, the number of
possible moves in chess multiplies so quickly that it would take uncountable
years to evaluate all legal possibilities.

In chess and many other formal systems, the correct answer is a member of a very large
number of possible alternatives. The problem posed by an opponent's move is best
answered by a move that will lead to capturing an opponent's king. Hidden among the
huge number of possible countermoves for each one of the opponent's move is one
answer or a small group of answers that would have the best chance of achieving the final
goal or some intermediate goal. The abstract domain in which the solution is hidden is
known as a "problem space."

The brute-force method of finding the right chess move by generating and checking each
and every possibility that could exist according to the rules is known as an "exhaustive
search of the problem space." Problem space is where the combinational explosion lurks,
waiting to be triggered by any branching more than a few levels deep.

The problem of the combinational explosion can be easily visualized as a tree structure. If
the decisions needed to choose between different options are seen as the branches of a
tree, then a simple two-decision example would yield two branches on the first move,
four on the next, eight on the one after that. By the time you get to sixty-four moves, each
with twice as many branches as the previous move, you won't be able to see the forest for
the branches. If you increase the number of cases to be decided between from two to
three, it gets even more snarled: After two moves on a triple-branching tree, there are
nine branches (instead of four); after three moves there are twenty-seven (instead of

 213

eight), etc., ad infinitum. So you have to build a system to weed out the legal but absurd
moves, as well as a strategy to evaluate two or three moves in advance.

What a machine needs to know, practically before it can get started, is that the mysterious
something that human chessmasters know that enables them to rule out all but a few
possibilities when they look at a chessboard (or hear a chess situation described to them
verbally). When a human contemplates a chess position, that person's brain
accomplishes an information processing task of cosmic complexity.

The human brain has obviously found a way to bypass the rules of exhaustive
search -- a way to beat the numbers involved in searching problem space. This is the
vitally important trick that seems to have eluded artificial intelligence program designers
from the beginning.

What does the human chessmaster do to prune the tree created by brute-force programs,
and how can computers help other humans perform similar tasks? The point of expert-
system building is not to outdo the brain but to help human reasoning by creating an
intelligent buffer between brain processes and the complexities of the world -- especially
information-related complexities. A problem-pruning tool could be an important
component of such an informational intermediary.

Human brains seem to accomplish tasks in ways that would require absurd amounts of
computer power if they were to be duplicated by machines. The first expert-systems
experiments were not focused exclusively on machine capabilities nor on human
capabilities, but on the border between the two types of symbol processors. How could a
machine be used to transfer expertise from one human to another? The emerging
differences between machine capabilities and human cognitive talents were brought into
sharper focus when it was demonstrated by systems like MYCIN that this kind of
software was capable of measurably augmenting the power of human judgment. Doctors
who used MYCIN to aid their diagnostic decision-making ended up making accurate
diagnoses more often than they did before they used the program to assist them. The
"reasoning" capabilities of the first expert systems were actually quite
primitive, but the way these systems worked as "consultation tools" made it
clear that there was great potential power in designing software systems that
could interact with people in ways that simulated and augmented human
knowing.

The present link between the technology of augmenting human intellect, the business of
building expert systems, and the science of artificial intelligence, Avron Barr and his
colleagues, is the role of transfer of expertise both as a practical, valuable tool and as a
probe for understanding the nature of understanding:

A key point in our current approach to building expert systems is that these key programs should not only
be able to apply the corpus of expert knowledge to specific problems, but that they should also be able to
interact with the users just as humans do when they learn, explain, and teach what they know. . . . These
transfer of expertise (TOE) capabilities were originally necessitated by "human engineering" considerations

 214

-- the people who build and use our systems needed a variety of "assistance" and "explanation" facilities.
However, there is more to the idea of TOE than the implementation of needed user features: These social
interactions -- learning from experts, explaining one's reasoning, and teaching what one knows -- are
essential dimensions of human knowledge. These are as fundamental to the nature of intelligence as expert-
level problem-solving, and they have changed our ideas about representation and about knowledge.

In order to make a decision with the help of an expert system, a human user
must know more than just the facts of the system's recommendation. First, the
human has to learn how to communicate with the computer; then he or she needs to know
how the system arrived at its conclusion, in terms that he or she can understand. And in
order to tell the human about the steps of its reasoning process, such systems must have a
means for knowing what they know.

By this point, the exercise has become more than a mechanical search through long lists
of possibilities. Problem-solving is only part of the function of a system that must
convince a human that a solution it has found is indeed the correct one. The internal and
external communication aspects of this transfer process, Barr suspects, offer clues to
some of the most significant problems in artificial intelligence as well as intellectual
augmentation research:

We are building systems that take part in the human activity of transfer of expertise among experts,
practitioners, and students in different kinds of domains. Our problems remain the same as they were
before: We must find good ways to represent knowledge and metaknowledge, to carry on a dialogue, and to
solve problems in the domain. But the guiding principles of our approach and the underlying constraints on
our solutions have been subtly shifted: Our systems are no longer being designed solely to be expert
problem solvers, using vast amounts of encoded knowledge. These are aspects of "knowing" that have so
far remained unexplored in AI research: By participation in human transfer of expertise, these systems will
involve more of the fabric of behavior that is the reason we ascribe knowledge and intelligence to people.

Like Doug Engelbart and Alan Kay, Barr feels that future generations will be less
inhibited than present-day computer builders and users when it comes to stretching our
ideas of what machines and humans can do. This adjustment of human attitudes and
computer capabilities is a present-day pragmatic concern of knowledge engineers, and a
long-term prerequisite for the kind of human-machine symbiosis predicted by Licklider.

In his conversations, lectures, and writing, Barr often refers to what he and other
cognitively oriented computer scientists call "the flight metaphor." Early AI
researchers, who were seeking pragmatic means to deal with the question of
whether machines could think, compared themselves to those human inventors
who not so long ago believed they would eventually build flying machines:
"Today, despite our ignorance, we can point to that biological milestone, the thinking
brain, in the same spirit as the scientists many hundreds of years ago pointed to the bird
as a demonstration in nature that mechanisms heavier than air could fly," wrote
Feigenbaum and Feldman in 1963.

"It is instructive to pursue this analogy a bit farther," Barr wrote in 1983:

 215

http://www.rheingold.com/texts/tft/9.html
http://www.rheingold.com/texts/tft/11.html

Flight, as a way of dealing with the environment, takes many forms -- from soaring eagles to hovering
hummingbirds. If we start to study flight by examining its forms in nature, our initial understanding of what
we are studying might involve terms like feathers, wings, weight-to-wing-size ratios, and probably wing
flapping, too. This is the language we begin to develop -- identifying regularities and making distinctions
among the phenomena. But when we start to build flying artifacts, our understanding changes immediately.

Barr then cited another contributor to the flight metaphor, Seymour Papert of MIT,
Project MAC, and LOGO fame, who pointed out that the most significant insights into
aerodynamics occurred when inventors stopped thinking so extensively about how birds
flew. Papert stated to a 1972 European seminar attended by Barr: "Consider how
people came to understand how birds fly. Certainly we observed birds. But
mainly to recognize certain phenomena. Real understanding of bird flight came
from understanding flight; not birds."

The most difficult barrier faced by the first designers of artificial aviation was not in the
environmental obstacles their inventions faced, nor in the nature of the materials and
techniques they had available, but in their ideas of what flight could and could not be.
The undeniable proof of the simple but incredible idea that flight does not
require flapping wings was the most important thing achieved by the Wright
brothers.

At the turn of the century, a fundamental part of the problem facing aviation designers lay
in abandoning prejudices about the way things actually were so that the possible might be
discerned. Those who wanted to build flying machines had to abandon their fixation with
the way nature solved the problem of evolving a flying lifeform so that they might see
beyond birds to understand the nature of flight. In the same sense, a fundamental part of
the problem of artificial intelligence design lies in the ability to see beyond brains or
computers to understand something about the nature of intelligence.

Cognitive scientists know that such knowledge can shed light on the way human brains
work. Barr points out that such knowledge might expand into varieties of intelligence as
different from human intelligence as a jet plane is different from an eagle.

If the flight metaphor could be faithfully extrapolated to the artificers of thinking
machines and engineers of programs that understand, Barr claims, new worlds of
unimaginable information processing mechanisms would become possible -- mechanisms
that would be compatible but quite different from the way human brains do things:

. . . Every new design brings new data about what works and what does not, and clues as to why. Every
new contraption tries some different design alternative in the space defined by our theory language. And
every attempt clarifies our understanding of what it means to fly.

But there is more to the sciences of the artificial than defining the "true nature" of natural phenomena. The
exploration of the artifacts themselves, the stiff-winged flying machines, because they are useful to society,
will naturally extend the exploration of the various points of interface between the technology and society.
While nature's explorations of the possibilities is limited by its mutation
mechanism, human inventors will vary every parameter they can think of to

 216

produce effects that might be useful -- exploring the constraints on the design
of their machines from every angle. The space of "flight" phenomena will be
populated by examples that nature has not had a chance to try.

Intelligence, like flight, is a way of dealing with the environment. Intelligence, again like
flight, conveys a survival advantage to the organism or species that possesses it. The
sheer usefulness, the practical value to society of being able to fly from place to place
ensured better artificial ways to fly. Barr suggests that expert systems and other
knowledge-based technologies are the kind of "flying machines of the mind"
that will have an equally high utilitarian value, and the economics of the
marketplace will therefore drive the future exploration of their capabilities.

