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Tools for Thought is an exercise in retrospective futurism; that is, I wrote it in the early 
1980s, attempting to look at what the mid 1990s would be like. My odyssey started when 
I discovered Xerox PARC and Doug Engelbart and realized that all the journalists who 
had descended upon Silicon Valley were missing the real story. Yes, the tales of 
teenagers inventing new industries in their garages were good stories. But the idea of the 
personal computer did not spring full-blown from the mind of Steve Jobs. Indeed, the 
idea that people could use computers to amplify thought and communication, as tools for 
intellectual work and social activity, was not an invention of the mainstream computer 
industry nor orthodox computer science, nor even homebrew computerists. If it wasn't for 
people like J.C.R. Licklider, Doug Engelbart, Bob Taylor, Alan Kay, it wouldn't have 
happened. But their work was rooted in older, equally eccentric, equally visionary, work, 
so I went back to piece together how Boole and Babbage and Turing and von Neumann -- 
especially von Neumann - created the foundations that the later toolbuilders stood upon 
to create the future we live in today. You can't understand where mind-amplifying 
technology is going unless you understand where it came from. 
 
 
 
 
 
 
 
This book would not have been conceived and could not have been written without the 
generous and patient assistance of many people. My heartfelt thanks to Rita Aero, Avron 
Barr, John Brockman, Donald Day, Robert Eckhardt, Doug Engelbart, Brenda Lauel, 
Howard Levine, Judith Maas, Geraldine Rheingold, Alan Rinzler, Charles Silver, 
Marshall Smith, Bob Taylor, David Rodman, and Gloria Warner. And thanks to Alan 
Turner, who originally prepared my words for web publication. 
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Chapter One:  
The Computer Revolution Hasn't Happened Yet 
South of San Francisco and north of Silicon Valley, near the place where the pines on the 
horizon give way to the live oaks and radiotelescopes, an unlikely subculture has been 
creating a new medium for human thought. When mass-production models of present 
prototypes reach our homes, offices, and schools, our lives are going to change 
dramatically. 

The first of these mind-amplifying machines will be descendants of the devices now 
known as personal computers, but they will resemble today's information processing 
technology no more than a television resembles a fifteenth-century printing press. They 
aren't available yet, but they will be here soon. Before today's first-graders graduate from 
high school, hundreds of millions of people around the world will join together to create 
new kinds of human communities, making use of a tool that a small number of thinkers 
and tinkerers dreamed into being over the past century. 

Nobody knows whether this will turn out to be the best or the worst thing the human race 
has done for itself, because the outcome of this empowerment will depend in large part 
on how we react to it and what we choose to do with it. The human mind is not going to 
be replaced by a machine, at least not in the foreseeable future, but there is little doubt 
that the worldwide availability of fantasy amplifiers, intellectual toolkits, and 
interactive electronic communities will change the way people think, learn, and 
communicate. 

It looks as if this latest technology-triggered transformation of society could have even 
more intense impact than the last time human thought was augmented, five hundred years 
ago, when the Western world learned to read. Less than a century after the invention of 
movable type, the literate community in Europe had grown from a privileged minority to 
a substantial portion of the population. People's lives changed radically and rapidly, not 
because of printing machinery, but because of what that invention made it possible for 
people to know. Books were just the vehicles by which the ideas escaped from the private 
libraries of the elite and circulated among the population. 

The true value of books emerged from the community they made possible, an intellectual 
community that is still alive all over the world. The printed page has been a medium for 
the propagation of ideas about chemistry and poetry, evolution and revolution, 
democracy and psychology, technology and industry, and many other notions beyond the 
ken of the people who invented movable type and started cranking out Bibles. 

Because mass production of sophisticated electronic devices can lag ten years or more 
behind the state of the art in research prototypes, the first effects of the astonishing 
achievements in computer science since 1960 have only begun to enter our lives. Word 
processors, video games, educational software, and computer graphics were unknown 
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terms to most people only ten years ago, but today they are the names for billion-dollar 
industries. And the experts agree that the most startling developments are yet to come.  

A few of the pioneers of personal computing who still work in the computer industry can 
remember the birth and the dream, when the notion of personal computing was an 
obscure heresy in the ranks of the computing priesthood. Thirty years ago, the 
overwhelming majority of the people who designed, manufactured, programmed, and 
used computers subscribed to a single idea about the proper (and possible) place of 
computers in society: "computers are mysterious devices meant to be used in 
mathematical calculations." Period. Computer technology was believed to be too 
fragile, valuable, and complicated for nonspecialists. 

In 1950 you could count the people who took exception to this dogma on the fingers of 
one hand. The dissenting point of view shared by those few people involved in a different 
way of thinking about how computers might be used. The dissenters shared a vision of 
personal computing in which computers would be used to enhance the most creative 
aspects of human intelligence--for everybody, not just the technocognoscenti. 

Those who questioned the dogma of data processing agreed that computers can help us 
calculate, but they also suspected that if the devices could be made more interactive, 
these tools might help us to speculate, build and study models, choose between 
alternatives, and search for meaningful patterns in collections of information. They 
wondered whether this newborn device might become a communication medium as well 
as a calculating machine. 

These heretical computer theorists proposed that if human knowledge is indeed power, 
then a device that can help us transform information into knowledge should be the basis 
for a very powerful technology. While most scientists and engineers remained in awe of 
the giant adding machines, this minority insisted on thinking about how computers might 
be used to assist the operation of human minds in nonmathematical ways. 

Tools for Thought focuses on the ideas of a few of the people who have been instrumental 
in creating yesterday's, today's, and tomorrow's human-computer technology. Several key 
figures in the history of computation lived and died centuries or decades ago. I call these 
people, renowned in scientific circles but less known to the public, the patriarchs. Other 
co-creators of personal computer technology are still at work today, continuing to explore 
the frontiers of mind-machine interaction. I call them the pioneers. 

The youngest generation, the ones who are exploring the cognitive domains we will all 
soon experience, I call the Infonauts. It is too early to tell what history will think of the 
newer ideas, but we're going to take a look at some of the things the latest inner-space 
explorers are thinking, in hopes of catching some clues to what (and how) everybody will 
be thinking in the near future. 

As we shall see, the future limits of this technology are not in the hardware but in our 
minds. The digital computer is based upon a theoretical discovery known as "the 
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universal machine," which is not actually a tangible device but a mathematical 
description of a machine capable of simulating the actions of any other machine. Once 
you have created a general-purpose machine that can imitate any other machine, the 
future development of the tool depends only on what tasks you can think to do with it. 
For the immediate future, the issue of whether machines can become intelligent is less 
important than learning to deal with a device that can become whatever we clearly 
imagine it to be. 

The pivotal difference between today's personal computers and tomorrow's intelligent 
devices will have less to do with their hardware than their software-- the instructions 
people create to control the operations of the computing machinery. A program is what 
tells the general-purpose machine to imitate a specific kind of machine. Just as the 
hardware basis for computing has evolved from relays to vacuum tubes to transistors to 
integrated circuits, the programs have evolved as well. When information processing 
grows into knowledge processing, the true personal computer will reach 
beyond hardware and connect with a vaster source of power than that of 
electronic microcircuitry--the power of human minds working in concert.  

The nature of the world we create in the closing years of the twentieth century will be 
determined to a significant degree by our attitudes toward this new category of tool. 
Many of us who were educated in the pre-computer era shall be learning new skills. The 
college class of 1999 is already on its way. It is important that we realize today that those 
skills of tomorrow will have little to do with how to operate computers and a great deal to 
do with how to use augmented intellects, enhanced communications, and amplified 
imaginations. 

Forget about "computer literacy" or obfuscating technical jargon, for these aberrations 
will disappear when the machines and their programs grow more intelligent. The reason 
for building a personal computer in the first place was to enable people to do what people 
do best by using machines to do what machines do best. Many people are afraid of 
today's computers because they have been told that these machines are smarter than they 
are--a deception that is reinforced by the rituals that novices have been forced to undergo 
in order to use computers. In fact, the burden of communication should be on the 
machine. A computer that is difficult to use is a computer that's too dumb to 
understand what you want.  

If the predictions of some of the people in this book continue to be accurate, our whole 
environment will suddenly take on a kind of intelligence of its own sometime between 
now and the turn of the century. Fifteen years from now, there will be a microchip in 
your telephone receiver with more computing power than all the technology the Defense 
Department can buy today. All the written knowledge in the world will be one of the 
items to be found in every schoolchild's pocket. 

The computer of the twenty-first century will be everywhere, for better or for 
worse, and a more appropriate prophet than Orwell for this eventuality might well be 
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Marshall McLuhan. If McLuhan was right about the medium being the message, what 
will it mean when the entire environment becomes the medium? If such development 
does occur as predicted, it will probably turn out differently from even the wildest 
"computerized household" scenarios of the recent past. 

The possibility of accurately predicting the social impact of any new technology is 
questionable, to say the least. At the beginning of the twentieth century, it was impossible 
for average people or even the most knowledgeable scientists to envision what life would 
be like for their grandchildren, who we now know would sit down in front of little boxes 
and watch events happening at that moment on the other side of the world. 