The "applied" part of "applied AI" is one of the most significant aspects of expert
systems, in Barr's opinion, because the linkage of intelligent systems with valuable social
goals guarantees the further development of the young science. Because the development
of better products in this particular market also means the development of better means of
augmenting human intelligence, the evolution of this kind of machine will be rather
closely coupled with the future evolution of human thought:

It is the goal of those who are involved in the commercial development of expert-systems technology to
incorporate that technology into some device that can be sold. But the environment in which expert systems
operate is our own cognitive environment; it is within this sphere of activity -- people solving their
problems -- that the eventual expert-system products must be found useful. They will be engineered to our
minds.

. . . It is a long way from the expert systems developed in the research laboratories to any products that fit
into people's lives; in fact it is difficult even to envision what such products will be. Egon Loebner of
Hewlett-Packard Laboratories tells of a conversation he had many years ago with Vladimir Zworykin, the
inventor of television technology. Loebner asked Zworykin what he had in mind for his invention when he
was developing the technology in the 1920s -- what kind of product he thought his efforts would produce.
The inventor said that he had a very clear idea of the eventual use of TV: He
envisioned medical students in the gallery of an operating room getting a clear
picture on their TV screens of the operation being conducted below them.

One cannot, at the outset, understand the application of a new technology, because it will find its way into
realms of application that do not exist. Loebner has described this process in terms of the technological
niche, paralleling evolution theory. Like the species and their environment, inventions and their
applications are co-defined -- they constantly evolve together, with niches representing periods of relative
stability, into a new reality. . . . Thus, technological inventions change as they are applied
to people's needs, and the activities that people undertake change with the
availability of new technologies. And as people in industry try to push the new technology
toward some profitable niche, they will also explore the nature of the underlying phenomena. Of course, it
is not just the scientists and engineers who developed the new technology who are involved in this
exploration: Half the job involves finding out what the new capabilities can do for people.

In order to build an expert system, a knowledge engineer needs to encode the
rules a human expert uses to make decisions about problems in a specific field,

 217

then connect those decision rules with a large collection of facts about that
field. The human expert is asked to test the software model. If the human expert
disagrees with the system's suggested solution to a problem, then the human asks the
system to reconstruct the chain of rules and facts that led to its decision.

By pinpointing the places where the program went wrong, the human expert and the
knowledge engineer turn their rough mock-up into a working expert system by a process
of progressive debugging. Eventually, they end up with a program that will agree with the
human expert a very high proportion of the time. Consensus comes in when you ask a
second expert to evaluate the system. In real life, human experts disagree with one
another, even at the highest levels of expertise. Which means that no matter how well an
expert system agrees with one particular human expert, that does not guarantee that
another expert won't catch the software making a wrong decision.

The key to taking advantage of these natural disagreements between experts, Barr
realized, was to build in a mechanism for "remembering experiences," for keeping
around old decisions, even if they were wrong, and creating new rules from the outcome
of disagreements. Taken far enough, this aspect of the system leads directly to one of the
hottest issues in AI research -- the question of whether programs can learn from
experience. Barr was only interested in one specific aspect of this issue -- the possibility
of creating a means of tracking decisions and keeping track of instances where human
experts disagree with each other.

"When two experts disagree," Barr explains, "they try to find ways to show each other
cases where the other's knowledge is not appropriate to produce what they both agree
would be the right result. The first steps of establishing consensus, then, involve figuring
out where you do agree. Then you can get on to the second step -- trying to find exactly
where in your individual knowledge systems the disagreement lies.

"Locating the point of disagreement usually turns out to be an important part of the
process, because in consciously looking for disagreements the experts realize that they
don't share the same meanings for the terms they are using or that they don't share a
compatible description of the goal.

"This kind of debugging isn't exciting, but it creates a foundation for the third step of
consensus, where the experts have to decide what to do about each other. They can agree
that one of them was wrong, they both can remain convinced that they are right, they can
decide that they are both wrong or both right. They can look for an investigation or
experiment that could decide the issue. Or they can decide that they both have to wait for
new knowledge."

Barr believes consensus assistance is only a start on "the ultimate kind of thing we can do
with intelligent assistants. Consensys started out as a way of describing how you
communicate with one of these systems, in particular, how you might push the expert
system to deal with two different human experts and incorporate the value of the
differences that the two experts might have.

 218

"My dream has to do with the idea that there is a purpose for us all being here, and we're
all necessary for discovering that purpose. Each of us has our own little peephole onto the
building being constructed. None of us know what it is, but each of us has a slightly
different perspective. And all of those perspectives are necessary to figure out what's
being built. It's strange that we can achieve so much as a culture in such short time, and
we can get all these great ideas about how we got here and how the universe works, and
yet know so little about the point of it all. I think that's a clue that computation has a role
to play.

"I think of computation as an abstract idea about what it is to share an
interpretation of the environment. Computation involves systematic manipulation of
symbols, and symbols have a cognitive relation to the world. We need those intermediate
messages between our internal representations in order to share perspectives on the
world.

"I think it is indeed possible that these kinds of systems will someday be used as a way to
work out differences between people. The understanding that is necessary for that to
begin to happen involves admitting that we don't know what the purpose is, then finding
out why we don't know, and figuring out together how we might come to understand.
Perhaps computers can play a role in understanding that purpose.

"This might sound very philosophical, but the nature of understanding is at the core of the
problems AI programs are up against right now. Pattern recognition in artificial vision or
hearing, the ability to understand natural language, the emulation of problem-solving, the
design of an intelligent computer interface -- all of these research questions involve
the nature of understanding. We don't know what the purpose of understanding is, or
why you have to know a whole lot about the world in general to recognize a face or
understand a sentence.

"I think most of us believe that understanding is better than not understanding, and that
the more we understand the better off we'll be. And I think that the descendants of today's
knowledge-based expert systems will help us all to better understanding. Each of us will
be able to understand better because we'll be interacting with people and with information
through the assistance of expert tools. They may even help us understand things that
nobody understands."

Few people object to the notion of understanding things that nobody understands -- until
it is suggested that the agent for achieving that understanding might be an intelligence
that is made of silicon rather than protoplasm. The AI infonauts might be on a track that
ultimately will bypass the near-future technologies that augment, but do not surpass,
human intelligence. If Barr and his colleagues are correct, then their ideas offer strong
reinforcement for the speculations that Licklider made in 1960, when he introduces the
idea of a coming human-machine symbiosis. Licklider suggested that such a symbiosis
was an intermediate step for the interim decades or centuries before the machines surpass
our ability to keep up with them.

 219

Even if the human-machine partnership is to be an intermediate relationship, lasting only
a few human generations, those next few generations promise to be exciting
indeed. When we look at the history of computing, it is clear that the experts consistently
underestimate the rate at which this technology changes. Even the boldest AI pundits
might be seriously underestimating the technological changes that will occur in
the next fifty or one hundred years.

The paths to the future of mind-augmenting technology appear to be fanning out, the
range of alternatives becoming wider and less predictable. It is possible, given past
developments, that all of these paths will lead to distinct new technologies, and will
precipitate significant changes in human culture. One direction seems to involve the kind
of interactive, first-person fantasy amplifiers exemplified by the work of people like Alan
Kay and Brenda Laurel. Engelbart's dreams of intellectual augmentation furnish a
different model of how the universal tool might evolve. In the next chapter, we'll look at
yet another path -- one that is more connected to the history of literature than the history
of machines.

Ted Nelson, our final infonaut, envisions a future in which the entire population joins the
grand conversation of human culture that has heretofore been restricted to those few
creators whose works have found their way to library shelves. Wild as his predictions
may be, they have to be considered seriously, in light of the uncannily accurate forecasts
he made back in the "old days" of personal computer history -- the 1960s and 1970s.

 220

http://www.rheingold.com/texts/tft/11.html
http://www.rheingold.com/texts/tft/11.html
http://www.rheingold.com/texts/tft/12.html
http://www.rheingold.com/texts/tft/14.html

Chapter Fourteen:
Xanadu, Network Culture, and Beyond
"Computer was a bad name for it. It might just as well have been called an Oogabooga
Box. That way, at least, we could get the fear out in the open and laugh at it."

Ted Nelson is one of the most outrageous and probably the funniest of the infonauts. Of
pronouncements like the one quoted above, he likes to say, " If that sounds wild, it
means you understand it" -- a statement that could apply to his life as well as
his ideas. He's been called "a tin-pot Da Vinci," and "a weirdo who thinks he's a titan" --
and that's how he describes himself. Opinion in the computer community is mixed
when it comes to the question of whether Nelson will ever amount to anything
besides a gadfly, pamphleteer, and tinkerer. He seems to have either inspired or
irritated most of the key figures in contemporary computing -- academic,
commercial, or underground.

Even in a crowd of precocious, eccentric loners, Ted seems to set himself apart
from the rest. His fate is less certain than those who started augmentation research in
the early 1960s or who created the homebrew computer movement in the mid 1970s.
Alan Kay is closing in on the marketable version of his fantasy amplifier. Bob Taylor
continues to catalyze the development of on-line intellectual communities. Evans &
Sutherland is an extremely successful flight-simulation company, and Ivan Sutherland is
a millionaire.

But the idea people in universities and corporate laboratories, the research and
development pioneers who made the technology possible, were not the only
contemporaries whom Nelson watched and applauded in the mid 1970s as they streaked
past him on their way to somewhere. As had happened so often before, some unknown
young people appeared from an unexpected quarter to create a new way to use the
formerly esoteric machinery. The legend is firmly established by now, and Ted was the
first to chronicle it, in The Home Computer Revolution.

By the mid-1970s the state of integrated circuitry had reached such a high degree of
miniaturization that it was possible to make electronic components thousands of
times more complicated than ENIAC -- except these machines didn't heat a
warehouse to 120 degrees. In fact, they tended to get lost if you dropped them on the rug.
In 1971, a team at Intel Corporation developed the special integrated circuits that
contained all the components needed to make a fairly powerful von Neumann-type
computer -- the 4004, followed by the 8008 "computer-on-a-chip."