Today, only a few people are thinking seriously about what to do with a living room wall 
that can tell you anything you want to know, simulate anything you want to see, connect 
you with any person or group of people you want to communicate with, and even help 
you find out what it is when you aren't entirely sure. In the 1990s it might be possible for 
people to "think as no human being has ever thought" and for computers to "process data 
in a way not approached by the information-handling machines we know today," as 
J.C.R. Licklider, one of the most influential pioneers, predicted in 1960, a quarter of a 
century before the hardware would begin to catch up with his ideas. 

The earliest predictions about the impact of computing machinery occurred quite a bit 
earlier than 1960. The first electronic computers were invented by a few individuals, who 
often worked alone, during World War II. Before the actual inventors of the 1940s were 
the software patriarchs of the 1840s. And before them, thousands of years ago, the efforts 
of thinkers from many different cultures to find better ways to use symbols as tools led to 
the invention of mathematics and logic. It was these formal systems for manipulating 
symbols that eventually led to computation. Links in what we can now see as a 
continuous chain of thought were created by a series of Greek philosophers, British 
logicians, Hungarian mathematicians, and American inventors. 

Most of the patriarchs had little in common with each other, socially or intellectually, but 
in some ways they were very much alike. It isn't surprising that they were exceptionally 
intelligent, but what is unusual is that they all seem to have been preoccupied with the 
power of their own minds. For sheer intellectual adventure, many intelligent people 
pursue the secrets of the stars, the mysteries of life, the myriad ways to use knowledge to 
accomplish practical goals. But what the software ancestors sought to create were 
tools to amplify the power of their own brains--machines to take over what they 
saw as the more mechanical aspects of thought. 

Perhaps as an occupational hazard of this dangerously self-reflective enterprise, or as a 
result of being extraordinary people in restrictive social environments, the personalities of 
these patriarchs (and matriarchs) of computation reveal a common streak of eccentricity, 
ranging from the mildly unorthodox to the downright strange.  

• Charles Babbage and Ada, Countess of Lovelace, lived in the London of 
Dickens and Prince Albert (and knew them both). A hundred years before some of 
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the best minds in the world used the resources of a nation to build a digital 
computer, these two eccentric inventor-mathematicians dreamed of building their 
"Analytical Engine." He constructed a partial prototype and she used it, with 
notorious lack of success, in a scheme to win a fortune at the horse races. Despite 
their apparent failures, Babbage was the first true computer designer, and Ada 
was history's first programmer.  

• George Boole invented a mathematical tool for future computer-builders--an 
"algebra of logic" that was used nearly a hundred years later to link the process of 
human reason to the operations of machines. The idea came to him in a flash of 
inspiration when he was walking across a meadow one day, at the age of 
seventeen, but it took him twenty years to teach himself enough mathematics to 
write The Laws of Thought. 

Although Boole's lifework was to translate his inspiration into an algebraic 
system, he continued to be so impressed with the suddenness and force of the 
revelation that hit him that day in the meadow that he also wrote extensively 
about the powers of the unconscious mind. After his death Boole's widow turned 
these ideas into a kind of human potential cult, a hundred years before the "me 
decade."  

• Alan Turing solved one of the most crucial mathematical problems of the 
modern era at the age of twenty-four, creating the theoretical basis for 
computation in the process. Then he became the top code-breaker in the world--
when he wasn't bicycling around wearing a gas mask or running twenty miles 
with an alarm clock tied around his waist. If it hadn't been for the success of 
Turing's top-secret wartime mission, the Allies might have lost World War II. 
After the war, he created the field of artificial intelligence and laid down the 
foundations of the art and science of programming. 

He was notoriously disheveled, socially withdrawn, sometimes loud and abrasive, 
and even his friends thought that he carried nonconformity to weird extremes. At 
the age of forty-two, he committed suicide, hounded cruelly by the same 
government he helped save.  

• John von Neumann spoke five languages and knew dirty limericks in all of 
them. His colleagues, famous thinkers in their own right, all agreed that the 
operations of Johnny's mind were too deep and far too fast to be entirely human. 
He was one of history's most brilliant physicists, logicians, and mathematicians, 
as well as the software genius who invented the first electronic digital computer. 

John von Neumann was the center of the group who created the "stored program" 
concept that made truly powerful computers possible, and he specified a template 
that is still used to design almost all computers--the "von Neumann architecture." 
When he died, the Secretaries of Defense, the Army, Air Force, and Navy and the 
Joint Chiefs of staff were all gathered around his bed, attentive to his last gasps of 
technical and policy advice.  

 8

http://www.rheingold.com/texts/tft/2.html#boole
http://www.rheingold.com/texts/tft/3.html
http://www.rheingold.com/texts/tft/4.html


• Norbert Wiener, raised to be a prodigy, graduated from Tufts at fourteen, earned 
his Ph.D. from Harvard at eighteen, and studied with Bertrand Russell at nineteen. 
Wiener had a different kind of personality than his contemporary and colleague, 
von Neumann. Although involved in the early years of computers, he eventually 
refused to take part in research that could lead to the construction of weapons. 
Scarcely less brilliant than von Neumann, Wiener was vain, sometimes paranoid, 
and not known to be the life of the party, but he made important connections 
between computers, living organisms, and the fundamental laws of the physical 
universe. He guarded his ideas and feuded with other scientists, writing 
unpublished novels about mathematicians who did him wrong.  

Wiener's conception of cybernetics was partially derived from "pure" scientific 
work in mathematics, biology, and neurophysiology, and partially derived from 
the grimly applied science of designing automatic antiaircraft guns. Cybernetics 
was about the nature of control and communication systems in animals, humans, 
and machines.  

• Claude Shannon, another lone-wolf genius, is still known to his neighbors in 
Cambridge, Massachusetts, for his skill at riding a motorcycle. In 1937, as a 
twenty-one-year-old graduate student, he showed that Boole's logical algebra was 
the perfect tool for analyzing the complex networks of switching circuits used in 
telephone systems and, later, in computers. During the war and afterward, 
Shannon established the mathematical foundation of information theory. Together 
with cybernetics, this collection of theorems about information and 
communication created a new way to understand people and machines--and 
established information as a cosmic fundamental, along with energy and matter. 

The software patriarchs came from wildly different backgrounds. Then as now, computer 
geniuses were often regarded as "odd" by those around them, and their reasons for 
wanting to invent computing devices seem to have been as varied as their personalities. 
Something about the notion of a universal machine enticed mathematicians and 
philosophers, logicians and code-breakers, whiz kids and bomb-builders. Even 
today, the worlds of computer research and the software business bring together 
an unlikely mixture of entrepreneurs and evangelists, futurians and utopians, 
cultists, obsessives, geniuses, pranksters, and fast-buck artists. 

Despite their outward diversity, the computer patriarchs of a hundred years ago and the 
cyberneticians if the World War II era appear to have shared at least one characteristic 
with each other and with software pioneers and infonauts of more recent vintage. In 
recent years, the public has become more aware of a subculture that sprouted in 
Cambridge and Palo Alto and quietly spread through a national network of fluorescent-lit 
campus computer centers for the past two decades--the mostly young, mostly male, often 
brilliant, sometimes bizarre "hackers," or self-confessed compulsive programmers. 
Sociologists and psychologists of the 1980s are only beginning to speculate about the 
deeper motivation for this obsession, but any later-day hacker will admit that the 
most fascinating thing in his own life is his own mind, and tell you that he 
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regards intense, prolonged interaction with a computer program as a 
particularly satisfying kind of dialogue with his own thoughts. 

A little touch of the hacker mentality seems to have affected all of the major players in 
this story. From what we know today about the patriarchs and pioneers, they all appear to 
have pursued a vision of a new way to use their minds. Each of them was trying to create 
a mental lever. Each of them contributed indispensable components of the device that 
was eventually assembled. But none of them encompassed it all. 

The history of computation became increasingly complex as it progressed from the 
patriarchs to the pioneers. At the beginning, many of the earliest computer scientists 
didn't know that their ideas would end up in a kind of machine. Almost all of them 
worked in isolation. Because of their isolation from one another, the common intellectual 
ancestors of the modern computer are relatively easy to discern in retrospect. But since 
the 1950s, with the proliferation of researchers and teams of researchers in academic, 
industrial, and military institutions, the branches of the history have become tangled and 
too numerous to describe exhaustively. Since the 1950s, it has become increasingly 
difficult to assign credit for computer breakthroughs to individual inventors. 

Although individual contributors to the past two or three decades of computer research 
development have been abundant, the people who have been able to see some kind of 
overall direction to the fast, fragmented progress of recent years have been sparse. Just as 
the earliest logicians and mathematicians didn't know their thoughts would end up as a 
part of a machine, the vast majority of the engineers and programmers of the 1960s were 
unaware that their machines had anything to do with human thought. The latter day 
computer pioneers in the middle chapters of this book were among the few who played 
central roles in the development of personal computing. Like their predecessors, these 
people tried to create a kind of mental lever. Unlike most of their predecessors, they were 
also trying to design a tool that the entire population might use. 