At the time it was invented, nobody realized that the microprocessor, one of
thousands of electronic components churned out every year, would become a
household word. At that point, probably no more than a few score highly placed or

 221

http://www.xanadu.com.au/xanadu/
http://www.rheingold.com/texts/tft/11.html
http://www.rheingold.com/texts/tft/8.html
http://www.es.com/
http://www.es.com/
http://www.rheingold.com/texts/tft/4.html
http://www.intel.com/intel/index.htm

technically fanatic people in the world had computers in their homes for their personal
use. IBM and DEC didn't exactly see the invention of the microprocessor chip as the
signal to start producing consumer computers.

In 1974, a fellow in New Mexico named Ed Roberts, president of a company called
Micro Instrumentation and Telemetry Systems (MITS), happened upon the 8008 chip and
got a notion. The chip itself was useless to anyone but an electronic engineer. It had an
"instruction set" of "firmware" primitive commands built into it, an arithmetic
and logic unit, a clock, temporary storage registers, but no external memory, no
input or output devices, no circuitry to connect the components together into a
working computer.

Roberts decided to provide the other components and a method for interconnecting them
and sell the kits to hobbyists. In January of 1975, Popular Electronics magazine
did a cover story on "a computer you can build yourself for $420." It was called
the Altair (after a planet in a Star Trek episode). Roberts was hoping for 200 orders in
1975, to keep the enterprise alive, and he received more than that with the first mail after
the issue hit the stands.

Bill Gates and Paul Allen were nineteen and twenty-two years old when they
wrote a version of BASIC for the Altair. They went to New Mexico to work with
MITS, developing software for the first hobbyist computers. It had been obvious from
day one that a great many people wanted to have computers of their own. MITS had the
usual problems associated with a successful start-up company. Roberts eventually sold it.
In 1977, Commodore, Heathkit, and Radio Shack began marketing personal computers
based on the interconnection method established by the Altair -- still known as the S100
bus.

Steve Wozniak and Steve Jobs started selling Apples in 1977 and now are firmly
established in the annals of Silicon Valley garage-workshop mythology -- the Hewlett
and Packard of the seventies generation. Gates and Allen became Microsoft, Inc. Their
company sold over $50 million worth of software to personal computer users in 1983.
Microsoft is aiming for the hundred-million-dollar category, and Gates still has a couple
more years before he reaches the age of thirty.

Alan Kay and Bob Taylor and Ivan Sutherland have already been acknowledged for their
past accomplishments, and look forward to the completion of their future projects under
the auspices of well-funded and prestigious organizations. Gates and Allen and Wozniak
and Jobs are multimillionaires working on their first billions. They all have what they
need to materialize the tools and toys they have dreamed about for decades.
Ted Nelson's fortunes, have not (yet) turned out so spectacularly.

What Ted Nelson and his long-suffering associate Roger Gregory have now is a long
program written in the "C" language -- a program that is either a future goldmine for Ted
Nelson and a boon to all humankind, or yet another crackpot boondoggle on the fringes

 222

http://www.hyperweb.com/altair/
http://alethea.ukc.ac.uk/SU/Societies/StarTrek/Episodes/TOS/3
http://library.microsoft.com/msinfo/mshist.htm

of computer history. Unsettled as his future might be, what he had in the past was
the foresight, the orneriness, and the tenacity to talk clearly and plainly about
the computer empire's new clothes.

Ted Nelson was another one of the few people who saw the personal augmentation
potential of computers early in the game and grasped the significance of the work being
done at Utah, SRI, MIT and PARC. Unlike many of the more sheltered academics,
he also saw the potential of a hobbyist "underground." Nelson chose to bypass
(and thereby antagonize) both the academic and industrial computerists by
appealing directly to the public in a series of self-published tracts that railed
against the pronouncements of the programming priesthood.

Nelson's books, Computer Lib, The Home Computer Revolution, and Literary
Machines, not only gave the orthodoxy blatant Bronx Cheers -- they also
ventured dozens of predictions about the future of personal computers, many of
which turned out to be strikingly accurate, a few of which turned out to be bad
guesses.

As a forecaster in a notoriously unpredictable field, Ted Nelson has done better
than most -- at forecasting. His business and scholarly ventures have yet to
meet with success in either the academic establishment or the computer
marketplace. He has a history of disenchanting and antagonizing the people
who have enough respect for his wild talents to take the risk of hiring him. He's
currently on his "third career crash." and still has a while to wait before he knows
whether the stock he holds in the company that is going to market his dream will make
him a millionaire, thereby vindicating his long struggle, or leave him penniless, thereby
branding him as a bona fide crank instead of a late-blooming visionary.

Like so many other computer prodigies, Ted Nelson started his often lonely and
always stubbornly unique intellectual journey when he first realized what they
were trying to do to him in school. "I hated school all my life," he claims, "from the
first grade through high school, unrelentingly and every minute. I have never known
anyone who hated school as much as I did, although my assumption is that other dropouts
do."

Despite his repeated clashes with educational authorities, Ted Nelson managed to
establish himself as an "extreme loony on campus" at Swarthmore , in the late
1950s, a place and an era where extreme loonies were rather more rare than they became
a decade later. He also managed to graduate with an academic record good enough to
give him his choice of graduate schools. He decided on Harvard, an institution known to
tolerate intellectual arrogance as long as it was accompanied by near-genius originality.

 223

http://www.sri.com/
http://web.mit.edu/
http://www.parc.xerox.com/
http://www.sccs.swarthmore.edu/

In the fall of 1960, during his second year of graduate school, Ted Nelson found out
about computers, and not a moment too soon. He was drowning in his own
information, carrying around an already monumental collection of barely
collated notes about his abundant dreams and schemes. He found out about
Vannevar Bush's paper and embraced the idea that he could use a computer to keep track
of his own prodigious stream of thoughts and sketches.

Ted was disappointed to discover that there were no computers equipped or programmed
to perform such a service. Down the road at MIT, the first time-sharing computers were
only beginning to be built. But Ted needed a storage and retrieval system to keep
track of his notes, and it seemed like such an obvious way to use computers as
aids to creative thought that he set out to create such a program himself.
Twenty-three years later, he admitted: "It seemed so simple and clear to me
then. It still does. But like so many beginning computerists, I mistook a clear
view for a short distance. "

The Harvard course in computer programming that Ted took in 1960 used the only
computer then available at Harvard, the IBM 7090 at the Smithsonian Observatory. As a
term project, Ted decided to write a machine-language program that would enable him to
store his notes and manuscripts in the computer, to change and edit drafts in various
ways, and produce final printed versions. Somewhere around the forty-thousandth line of
his program, it dawned on him that his first estimates of the magnitude of the task -- and
the amount of time it would take to establish it -- had been overoptimistic.

Nelson's inability to create something even though he was able to clearly envision it is
not unusual in the software world. The problem is so widespread that one of the
unofficial rules of computer programming (known in some circles as "Babbage's Law")
is: "Any large programming project will always take twice as long as you
estimate." Even though the simplest of the text-handling capabilities he specified in
1960 were to become, in the hands of other programmers, the software spearhead of
office automation in the 1980s, Nelson went far beyond simple text manipulation in the
program he set out to write for his term project.

Like Doug Engelbart, whose work he had yet to learn about, Nelson yearned for more
than a lazy man's typewriter. They both wanted the freedom to steer their
thought paths in new ways. And Ted especially desired the prerogative of changing
his mind. He wanted the freedom to insert and delete words and move paragraphs around,
but he also wanted the computer to remember his decision path. One of the specs was for
something he called "historical backtrack," in which the computer could quickly show
him the various earlier alternative versions of his ever-changing text.

"Alternative versions"? From a place to store notes to a tool for sculpting text, his
term project had now landed him in even more wondrous science-fiction
territory, a place where it was possible to think in terms of parallel alternatives.

 224

http://www.rheingold.com/texts/tft/9.html

Of entire libraries of parallel alternatives, and automated librarians to perform the most
tedious of searches in microseconds. Why should we abandon any thought at all? Why
not just store every variation on everything and let the computer take care of
sifting through it when we want to view something?

Ted Nelson was hooked, and desperately wanted to become a "computer person," but
came up against the still-prevalent notion that computers are "mathematical." Never one
to be accused of excessive modesty regarding his intellectual powers, Nelson admits that
he was "a mathematical incompetent." He was even an outsider to those outsiders who
were dropping out of MIT and hanging around Building 26. A Swarthmore/Harvard
person just wasn't versed in the way Bronx-Science/MIT people talked about computers.

He couldn't find any jobs as a computer dreamer, but he did manage to find a position as
a photographer and film editor at a laboratory in Miami where a man named John Lilly
was conducting research on dolphin intelligence. Lilly had a very rare piece of
instrumentation -- one of the original LINC microcomputers designed by Wes Clark.
(Nelson didn't use the machine in his work, but its existence convinced him that the idea
of small, personal computers was indeed sensible.) After that came a job teaching
sociology at Vassar.

Over the next two years, while he taught sociology and thought about the complexities of
storing and cross-referencing that had prevented him from finishing his note-keeping
program, Nelson realized that he was trying to create a new kind of thing. It was
a tool, but it was also a library, and a medium, and a legion of slave-librarians.
In the mid-1960s, when he was working at a book firm, he started to call the whole
scheme Xanadu. He says it is "a traditional name for a magic place of literary
memory," but it is worth noting that Coleridge's poem of that name, like Nelson's term
project, was unfinished.

By the late sixties, having offended anyone who could help him in the worlds of
academic, commercial, and military computing, Ted was free to find a few like-minded
and computer-obsessed friends and attempt to write the software that would make
Xanadu possible. By this time, he had not only dreamed up the specifications for the full-
blown version of this new information processing system, he had managed to attract a
few equally fanatic allies.