Where the original software patriarchs solved various problems in the creation of the first 
computers, the personal computer pioneers struggled with equally vexing problems 
involved in using computers to create leverage for human intellect, the way wheels and 
dynamos create leverage for human muscles. Where the patriarchs were out to create 
computation, the pioneers sought to transform it:  

• J.C.R. Licklider, an experimental psychologist at MIT who became the director 
of the Information Processing Techniques Office of the U.S. Defense 
Department's Advanced Research Projects Agency (ARPA), was the one man 
whose vision enabled hundreds of other like-minded computer designers to pursue 
a whole new direction in hardware and software development. In the early 1960s, 
the researchers funded by Licklider's programs reconstructed computer science on 
a new and higher level, through an approach known as time-sharing. 

Although their sponsorship was military, the people Licklider hired or supported 
were working toward a transformation that he and they believed to be social as 
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well as technological. Licklider saw the new breed of interactive computers his 
project directors were creating as the first step toward an entirely new kind of 
human communication capability. 

• Doug Engelbart started thinking about building a thought-amplifying device 
back when Harry Truman was President, and he has spent the last thirty years 
stubbornly pursuing his original vision of building a system for augmenting 
human intellect. At one point in the late 1960s, Engelbart and his crew of 
infonauts demonstrated to the assembled cream of computer scientists and 
engineers how the devices most people then used for performing calculations or 
keeping track of statistics could be used to enhance the most creative human 
activities. 

His former students have gone on to form a disproportionate part of the upper 
echelons of today's personal computer designers. Partially because of the myopia 
of his contemporaries, and partially because of his almost obsessive insistence on 
maintaining the purity of his original vision, most of Engelbart's innovations have 
yet to be adapted by the computer orthodoxy. 

• Robert Taylor, at the age of thirty-three, became the director of the ARPA office 
created by Licklider, thus launching his career in a new and much-needed field--
the shaping of large-scale, long term, human-computer research campaigns. He 
became a "people collector," looking for those computer researchers whose ideas 
might have been ignored by the orthodoxy, but whose projects promised to boost 
the state of computer systems by orders of magnitude. 

• Alan Kay was one of television's original quiz kids. He learned to read at the age 
of two and a half, barely managed to avoid being thrown out of school and the Air 
Force, and ended up as a graduate student at one of the most important centers of 
ARPA research. In the 1970s, Kay was one of the guiding software spirits of 
PARC's Alto project (the first true personal computer) and the chief architect of 
Smalltalk, a new kind of computer language. He started the 1980s as a director of 
Atari Corporation's long-term research effort, and in 1984 he left Atari to become 
a "research fellow" for Apple Corporation. 

Along with his hard-won credentials as one of the rare original thinkers who is 
able to implement his thoughts via the craft of software design, Kay also has a 
reputation as a lifelong insubordinate. Since the first time he was thrown out of a 
classroom for knowing more than the teacher, Kay's avowed goal has been to 
build a "fantasy amplifier" that anyone with an imagination could use to 
explore the world of knowledge on their own, a "dynamic medium for 
creative thought" that could be as useful and thought-provocative to 
children in kindergarten as it would be to scientists in a research 
laboratory. 

Licklider, Engelbart, Taylor, and Kay are still at work, confident that many more of us 
will experience the same thrill that has kept them going all these years--what Licklider, 
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still at MIT, calls the "religious conversion" to interactive computing. Engelbart works 
for Tymshare Corporation, marketing his "Augment" system to information workers. 
Taylor is setting up another computer systems research center, this time under the 
auspices of the Digital Equipment Corporation, and is collecting people once again, this 
time for a research effort that will bring computing into the twenty-first century. Kay, at 
Atari, continued to steer toward the fantasy amplifier, despite the fact that their mother 
company was often described in the news media as "seriously troubled." It is fair to 
assume that he will continue to work toward the same goal in his new association with 
Steve Jobs, chairman of Apple and a computer visionary of a more entrepreneurial bent. 

The pioneers, although they are still at work, are not the final characters in the story of 
the computer quest. The next generations of innovators are already at work, and some of 
them are surprisingly young. Computer trailblazers in the past tended to make their marks 
early in life--a trend that seems to be continuing in the present. Kay, the former quiz kid, 
is now in his early forties. Taylor is in his early fifties, Engelbart in his late fifties, and 
Licklider in his sixties. Today, younger men and, increasingly, younger women, have 
begun to take over the field professionally, while even younger generations are now 
living in their own versions of the future for fun, profit, and thrills. 

The ones I call the "infonauts" are the older brothers and sisters of the adolescent hackers 
you read about in the papers. Most of them are in their twenties and thirties. They work 
for themselves or for some research institution or software house, and represent the first 
members of the McLuhan generation to use the technology invented by the von Neumann 
generation as tools to extend their imagination. From the science of designing what they 
call the "user interface"--where mind meets machine--to the art of building educational 
microworlds, the infonauts have been using their new medium to create the mass-media 
version we will use fifteen years from now.  

• Avron Barr is a knowledge engineer who helps build the special computer 
programs known as expert systems that are apparently able to acquire knowledge 
from human experts and transfer it to other humans. These systems are now used 
experimentally to help physicians diagnose diseases, as well as commercially to 
help geologists locate mineral deposits and to aid chemists in identifying new 
compounds. 

Although philosophers debate whether such programs truly "understand" what 
they are doing, and psychologists point out the huge gap between the narrowly 
defined kind of expertise involved in geology or diagnosis and the much more 
general "world knowledge" that all humans have, there is no denying that expert 
systems are valuable commodities. Avron Barr believes that they will evolve into 
more than expensive encyclopedias for specialists. In his mid-thirties and just 
starting his career in an infant technology, he dreams of creating an expert 
assistant in the art of helping people agree with one another. 

• Brenda Laurel, also in her mid-thirties, is an artist whose medium exists at the 
boundary of Kay's and Barr's and Engelbart's specialties. Her goal is to design 
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new methods of play, learning, and artistic expression into computer-based 
technologies. Like Barr, she believes that the applications of her research point 
toward more extensive social effects than just another success in the software 
market. 

Brenda wants to use an expert system that knows what playwrights, composers, 
librarians, animators, artists, and dramatic critics know, to create a world of sights 
and sounds in which people can learn about flying a spaceship or surviving in the 
desert or being a blue whale by experiencing space-desert-whale simulated 
microworlds in person. 

• Ted Nelson is a dropout, gadfly, and self-proclaimed genius who self-published 
Computer Lib, the best-selling underground manifesto of the microcomputer 
revolution. His dream of a new kind of publishing medium and continuously 
updated world-library threatens to become the world's longest software project. 
He's wild and woolly, imaginative and hyperactive, has problems holding jobs 
and getting along with colleagues, and was the secret inspiration to all those sub-
teenage kids who lashed together homebrew computers or homemade programs a 
few years back and are now the ruling moguls of the microcomputer industry. 

Time will tell whether he is a prophet too far ahead of his time, or just a persistent 
crackpot, but there is no doubt that he has contributed a rare touch of humor to the 
often too-serious world of computing. How can you not love somebody who says 
"they should have called it an oogabooga box instead of a computer"? 

Despite their differences in background and personality, the computer patriarchs, 
software pioneers, and the newest breed of infonauts seem to share a distant focus on a 
future that they are certain the rest of us will see as clearly as they do--as soon as they 
turn what they see in their mind's eye into something we can hold in our hands. What did 
they see? What will happen when their visions materialize in our homes? And what do 
contemporary visionaries see in store for us next? 
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Chapter Two: 
The First Programmer Was a Lady 
Over a hundred years before a monstrous array of vacuum tubes surged into history in an 
overheated room in Pennsylvania, a properly attired Victorian Gentleman demonstrated 
an elegant little mechanism of wood and brass in a London drawing room. One of the 
ladies attending this demonstration brought along the daughter of a friend. She was a 
teenager with long dark hair, a talent for mathematics, and a weakness for wagering on 
horse races. When she took a close look at the device and realized what this older 
gentleman was trying to do, she surprised them all by joining him in an enterprise that 
might have altered history, had they succeeded. 

Charles Babbage and his accomplice, Lady Lovelace, came very close to inventing the 
computer more than a century before American engineers produced ENIAC. The story of 
the "Analytical Engine" is a tale of two extraordinarily gifted and ill-fated British 
eccentrics whose biographies might have been fabrications of Babbage's friend 
Charles Dickens, if Dickens had been a science-fiction writer. Like many 
contemporary software characters, these computer pioneers of the Victorian age attracted 
as much attention with their unorthodox personal lives as they did with their inventions. 

One of Babbage's biographies is entitled Irascible Genius.. He was indeed a genius, to 
judge by what he planned to achieve as well as what he did achieve. His irascibility was 
notorious. Babbage was thoroughly British, stubbornly eccentric, tenaciously visionary, 
sometimes scatterbrained, and quite wealthy until he sank his fortune into his dream of 
building a calculating engine. 