The basic note-keeping scheme that started it all was meant to have a system for taking
care of all backtracking. The next step was to expand this capability to handle alternative
versions and to show the user which parts of different versions are the same and which
are different. This versioning capability, which Nelson now estimates to consume about 5
percent of the Gross National Product -- from the boiler-plate paragraphs used by
attorneys to the 47 different versions of the 747 design that are stored in Boeing's
computers. In real life, there is hardly ever such a thing as "the contract" or "the 747
blueprint." Mixtures of standard and custom features that make for slightly different
versions of contracts or blueprints are more often the case.

 225

Historical tracing and versioning, however, don't make for much more than a
powerful word processing system. Things started getting extradimensional
when Nelson thought about adding links. Engelbart thinks that he and Nelson just
happened to come up with something similar around the same time, although Engelbart
had the technology and the wherewithal to actually get such a system up and running.
The whole idea started out as a kind of computer-dynamized footnote -- a way
to jump from part of the text to something outside the main body of the current
document.

Instead of encountering an asterisk and looking at the bottom of the page for a footnote,
and possibly looking up another document elsewhere in the library to verify a reference,
the user would point a lightpen or a mouse as the electronic equivalent of the asterisk,
and automatically bring the appended or referenced material to the screen. A return
button would bring the user back to the point in the original text where the link symbol
appeared. A very similar feature was built into Doug Engelbart's early NLS system.

Engelbart was more concerned with constructing the toolkit and workshop for solving
problems than speculating about the kind of literary form such a facility might create.
Nelson, however, being a liberal arts type rather than an engineering type -- a dichotomy
he deplores, since it kept him away from computers for so long -- wondered what art
forms and intellectual systems might emerge. In its simplest essence, a link is a reminder
that "there is something to jump to here." Links meant that literature no longer had to be
sequential.

The link facility, Nelson insisted from the first, provides something far more powerful
than a means of attaching odds and ends. A system with backtrack, versioning, and
links would create the possibility of a new way of organizing thoughts into
words, a nonsequential form of writing that was never possible before
computers, a literary form he called hypertext.

Hypertext, as he first imagined it, could apply to scholarship as well as to
poetry. Scientific literature, the very basis of worldwide scientific scholarship, consists
of published documents which refer to many previously published documents. An
experiment is usually performed to test a hypothesis that was based on previous
experiments. Performing a "search of the literature" is the first thing a scientist does when
confronted with a new research problem.

The problem today is that scientific research is too successful. As Vannevar Bush warned
forty years ago, the rate and volume of scientific publication have overwhelmed the
coping capacity of our print-era technology. With a hypertext system, each scientific
document could have links to its intellectual antecedents and to documents
regarding related problems. The entire body of relevant scientific literature could be
collapsed into each individual document. The links would function in the same way as
footnotes, but with immediate access to the cited material, as if each footnote was like a
window or door into the cited document.

 226

A system with links, backtrack, and versioning needs only an economic
structure to become a publishing system. Nelson sees an anarchic but self-
organizing system based on his conception of royalties and subroyalties. In a Xanadu-
like system, royalties are automatically monitored by the host computer
network, and are based largely on transmission time -- the amount of time
people pay on-line attention to a given document. Every document in the system
has an owner, and every owner is paid "a whiff of royalty" whenever somebody calls
their document from the memory and displays it in words, sounds, or images.

Everybody can create what text they want and put it on the system, from sonnets to
pamphlets to textbooks, and everybody can quote or cite any other document. Documents
can consist of links. Compendia, guided tours, directories, and indexes will spring up as
independent documents; order would become a valuable commodity. "The result is a
seemingly anarchic pool of documents, true, but that's what literature has been anyhow . .
. ," Nelson claims. "Its orderliness is not, as some would suppose, imposed by the
computer or its administrators, but by something which arose long ago in the natural
structure of literature, and which we are merely retaining." Just as literary critics and
librarians have found ways to organize and categorize the apparently chaotic
stream of traditional literature, Nelson claims that people will spontaneously
invent methods of organizing a hypertext-based body of literature.

Nelson sees his ultimate concerns about the technology as political. Where most
revolutionaries have regarded the computer as a tool of totalitarian oppression, a symbol
of centralized power and dehumanization, Nelson has long known that these ideas are
based on an outmoded kind of computer. Distributed networks of individually powerful
computers are an entirely different thing from a central computer with a lot of extensions,
and Nelson was one of the first to point out this technology's potential for
creating social forms directed by the individual members, who are beyond the
command of any old-fashioned, mainframe-type central control. He is enthused by the
personal power that comes with having ready access to usable forms of information -- the
bite of the old hacker apple -- and zealous about preserving the freedom to explore it in
your own way:

Those of us who grew up believing passionately in ideals that made our country great, such as liberty and
pluralism and the accessibility of ideas, can hardly ignore the hope of such an opening-out. Libertarian
ideas of accessibility and excitement might unseat the video narcosis that now
sits on our land like a fog. I want to see the writings of Herodotus,
Nostradamus, and Matthew Brann as accessible as those of Rod McKuen,
along with the art of the renaissance and movies of tomorrow -- an all-
encompassing picture-book encyclopedia tumult graffiti-land, the Whole
Works.

If this all seems like a wild idea, that means you understand it. These are times wild with possibility. In an
age of pocket calculators, the Pill, hydrogen bombs by rocket, and soap operas by satellite, we can try to
create whatever wildness we want in our society.

 227

. . . I say these worlds are possible soon. We need them, and they will make lots of money. The software is
on the way. But what is really lacking are the visionary artists, writers, publishers, and investors who can
see the possibilities and help carry such ideas into reality.

What Nelson is raving about is not a technology, but a community. The idea of
electronic communities is no longer just an idea. Lap-sized computers with crude
display screens are already on their way to being commonplace. The visual displays will
grow far more sophisticated, and the computers' processing power will increase as prices
drop. Dynabooks and ARPAnets are suddenly not limited to research laboratories or
military bureaucracies. On-line interactive communities are evolving right now, all
around the world, through the wholly voluntary efforts of teenagers with modems,
traveling business people with briefcase telecomputers, information utilities, computer
bulletin board systems, and telecommunes of every stripe.

Ted Nelson is voicing what a few people have known for a while, from the technical side
-- that the intersection of communication and computer technologies will create
a new communication medium with great possibilities. But he notes that the art of
showing us those possibilities might belong to a different breed of thinker, people with
different kinds of motivations and skills than the people who invented the technology.
After Gutenberg came Cervantes. After movable type came novels. As Alan Kay pointed
out, literature was the software of the era. The Cervantes of Hypertext might be learning
to read right about now.

Twenty years ago, the few hundred people who built time-sharing began to get excited
about several new means of communication that were becoming possible via computer
mediation. Fifteen years ago, the thousand-odd people who joined the first version of
ARPAnet began to experiment with the new media -- in their daily work as a way to have
fun. About a decade ago, another group of people began to concentrate on software
systems specifically designed to facilitate communications among a dispersed community
-- computer teleconferencing.

The concept of computerized conferencing came from the usual convergence of
unexpected factors -- in this case the Berlin airlift of 1948, a decision tool invented by a
think tank, and the wage-price freeze of 1971. The idea was to build a system in
which computers make it possible for groups that are separated by both space
and time to communicate in various ways, over common-carrier
communication lines. Community communication was first tired during the Berlin
airlift, when the only agency with direct real-time communications of its own to all the
NATO countries was the State Department, with its old-style teletype machines.
Somebody tried to wire all these machines together, without the aid of
computers to help organize the message-stream -- which created a classic mess,
and the classic story of the birth of the new medium.

The earliest development of the idea of using computer mediation in
geographically dispersed conferences is most widely associated with Murray

 228

http://www.rheingold.com/vc/book
http://www.rheingold.com/vc/book
http://www.rheingold.com/vc/book/666.html
http://www.rheingold.com/vc/book
http://eies.njit.edu/%7Eturoff/

Turoff, the standard eccentric prodigy, the character who happens to see everything
differently and who, like other young, independent-minded thinkers before him, liked to
follow an idea wherever it led him.

In the late 1960s, Turoff was working on war games and other kinds of computer-based
simulations for a Washington, D.C., think tank, the Institute for Defense Analysis. Some
of these games involved connecting several "players" at once, via remote
computing systems. As a result of this experience, Turoff became interested in using
computers to mediate a special process developed at Rand, known as the "Delphi
Method," in which printed questionnaires and responses circulate among a community of
experts. Delphi was a way to reach a quick collective judgment about a complex
situation; Turoff thought the process was ideally suited to the kind of on-line
communications then being demonstrated on the ARPAnet. So he started to experiment
with a computerized Delphi system.

In the early 1970s, Turoff had moved to the Office of Emergency Preparedness, where
his job wasn't related to his immediate interests in teleconferencing. His superiors
found out that he was using his computer terminal to experiment with an
unauthorized conference system, and there was some on-the-job friction. But
then came the wage-price freeze of 1971, an action that required the rapid
collection and collation of an unprecedented amount of information. Turoff's
superiors changed their minds. The Delphi Conference System was ready just in time.

In the process of putting it together, the people who designed the system and the people
who used it began to discover that some of the system's features just seemed to become
popular with the on-line community, with no official urging and often with no connection
to the task at hand. There was, for example, a feature simply called "messages."
Anyone plugged into the system could leave a message for anyone else on a
kind of computerized blackboard. Like a blackboard, you could check your message
later and see if anyone appended a note. Notes proliferated so fast that people began to
develop programs for sifting through them.

The fancy part of the software came in when you wanted to be able to review only the
last five messages, or only those relating to a particular topic, or all the messages from a
particular person, or on a given date. Similar efforts to build electronic mail systems were
also going on in conjunction with the ARPAnet. One unique feature of both systems that
emerged early was the capability of communicating with a specialized audience, even if
you didn't know who was in that audience. For example, if you indicate to the host
computer that you want all future messages on the topic of AI research, folk
dancing, and Spacewar to be routed to your electronic mailbox, then anyone
with news about one of those topics can reach you without knowing who you
are.

 229

http://eies.njit.edu/%7Eturoff/
http://eies.njit.edu/%7Eturoff/Papers/delphi3.html
http://eies.njit.edu/%7Eturoff/Papers/delphi3.html

They were also discovering something that had been unknown in previous
communication media -- the content of the message is capable of also being an address.
Far from being a tool of dehumanization, the computer conferencing system
could boost everybody's ability to contact a community of common interest.
Some kinds of teleconferencing software were created in order to make it possible to post
a message on the topic of zucchini or microprocessors (or emergency preparedness
procedures, or organizing an airlift) and be sure that the messages would be transmitted
to everyone who needed to know about those topics.

The use of a computer-mediated message system, as Turoff understood,
ultimately created several new social phenomena. It was obvious from the vigorous
electronic mail traffic on the ARPAnet that some new kind of conversation was going on.
At a technical level, the users of these systems were able to share computer resources and
research findings, as they were supposed to. But it also turned out that whenever
people are introduced to a computer network, they seem to want to use it to
communicate with each other.

People on the ARPAnet devoted hours to composing messages. For the small community
of people who had access to such systems, the continuing dialogues on AI and foreign
policy, space shuttles and space-war, diatribes, puns, puzzles, pranks, and running jokes
became a kind of combination electronic water-cooler and customized daily
news medium. All the other news media were collapsed into subsets of the new one,
since it was no problem to plug the wire services into the system. The metamedium
seemed to foster new kinds of values, as well. Iconoclasm, debate, the right to an
unbridled heterogeneity of interests seemed to be highly valued in the emerging
on-line community.

In some quarters of that community, people like Turoff and Engelbart were trying to
learn enough from network communication behavior to help them design new tools for
group communications. The National Science Foundation, deeply concerned with the
problem of establishing a new way for the half-million scientists in this country to
communicate with each other, sponsored some of the conferencing research. Under NSF
sponsorship, Turoff moved to the New Jersey Institute of Technology (NJIT), to both
study and improve the technology. A similar project had already begun in California, at a
place called Menlo Park, not far from SRI and PARC, called the Institute for the Future.

Roy Amara and Jacques Vallee and other staff members at the Institute for the Future
worked on a system known as PLANET (for Planning Network, because it was initially
directed at planners in government and industry). Both Turoff's and the institute's systems
began with electronic mail, a shared notebook space for joint compositions, a conference
facility for in-line and off-line group communications, and an open-message/bulletin
board.

Turoff and his associates' EMISARI system that had evolved from the Delphi Conference
System evolved again into the RIMS (Resource Interruption Monitoring System) which

 230

http://www.iftf.org/

had been used, according to Turoff, by the "Federal Preparedness Agency in every major
national commodity shortage and transportation strike since 1971."

By the time he joined NJIT, Turoff's interest had expanded beyond the
development of a communications tool for crisis management: "I think the
ultimate possibility of computerized conferencing is to provide a way for
human groups to exercise a 'collective intelligence' capability," he noted in 1976.
"The computer as a device to allow a human group to exhibit collective intelligence is a
rather new concept. In principle, a group, if successful, would exhibit an intelligence
higher than any member. Over the next decades, attempts to design computerized
conferencing structures that allow a group to treat a particular complex problem with a
single collective brain may well promise more benefit for mankind than all the artificial
intelligence work to date."

In 1977, the National Science Foundation funded the NJIT to build "an electronic
communication laboratory for use by geographically dispersed research communities."
By July, 1978, seven trial projects were under way, each one a part of an established
research community of ten to fifty members. The system was set up to collect data on its
own operations, in order to test the hypothesis that a teleconference-like system could
enhance the effectiveness of research communities.

The Electronic Information Exchange System, known as EIES (pronounced "eyes"), was
one of those experiments that never shut itself down because the experimental subjects
just wouldn't let go of it. It seemed to happen with every new development of interactive
computing -- people would simply refuse to stop experimenting with the system, and
wouldn't give up the experimental tools when the experiment was over. As Jim Fadiman
noted of ARC, people seem to be as reluctant to be deaugmented as they are
resistant to augmentation in the first place.

EIES was first set up to enable members to send private communications to individuals or
groups, maintain permanent transcripts of comments on discussion topics, and provide
text processing and file management services that participants could use to construct
jointly authored papers. The protocols for using all the communication features, like
Engelbart's NLS system, were not easy to learn. It took some commitment to the idea that
it was worthwhile learning, which is one reason why research communities were ideal
laboratories for the experiment.

EIES quickly expanded from pure scientific research communities to legislative
researchers and medical researchers. Another project in the late seventies used a
modification of Engelbart's NLS system to enable EIES subscribers in one experimental
group to quickly browse through time-sensitive technical information. By 1978, policy-
makers, artists, long-range planners, and others began to join EIES. Roxanne Hiltz and
Turoff published a book that year, entitled Network Nation, in which they predicted that
the medium wouldn't be limited to a few laboratories and think tanks. They noted that
any microcomputer with a modem and appropriate software could plug into any network
its user knew how to enter. They saw the development of easier-to-use,

 231

http://www.njit.edu/CCCC/eies/eiesinfo.html

population-wide teleconferencing networks as a means of reducing the distance
between people's minds and thoughts, as a forum for intellectual discourse and
group decision-making, as a model for a new kind of community where one's
age, gender, race, or physical appearance would no longer matter as much as
what one has to say.

By the early 1980s, personal computers were being sold by the millions, and some of the
people who bought them wanted to plug into these networks they were beginning to hear
about. EIES has always been something of an elite -- you have to apply and pay a
relatively high fee. But the first public information utility wasn't long in coming.
In June, 1979, the Telecomputing Corporation of America opened for business out of a
host computer in McLean, Virginia. Reader's Digest bought the company in 1980, and it
was renamed Source Telecomputing Corporation. Reader's Digest, not an organization
known for small-scale pursuits, carried the organization through the early years when
computer sales crept into the hundreds of thousands. By the end of 1982, The Source had
over 25,000 subscribers, and a growth rate of over 1000 new subscribers per month.
Satellites and state-of-the-art computers and new software were added to accommodate
up to a quarter-million subscribers.

To those who can afford an initiation fee of $100, and a connect-time fee of $7 to $22 per
hour, The Source and its newer competitor, Compuserve, offer computer owners
admission to an electronic community-in-the-making. Besides remote computing,
electronic mail, communications, telemarketing, software exchange, game playing, news
gathering, bulletin board, and other services, The Source provides something called "user
publishing."

Since subscribers are billed according to how much time they spend with their computer
connected to the Source host computer, it is possible to pay royalties to "information
providers," based on a portion of that connect time. Every time a Source subscriber reads
wire service information, the information provider gets a cut of the take. The same is true
of user publishers. You have to pay for everything you put in storage, so the popularity of
your service with the subscribers is what determines whether any publication is
economically viable. To a creative writer, the challenge is tempting -- as long as
you can keep your audience reading, the royalties will outweigh the storage
charges. The artist can now be the publisher and go directly to the audience.

Two electronic magazines I encountered my first time out were called Sourcetrek and
Mylar's Warp. Sourcetrek, subtitled "Journeys through the Electronic Void," is put out by
"Sourcetronaut Dave," aka "Sourcevoid Dave." When you give The Source the command
to connect you to Sourcetrek, you get a choice of menus on your screen, along with a list
of different statistics about the choices -- reading time, number of times read, the exact
time it was last read. I selected the first "article," entitled "Hello," which went (in part) as
follows:

Hello.

 232

http://www.rheingold.com/vc/book/7.html

I am "Sourcevoid" Dave. David Hughes otherwise.

I was born in Colorado, descended from stubborn Welshmen who were never too loyal to the king. Which
is probably why I am content being a maverick of sorts, with a Welsh imagination.

I live in Historic Old Colorado City at the base of 14,114 foot Pike's Peak.

I work out of my 1984 Electronic Cottage with a variety of microcomputer and telecommunications tools. .
. .

I am a happily married middle-aged family man who has seen enough of Big Government, Big Industry,
Big political Causes -- either of the left or the right -- to now prefer to operate a small business out of a
small house, in a small neighborhood, working with small organizations, using a small computer to make it
all possible.

I also have a small computer bulletin-board to link my local friends with my brain -- asychronously and in
the noble written form of English. . . .

Dave has opinions and poems and stories to tell. He teaches classes via modem to
students around the world. And all subscribers can read what he has to say, at their own
expense, and reply by electronic mail if they wish, also at their own expense. The other
electronic magazine I sampled, Mylar's Warp, an Electronic Serial, by Floyd Flanagan,
was strictly fictional. The idea is the same idea behind any serial -- the writer has to keep
it interesting in order to keep the readers' attention.

The title of Chapter 1 was "Reflections on Ice," and this is as much as I read before I
realized how much I was spending in connect time:

I know I'm freezing to death. Wasn't supposed to feel a thing. Ha! A sucker born every minute. Just because
you're frozen alive, that doesn't mean you can't still be freezing to death. I may be slowed down, but I ain't
dumb. Sure as hell, I'm freezing to death.

So, how did I get here? No reason not to go over it again for the eleven millionth time. Nothing else to do.
I'm Johnny Mylar, from Peabody, Utah. Peabody's claim to fame was Dinah, a life-sized pea-green cement
replica of a dinosaur, like me, frozen out of time. . . .