Babbage invented the cowcatcher--that metal device on the front of steam locomotives 
that sweeps errant cattle out of the way. He also devised a means of analyzing entire 
industries, a method for studying complex systems that became the foundation of the 
field of operational research a hundred years later. When he applied his new method of 
analysis to a study of the printing trade, his publishers were so offended that they refused 
to accept any more of his books. 

Undaunted, he applied his new method to the analysis of the postal system of his day, and 
proved that the cost of accepting and assigning a value to every piece of mail according 
to the distance it had to travel was far more expensive than the cost of transporting it. The 
British Post Office boosted its capabilities instantly and economically by charging a flat 
rate, independent of the distance each piece had to travel--the "penny post" that persists 
around the world to this day. 

Babbage devised the first speedometer for railroads, and he published the first 
comprehensive treatise on actuarial theory (thus helping to create the insurance industry). 
He invented and solved ciphers and made skeleton keys for "unpickable locks"--an 
interest in cryptanalysis that he shared with later computer builders. He was the first to 
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propose that the weather of past years could be discovered by observing cycles of tree 
rings. And he was passionate about more than a few crackpot ideas that history has since 
proved to be nothing more than crackpot ideas. 

His human relationships were as erratic as his intellectual adventures, to judge from the 
number of lifelong public feuds Babbage was known to have engaged in. Along with his 
running battles with the Royal Societies, Babbage carried on a long polemic against 
organ-grinders and street musicians. Babbage would write letters to editors about street 
noise, and half the organ-grinders in London took to serenading under Babbage's window 
when they were in their cups. One biographer, B. V. Bowden, noted that "It was the 
tragedy of the man that, although his imagination and vision were unbounded, his 
judgment by no means matched them, and his impatience made him intolerant of those 
who failed to sympathize with his projects." 

Babbage dabbled in half a dozen sciences and traveled with a portable 
laboratory. He was also a supreme nit-picker, sharp-eyed and cranky, known to write 
outraged letters to publishers of mathematical tables, upbraiding them for obscure 
inaccuracies he had uncovered in the pursuit of his own calculations. A mistake in 
navigational table, after all, was a matter of life and death for a seafarer. And a mistake in 
a table of logarithms could seriously impede the work of a great mind such as his own. 

His nit-picking indirectly led Babbage to invent the ancestor of today's computers. As a 
mathematician and astronomer of no small repute, he resented the time he had to spend 
poring over logarithm tables, culling all the errors he knew were being perpetuated upon 
him by "elderly Cornish Clergymen, who lived on seven figure logarithms, did all their 
work by hand, and were only too apt to make mistakes."  

Babbage left a cranky memoir entitled Passages from the Life of a Philosopher--a work 
described by computer pioneer Herman Goldstine as "a set of papers ranging from the 
sublime to the ridiculous, from profundities to nonsense in plain bad taste. Indeed much 
of Babbage's career is of this sort. It is a wonder that he had as many good and loyal 
friends when his behavior was so peculiar."  

In Passages, Babbage noted this about the original inspiration for his computing 
machines:  

The earliest idea that I can trace in my own mind of calculating arithmetical tables by machinery rose in 
this manner: One evening I was sitting in the rooms of the Analytical society at Cambridge, my head 
leaning forward on the table in a kind of dreamy mood, with a Table of logarithms lying open before me. 
Another member, coming into the room, and seeing me half asleep, called out, "Well, Babbage, what are 
you dreaming about?" To which I replied, "I am thinking that all these Tables (pointing to the logarithms) 
might be calculated by machinery."  

In 1822, Babbage triumphantly demonstrated at the Royal Astronomical Society a small 
working model of a machine, consisting of cogs and wheels and shafts. The device was 
capable of performing polynomial equations by calculating successive differences 
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between sets of numbers. He was awarded the society's first gold medal for the paper that 
accompanied the presentation. 

In that paper, Babbage described his plans for a much more ambitious "Difference 
Engine." In 1823, the British government awarded him the first of many grants that were 
to continue sporadically and controversially for years to come. Babbage hired a master 
machinist, set up shop on his estate, and began to learn at first hand how far ahead of his 
epoch's technological capabilities his dreams were running. 

The Difference Engine commissioned by the British government was quite a bit larger 
and more complex than the model demonstrated before the Royal Astronomical Society. 
But the toolmaking art of the time was not yet up to the level of precision demanded by 
Babbage's design. Work continued for years, unsuccessfully. The triumphal 
demonstration at the beginning of his enterprise looked as if it had been the high point of 
Babbage's career, followed by stubborn and prolonged decline. The British government 
finally gave up financing the scheme. 