Anyway, it all started when I was getting my drivers license renewed and the lady asked me if I would like
an organ donor sticker on the back of my license. Hadn't ever really thought about it before, I told her. So,
she explained how, if I died and there was a sticker on my license, the hospitals would be able to use my
organs to help people who had lost an eye, or heart, or brain, or tooth, or whatever. "Sure," I said.
"Whatever's right." I had always had a cavalier attitude concerning the most basic matters, like sex and
death. Didn't I always buy Girl Scout cookies from the little girls in the short green skirts, and . . . "

While the community of subscribers to EIES, The Source, Compuserve, Dow Jones, and
other information utilities is still small enough to keep the costs of services high, the
inevitable growth of telecomputing population from tens of thousands to millions,
spurred by the proliferation of modem-equipped home computers is sure to lower the
price enough to make it possible for more Floyd Flanagans and David Hughses to
experiment with their electronic magazines. But the big info-utilities are not the only kind
of on-line community in existence. At the same time that the larger utilities seek to plug

 233

http://www.rheingold.com/vc/book/9.html
http://members.aol.com/ffloyd/resume.html

individual subscribers together into what is essentially a centrally controlled time-sharing
technology, a different way of interconnecting computers is giving birth to an
even wilder mutant of network culture -- the computer-based bulletin boards.

A computer bulletin board system, often called a CBBS, or simply a BBS, consists of a
computer controlled by special software and the hardware needed to connect it to an
ordinary telephone line. The software enables a small host computer to automatically
answer when its telephone number is dialed, and transmit and receive messages to and
from remote computers. By leaving such a system hooked up continuously, and posting
the access number in one or two places, the grapevine takes care of the rest. Come back
and read all the messages a week later and you'll discover that a community has created
itself.

The first software that enabled microcomputer owners to set up CBBS was created by
Ward Christensen and Randy Seuss, in Chicago, in 1978. By 1984, the number of such
systems is difficult to determine, but it must at least be in the hundreds, and probably will
soon be in the thousands. To connect to a BBS, you need a personal computer, a modem,
telecommunication software, and a telephone. Plug the telephone into the modem, use the
communication program to dial the BBS number, then when the computers are
connected, the host system will put words on your screen and tell you how to work the
system.

Most people know of these systems, and the underground community of users, because of
the movie WarGames, television programs about computer whiz kids, and publicity about
dark-side hackers. In fact the community has changed so swiftly that piracy, phone-
freaking, destructive hacking, and even obsessive interest in how computers work now
occupy only a small part of the BBS scene. Many bulletin boards have been in existence
for years, but even more seem to spring up and die out on a weekly basis. In my own
limited sampling of the BBS world, over the span of a few months, I
encountered teenage philosophers, homespun lecturers of all ages and both
sexes willing to ramble about any topic you'd care to name, and I even
stumbled onto a couple of on-line religions, both cybernetic and pagan.

I met Clyde Ghost Monster one night out in the bulletin board zone, and Clyde ultimately
turned me on to the number that led me to the on-line religion. It started the way it
usually does when you browse the boards. A list of bulletin board numbers had led me to
a list of bulletin board numbers that led me to another lively discussion group called
"Sunrise" in New Jersey, consisting of random drop-ins from anywhere in the country,
like me, and a core group, mostly local, who seemed to know each other, and who spent
hours trading messages about utterly anything at all.

While some boards are strictly for hackers or computer enthusiasts or science-
fiction freaks or sex freaks or peace types, Sunrise appeared to be a kind of
electronic cracker-barrel store crossed with a public restroom wall. I joined
Sunrise as "Johnny Jupiter" when I decided to add my two cents to a very funny ongoing

 234

http://www.rheingold.com/vc/book/4.html
http://www.students.uiuc.edu/%7Elneumann/wargames/

conference that consisted of nothing but lists of "my favorite people." You can say a lot
with just a list of people, the Sunrise community discovered one night, when "Ivan Idea"
started it all by posting the first list. The creators of the lists that followed within hours
signed themselves with names like "Tater Tot," "Clock Speed," and "Clyde Ghost
Monster."

I checked in on Sunrise from week to week, and one night, while scrawling some
graffitist reply to an ongoing epistemological debate, the words "SYSOP REQUESTS
CHAT" appeared on my screen. I typed "OKAY LET'S CHAT," hit the return key, and
started conversing in real time with an utterly fascinating individual, via an exchange of
quickly typed messages.

It turned out that the host computer was located in Clyde Ghost Monster's bedroom,
which made Clyde the system operator. Sysops are like benevolent dictators. They can
weed you out of the community memory if they want, but then again, their computer is
the one that provides a message-mediation system to anyone who wants to drop in,
electronically speaking. Clyde Ghost Monster was an anarchist sysop, who preferred the
rule of wit. Clyde Ghost Monster, I was to learn weeks later, was also a sixteen-
year-old girl. Tater Tot was a seventeen-year-old boy who went to her high school.
They had no idea who Ivan Idea was.

Clyde told me that if I wanted to find out about new kinds of communities, I ought to call
a conference-tree bulletin board in Santa Cruz, California, and read the opening message
for "ORIGINS." The conference tree is a bulletin-board-based medium that seems
particularly well suited to wildly heterogeneous experiments in communitarian
communication. The idea behind a conference tree is that you can call in and read from or
write to a variety of conferences, each one consisting of a constantly branching list of
messages and submessages. The name of the message conveys something of what it is all
about, and all the variations of opinion from rabid enthusiasm to utter contempt can be
expressed in submessages and submessages of submessages.

My modem beeped its way to the host computer, and when the word CONNECT
appeared on my screen, I hit the return key twice. A menu of conferences appeared, in the
form of the list of names of the first message in each conference. I selected "ORIGINS,"
as instructed. ORIGINS first gave me an address to write to obtain a brochure, then the
following message appeared on my screen:

ORIGINS is a movement that started on this computer (Santa Cruz, 408-475-7101). Origins began on the
START-A-RELIGION conference, but we don't call it a religion.

ORIGINS is partly a religion, partly like a westernized form of yoga society, partly a peace movement. It is
a framework for improving your life and improving the world at the same time.

The movement centers on "practices" -- actions you can use in everyday life to build effective human
relationships, strength of community, and self-awareness. All the practices are based on action. None
require any special equipment, settings, leaders, theories or social status. The human universals of the
ordinary, everyday moment, and the personal relationship, form the basis for this training.

 235

ORIGINS has no leaders, no official existence, nothing for sale. Because it started in an open computer
conference, no one knows who all the creators are.

This movement has just begun. The brochure mentioned above recommends seven practices (Leverage a
favor, Ask for help and get it, Use charisma, Finish a job, Use magic, Observe yourself, Share Grace), but
these suggestions are only starters. The idea is to continually develop new training/action methods, as a
community project, then discuss and share them through whatever communications media are available.
This movement will never be finished, because it seeks a community of permanent innovation.

The hope is to build something which can make a better world. The first step is to make your own life
better. For a more detailed overview of ORIGINS, get the brochure from the address above. To see how the
movement developed, read the START-A-RELIGION message and its submessages.

Although the conference tree that contained ORIGINS, along with its parent and sister
and daughter conferences (as submessages and root messages are known in BBS jargon),
was one of the most intriguing electronic gathering places I found in a few months of
vicarious wanderings via my modem, it was far from the only unusual one.

The pros and cons of religion, and the possibility of starting new ones or reviving old
ones, seems to be a popular topic of discussion. ORIGINS was an example of the
cybernetic variety. I ran across a few Christian boards and a meditators' BBS, but the
most startling discovery was the Pagan faction who announced themselves with a
message on a conference tree:

The covenant of the Goddess is an umbrella organization for pagan groups of all kinds. It was created in the
60s to provide some structure (and maybe some muscle, since some groups were being harassed by the
government) to an otherwise amorphous group of covens in Northern California, but eventually had
members everywhere. A pagan group mostly refers to witches, although there are Druid groves and other
strictly unallied organizations online as well. Witches means any affinity group which holds as one of its
general tenets that Jehovah may not be the guy in charge after all -- that he is a powerful illusion created by
an awful lot of misguided and power-hungry folks, and that the supreme being is and should be somebody
with more of a sense of humor as well as compassion, not even to mention love. In short, it might be fair to
claim that it's better than any other way, then it's probably pagan. These definitions are by exclusion
because one way of defining the whole pagan movement is as a group that believes in saying yes to more.
A coven is an affinity group of witches. The name is very old. Some covens have fierce strict codes of
behavior and rules of ceremony and others get together now and then and shoot the shit. By and large,
witches have the best parties of any groups going. There is another organization in the California area
known as the New Reformed Orthodox Order of the Golden Dawn, which was started as a gag in the 60s
and presently has several thousand members, a good many of which can apparently be counted on to show
up for a bash. It is typically pagan, incidentally, to start your biggest umbrella organization for a joke. Lots
of witches compute, and there are probably a bunch on this very tree who have not bothered to identify
themselves. (Witches have no identifying marks -- except for that humorous glint in the eye.)

Religion, ancient or modern, is still less popular than sex as a topic for BBS discussion.
A certain steady percentage of boards are entirely sexually oriented. The problem
used to be that there simple weren't any females on the system, but that appears to be
changing rapidly. Sexually oriented CBBS and dial-a-date boards are an entrance into yet
another subculture, some members of which use the system to arrange real-life
assignations with compatible companions, but most of whom use the system to live out
fantasy sex lives consisting of hot dialogues with other anonymous participants.

 236

Because computer programs can be sent over the telephone wires as easily as words or
numbers, some boards engage in software piracy -- passing along proprietary software
without paying the licensing fee. Others dispense "public domain" software as a
community service. some of them offer access to special information, like an insider
newsletter, and issue passwords and bill for connect-time. Some are exclusive, and many
are promiscuous, about who is allowed to write as well as read messages.

Then there are folks who are starting to use temporary on-line communities as art forms
and as experiments in changing the consciousness of larger communities like
neighborhoods and cities. In 1983, a literary group in Seattle that called itself Invisible
Seattle instigated the creation of a fifteen chapter mystery story written by a
representative sampling of the half-million citizens of the city itself. The collective novel
was not a new form, as far as the more standard kinds of networks go. EIES started a
serial years before, in which different writers took on the personae of various characters
and wrote the story like a conference.

Invisible Seattle, however, sent "literary construction workers" out into the city looking
for people from all works of life who were willing to contribute plots, words, ideas,
which were communicated from the point of origin to the other nodes throughout the city
via a temporary arrangement of video arcade game parts, two larger personal computers,
some custom written software, and six smaller personal computers.

What do Xanadu, EIES, The Source, Clyde Ghost Monster, and Invisible Seattle have to
do with the technology created by Turing, von Neumann, Licklider, et al.? What would
the patriarchs think of the infonauts? The changes that were predicted by the earliest
software prophets seems to be only the beginning. The religion that germinated on the
ORIGINS conference tree -- was its origin any stranger or less likely than the dominant
religions of today that sprang up centuries ago in dusty Middle Eastern villages? Xanadu
and EIES might seem like novel and unfamiliar media -- but so did the printing
press and telephones when they first appeared.

The forms that cultural innovations took in the past can help us try to forecast the future -
- but the forms of the past can only give us a glimpse, not a detailed picture, of what will
be. The developments that seem the most important to contemporaries, like blimps and
telegraphs, become humorous anachronisms to their grandchildren. As soon as something
looks like a good model for predicting the way life is going to be from now on, the
unexpected happens. The lesson, if anything, is that we should get used to
expecting the unexpected.

We seem to be experiencing one of those rare pivotal times between epochs, before a new
social order emerges, when a great many experiments briefly flourish. If the
experiences of past generations are to furnish any guidance, the best attitude to
adopt might have less to do with picking the most likely successors to today's
institutions than with encouraging an atmosphere of experimentation. Is Ted

 237

http://www.rheingold.com/texts/tft/3.html
http://www.rheingold.com/texts/tft/4.html
http://www.rheingold.com/texts/tft/7.html

Nelson any crazier than Alan Turing? Did Gutenberg think about the effects of public
libraries?

Hints to the shape of the emerging order can be gleaned from the uses people are
beginning to think up for computers and networks. But it is a bit like watching the old
films of flying machines of the early twentieth century, the kind that get a lot of laughs
whenever they are shown to modern audiences because some of the spiral-winged or
twelve-winged jobs look so ridiculous from the perspective of the jet age. Yet everyone
can see how very close the spiral-winged contraption had come close to the principle of
the helicopter.

The dispersal of powerful computer technology to large segments of the world's
population, and the phasing-in of the comprehensive information-processing
global nervous system that seems to be abuilding, are already propelling us
toward a social transformation that we know very little about, except that it will
be far different from previous transformations because the tool that will trigger
the change is so different from previous tools. Not all of those who have tried to
predict the course of this transformation have been so optimistic as Licklider or Nelson.
Joseph Weizenbaum, in particular, has voiced his fear of the danger of mistaking
computers for human minds or treating human beings as machines.

Weizenbaum's argument, in part, points out that the aspect of human nature that was
externalized by the invention and evolution of computers was precisely the most
machine-like aspect. The machines that embody this aspect can do some very impressive
things that humans cannot do, and at present can do very little of the more sophisticated
intellectual feats humans can accomplish. Even so, they are taking over the management
of our civilization. Before we begin to give more decision-making responsibility
over to the machines, Weizenbaum warns that it is a terrible mistake to believe
that all human problems and all important aspects of human life are
computable.

This "tyranny of instrumental reasoning" can lead to atrocities, Weizenbaum warns, and
in the closing years of the twentieth century, it is not at all paranoid to have some
healthy suspicions about what any shiny new technology that came from the
Defense Department in the first place might do to our lives when they get
around to mass producing it. And there is no dispute that war was the original
motivation and has been the continuing source of support for the development
of computer technology.

If it is true that the human brain probably started out as a rock-throwing
variation on the standard hominid model, it has also proved capable of creating
the Sermon on the Mount, the Mona Lisa, and The Art of the Fugue. If it is true
that the personal computer started out as an aid to ballistic calculations, it is
also true that a population equipped with low-cost, high-power computers and

 238

access to self-organizing distributed networks has in its hands a potentially
powerful defense against any centrally organized technological tyranny.

Licklider believed that a human-computer symbiosis would be the means of steering our
planet through the dangerous decades ahead. Others have used another biological
metaphor for our future relationship with information processing technology -- the
concept of coevolution, an agreement between two different organisms to change
together, to interact in such a way that improvements in the chances for survival for one
species can lead to improvements in the chances for survival of the other species.

Perhaps yet another biological metaphor can help us foresee the transformation ahead.
When a caterpillar transforms into a butterfly, it undergoes a biologically unique process.
Ancient observers noticed the similarity between the changes undergone by a butterfly
pupa and those of the human mind when it undergoes the kind of transformation
associated with a radical new way of understanding the world -- in fact the Greek word
for both butterfly and soul is psyche.

After the caterpillar has wound itself with silk, extraordinary changes begin to happen
within its body. Certain cells, known to biologists as imaginal cells, begin to behave very
differently from their normal caterpillar cells. Soon, these unusual cells begin to affect
cells in their immediate vicinity. The imaginal cells begin to grow into colonies
throughout the body of the transforming pupa. Then, as the caterpillar cells begin to
disintegrate, the new colonies link to form the structure of the butterfly's body.

At some point, an integrated supercolony of transformed cells that had once crawled
along the ground emerges from the cocoon and flies off into the spring sky on
multicolored wings. If there is a positive image of the future of human-computer
relations, perhaps it is to be seen reflected in the shapes of the imaginal cells of
the information culture -- from eight-year-olds with fantasy amplifiers to knowledge
engineers, from Ted Nelson to Murray Turoff, from Clyde Ghost Monster to Sourcevoid
Dave, from ARPA to ORIGINS.

The flights of the infonauts are not the end of the journey begun by the patriarchs, but the
beginning of the most dramatic software odyssey of them all. It is up to us to decide
whether or not computers will be our masters, our servants, or our partners.

It is up to us to decide what human means, and exactly how it is different from
machine, and what tasks ought and ought not to be trusted to either species of
symbol-processing system. But some decisions must be made soon, while the
technology is still young. And the deciding must be shared by as many citizens
as possible, not just the experts. In that sense, the most important factor in
whether we will all see the dawn of a humane, sustainable world in the twenty-
first century will be how we deal with these machines a few of us thought up
and a lot of us will be using.

 239

Footnotes

Chapter Two: The First Programmer Was a Lady

[1] B. V. Bowden, ed., Faster than Thought, (New York: Pitman), 15.
[2] Ibid., 16.
[3] Herman Goldstine, The computer from Pascal to von Neumann (Princeton:
Princeton University Press, 1972), 100.
[4] Philip Morrison and Emily Morrison, eds., Charles Babbage and his
Calculating Engines (New York: Dover Publications, 1961), 33.
[5] Doris Langley Moore, Ada, Countess of Lovelace: Byron's Legitimate
Daughter (New York: Harper and Row, 1977), 44.
[6] Ibid., 155.
[7] Morrison and Morrison, Babbage, 251-252.
[8] Ibid., 284.
[9] Bowden, Faster Than Thought, 18.
[10] George Boole, An investigation of the Laws of Thought, on Which are
Founded the Mathematical Theories of Logic and Probabilities (London:
Macmillan, 1854; reprint, New York: Dover Publications, 1958), 1-3
[11]Leon E Truesdell, The Development of Punch Card Tabulation in the Bureau
of the Census, 1890-1940 (Washington: U.S. Government Printing Office, 1965),
30-31.
[12] Ibid., 31.

Chapter Three: The First Hacker and his Imaginary Machine

[1] Alan M. Turing, "On Computable Numbers, with an Application to the
Entscheidungsproblem," Proceedings of the London Mathematical Society,
second series, vol. 42, part 3, November 12, 1936, 230-265.
[2] An amusing example of an easily constructed Turing machine, using pebbles
and toilet paper, is given in the third chapter of Joseph Weizenbaum, Computer
Power and Human Reason (San Francisco: W. H. Freeman, 1976).
[3] Turing, "Computable Numbers."
[4] Andrew Hodges, Alan Turing: The Enigma (New York: Simon and Schuster,
1983), 396.
[5]Ibid., 326.
[6] Alan M. Turing, "Computing Machinery and intelligence," Mind, vol. 59, no.
236 (1950).
[7] Ibid.
[8] Hodges, Turing, 488.

Chapter Four: Johnny Builds Bombs and Johnny Builds Brains

[1] Steve J. Heims, John von Neumann and Norbert Wiener (Cambridge, Mass.:
MIT Press, 1980), 371.
[2] C. Blair, "Passing of a great Mind," Life,, February 25, 1957, 96.

 240

http://www.rheingold.com/texts/tft/2.html
http://www.rheingold.com/texts/tft/3.html
http://www.rheingold.com/texts/tft/4.html

[3] Stanislaw Ulam, "John von Neumann, 1903-1957," Bulletin of the American
Mathematical Society, vol. 64, (1958), 4.
[4] Goldstine, The Computer, 182.
[5] Daniel Bell, The coming of Post-Industrial Society (New York: Basic Books.
1973), 31.
[6] Katherine Fishman, The Computer Establishment (New York: McGraw-Hill
Book Co., 1981), 22.
[7] Ibid., 24.
[8] Goldstine, The Computer, 153.
[9] Ibid., 149.
[10] Heims, von Neumann and Wiener, 186.
[11] Goldstine, The Computer, 196.
[12] Hodges, Turing, 288.
[13] Ibid., 288.
[14] Goldstine, The Computer, 196-197.
[15] Arthur W. Burks, Herman H. Goldstine, and John von Neumann,
"Preliminary discussion of the Logical Design of an Electronic Computing
Instrument," Datamation, September-October 1962.
[16] Goldstine, The Computer, 242.
[17] Manfred Eigen and Ruthlid Winkler, Laws of the Game (New York: Knopf,
1981), 189, 192.

Chapter Five: Ex-Prodigies and Antiaircraft Guns

[1] H. Addington Bruce, New Ideas in Child Training," American Magazine, July
1911, 291-292.
[2] I. Grattan-Guiness, "The Russell Archives: Some New Light on Russell's
Logicism," Annals of Science, vol. 31 (1974), 406.
[3] M. D. Fagen, ed., A history of Engineering and science in the Bell System:
National Service in War and Peace (1925-1975) (Murray Hill, N.J.: Bell
Telephone Laboratories, Inc., 1978), 135.
[4] Norbert Wiener, Cybernetics, or Control and Communication in the Animal
and the Machine (Cambridge, Mass.: MIT Press, 1948), 8.
[5] Adam Rosenblueth, Norbert Wiener, and John Bigelow, "Behavior, Purpose,
and Teleology," Philosophy of Science, vol. 10 (1943), 18-24.
[6] Warren McCulloch, Embodiments of Mind Cambridge, Mass.: MIT Press,
1965).
[7] Warren McCulloch and Walter Pitts, "A Logical Calculus of the Ideas
Immanent in Nervous Activity," Bulletin of Mathematical Biophysics, vol. 5
(1943), 115-133.
[8] Pamela McCorduck, Machines Who Think (San Francisco: W. H Freeman,
1979) 66.
[9] Heims, von Neumann and Wiener, 205.
[10] Norbert Wiener, I Am a Mathematician: The Later Life of a Prodigy
(Cambridge, Mass: MIT press, 1966), 325.
[11] Wiener, Cybernetics.

 241

http://www.rheingold.com/texts/tft/5.html

[12] Jeremy Campbell, Grammatical Man (New York: Simon and Schuster,
1982), 21.
[13] Heims, von Neumann and Wiener, 208.
[14] McCorduck, Machines Who Think, 42.

Chapter Six: Inside Information

[1] Claude E. Shannon, "A Symbolic Analysis of Relay and Switching Circuits,"
Transactiona of the AIEE, vol. 57 (1938), 713.
[2] Claude E. Shannon, "A Mathematical Theory of Information," Bell Systems
Technical Journal, vol. 27 (1948), 379-423, 623-656.
[3] Claude E. Shannon, "The Bandwagon," IEEE Transactions on Information
Theory, vol. 2, no. 3 (1956), 3.
[4] Noam Chomsky, Reflections on Language (New York: Pantheon, 1975).
[5] Claude E. Shannon, "Computers and Automata," Proceedings of the IRE, vol.
41, 1953, 1234-1241.
[6] Campbell, Grammatical Man, 20.

Chapter Seven: Machines to Think With

[1] J.C.R. Licklider, "Man-Computer Symbiosis," IRE Transactions on Human
Factors in Electronics, vol. HFE-1, March 1960, 4-11.
[2] Ibid., 6.
[3] Ibid.
[4] Ibid., 7.
[5] Ibid., 4.

Chapter Eight: Witness to History: The Mascot of Project Mac

[1] Hubert Dreyfus, what Computers Can't Do: a critique of Artificial Reason
(New York: Harper & Row, 1972).
[2] R. D. Greenblatt, D. E. Eastlake, and S. D. Crocker, "The Greenblatt Chess
Program," Conference Proceedings, American Federation of Information
Processing Societies, vol. 31 (1967), 801-810.
[3] Joseph Weizenbaum, Computer Power and Human Reason (San Francisco"
W. H. Freeman, 1976), 2-3.
[4] Ibid., 116.
[5] Ibid., 118-119.
[6] Philip Zimbardo, "Hacker Papers," Psychology Today, August 1980, 63.
[7] Ibid., 67-68
[8] Frank Rose, "Joy of Hacking," Science 82, November 1982, 66.

Chapter Nine: The Loneliness of a Long-Distance Thinker

[1] Vannevar Bush, As We May Think," the Atlantic Monthly, August 1945.

 242

http://www.rheingold.com/texts/tft/6.html
http://www.rheingold.com/texts/tft/7.html
http://www.rheingold.com/texts/tft/8.html
http://www.rheingold.com/texts/tft/9.html

[2] Nilo Lindgren, "Toward the Decentralized Intellectual Workshop,"
Innovation, No. 24, September 1971.
[3] Douglas C. Engelbart, "A Conceptual Framework for the Augmentation of a
Man's Intellect," in Vistas in Information Handling, vol. 1, Paul William
Howerton and David C. Weeks, eds. (Washington: Spartan Books, 1963), 1-29.
[4] Ibid., 4-5.
[5] Ibid., 5.
[6] Ibid., 6-7.
[7] Ibid., 14.
[8] Douglas C Engelbart, "NLS Teleconferencing Features: The Journal, and
Shared-Screen Telephoning," IEEE Digest of Papers, CompCon, Fall 1975, 175-
176.
[9] Douglas C Engelbart, "Intellectual Implications of Multi-Access Computing,"
Proceedings of the Interdisciplinary Conference on Multi-Access Computer
Networks, April 1970.
[10] Peter F. Drucker, The Effective Executive(New York: Harper & Row, 1967).
[11] Peter F Drucker, The Age of Discontinuity: Guidelines to Our Changing
Society (New York: Harper & Row, 1968).
[12] Douglas C. Engelbart, R. W. Watson, and James Norton, "The Augmented
Knowledge Workshop," AFIPS Conference Proceedings, vol. 42 (1973), 9-21.

Chapter Ten: The New Old Boys from the ARPAnet

[1] J. C. R. Licklider, Robert Taylor, and E. Herbert, "The Computer as a
Communication Device," International Science and Technology, April 1978.
[2] Ibid., 22.
[3] Ibid., 21.
[4] Ibid., 27.
[5] Ibid., 27.
[6] Ibid., 30.
[7] Ibid. 31.
[8] David Canfield Smith, Charles Irby, Ralph Kimball, and Eric Harslem, The
Star User Interface: An Overview," in Office Systems Technology (El Segundo,
Calif.: Xerox Corporation, 1982).
[9] Ibid., 25.

Chapter Eleven: The Birth of the Fantasy Amplifier

[1] Ted Nelson, The Home Computer Revolution (self-published, 1977), 120-123.
[2] Michael Schrage, "Alan Kay's Magical Mystery Tour," TWA Ambassador,
January 1984, 36.
[3] Seymour Papert, Mindstorms: Children, Computers, and Powerful Ideas (New
York: Basic Books, 1980), 183.
[4] Alan Kay, "Microlectronics and the Personal Computer," Scientific American,
September 1977, 236.

 243

http://www.rheingold.com/texts/tft/10.html
http://www.rheingold.com/texts/tft/11.html

[5] Alan Kay and Adele Goldberg, "Personal Dynamic Media," Computer, March
1977, 31.
[6] Alan Kay, "Microlectronics," 236.
[7] Ibid., 239
[8] Ibid., 244
[9] Ibid.
[10] Ibid.
[11] Ibid.

Chapter Thirteen: Knowledge Engineers and Epistemological Entrepreneurs

[1] Avron Barr, "Artificial Intelligence: Cognition as Computation," in The Study
of Information: Interdisciplinary Messages. Fritz Machulp.
[2] Katherine Davis Fishman, The Computer Establishment
[3] Edward A. Fiegenbaum, Bruce G. Buchanan, and Joshua Lederberg, "On
Generality and Problem Solving: A case study using the DENDRAL Program," in
Machine Intelligence 6, B. Metzler and D. Michie, eds. (New York: Elsevier,
1971) 165-190.
[4] Fishman, Computer Establishment, 364.
[5] "A rebel in the Computer Revolution," Science Digest, August 1983, 96.
[6] Avron Barr and Edward Fiegenbaum, eds., Handbook of Artificial Intelligence
(Los Altos, Calif.: William Kaufmann, 1981).
[7] Avron Barr, J. S. Bennet, and C. W. Clancey, "Transfer of Expertise: A
Theme of AI Research," Working Paper No. HPP-79-11, Stanford University,
Heuristic Programming Project (1979), 1..
[8] Ibid., 5.
[9] Edward Feigenbaum and J. Feldman, eds., Computers and Thought (New
York: McGraw-Hill Book Co., 1963).
[10] Avron Barr, "Artificial Intelligence: Cognition as Computation," 18.
[11] Ibid.
[12] Ibid., p. 19.
[13] Ibid., p.22.

Chapter Fourteen: Xanadu, Network Culture, and Beyond

[1] Ted Nelson, Dream Machines/Computer Lib (self-published, 1974).
[2] Ted Nelson, Literary Machines (self-published, 1983).
[3] Ibid., 1/17.
[4] Ibid., 1/18.
[5] Ted Nelson, "A New Home For the Mind," Datamation, March 1982, 174.
[6] Ibid., 180.
[7] Roy Amara, John Smith, Murray Turoff, and Jaques Vallee "Computerized
Conferencing, a New Medium," Mosaic, January-February 1976.
[8] Ibid., p 21.

 244

http://www.rheingold.com/texts/tft/13.html
http://www.rheingold.com/texts/tft/14.html

[9] Sarah N. Rhodes, The Role of the National Science Foundation in the
Development of the Electronic Journal(Washington: National Science
Foundation, Division of Information Science and Technology, 1976).

 245

	Footnotes