Babbage, never one to shy away from conflict with unbelievers over one of his cherished 
ideas, feuded over the Difference Engine with the government and with his 
contemporaries, many of whom began to make sport of mad old Charley Babbage. While 
he was struggling to prove them all wrong, he conceived an idea for an even more 
ambitious invention. Babbage, already ridiculously deep in one visionary development 
project, began to dream up another one. In 1833 he came up with something far more 
complex than the device he had failed to build in years of expensive effort. 

If one could construct a machine for performing one kind of calculation, Babbage 
reasoned, would it be possible to construct a machine capable of performing any kind of 
calculation? Instead of building many small machines to perform different kinds of 
calculation, would it be possible to make the parts of one large machine perform different 
tasks at different times, by changing the order in which the parts interact? 

Babbage had stumbled upon the idea of a universal calculating machine, an idea 
that was to have momentous consequences when Alan Turing--another brilliant, eccentric 
British mathematician who was tragically ahead of his time--considered it again in the 
1930s. Babbage called his hypothetical master calculator the "Analytical Engine." The 
same internal parts were to be made to perform different calculations, through the use of 
different "patterns of action" to reconfigure the order in which the parts were to move for 
each calculation. A detailed plan was made, and redrawn, and redrawn once again. 

The central unit was the "mill," a calculating engine capable of adding numbers to an 
accuracy of 50 decimal places, with speed and reliability guaranteed to lay the Cornish 
clergymen calculators to rest. Up to one thousand different 50-digit numbers could be 
stored for later reference in the memory unit Babbage called the "store." To display the 
result, Babbage designed the first automated typesetter. 

 16



Numbers could be put into the store from the mill or from the punched-card input system 
Babbage adapted from French weaving machines. In addition, cards could be used to 
enter numbers into the mill and specify the calculations to be performed on the numbers 
as well. By using the cards properly, the mill could be instructed to temporarily place the 
results in the store, then return the stored numbers to the mill for later procedures. The 
final component of the Analytical Engine was a card-reading device that was, in effect, a 
control and decision-making unit. 

A working model was eventually built by Babbage's son. Babbage himself never lived to 
see the Analytical Engine. Toward the end of his life, a visitor found that Babbage had 
filled nearly all the rooms of his large house with abandoned models of his engine. As 
soon as it looked as if one means of constructing his device might actually work--
Babbage thought of a new and better way of doing it. 

The four subassemblies of the Analytical Engine functioned very much like analogous 
units in modern computing machinery. The mill was the analog of the central processing 
unit of a digital computer and the store was the memory device. Twentieth-century 
programmers would recognize the printer as a standard output device. It was the input 
device and the control unit, however, that made it possible to move beyond calculation 
toward true computation. 

The input portion of the Analytical Engine was an important milestone in the 
history of programming. Babbage borrowed the idea of punched-card programming 
from the French inventor Jacquard, who had triggered a revolution on the textile industry 
by inventing a mechanical method of weaving patterns in cloth. The weaving machines 
used arrays of metal rods to automatically pull threads into position. To create patterns, 
Jacquard's device interposed a stiff card, with holes punched in it, between the rods and 
the threads. The card was designed to block some of the rods from reaching the thread on 
each pass; the holes in the card allowed only certain rods to carry threads into the loom. 
Each time the shuttle was thrown, a new card would appear in the path of the rods. Thus, 
once the directions for specific woven patterns were translated into patterns of holes 
punched into cards, and the cards were arranged in the proper order to present to the card 
reading device, the cloth patterns could be preprogrammed and the entire weaving 
process could be automated. 

These cards struck Babbage as the key to automated calculation. Here was a tangible 
means of controlling those frustratingly abstract "patterns of action": Babbage put the 
step-by-step instructions for complicated calculations into a coded series of holes 
punched into the sets of cards that would change the way the mill worked at each step. 
Arrange the correctly coded cards in the right way, and you've replaced a platoon of 
elderly Cornish gentlemen. Change the cards, and you replace an entire army of them. 

During his crusade to build the devices that he saw in his mind's eye but was somehow 
never able to materialize in wood and brass, Babbage met a woman who was to become 
his companion, colleague, conspirator, and defender. She saw immediately what Babbage 
intended to do with his Analytical Engine, and she helped him construct the software for 
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it. Her work with Babbage and the essays she wrote about the possibilities of the engine 
established Augusta Ada Byron, Countess of Lovelace, as a patron saint if not a founding 
parent of the art and science of programming. 

Ada's father was none other than Lord Byron, the most scandalous character of his day. 
His separation from Ada's mother was one of the most widely reported domestic episodes 
of the era, and Ada never saw her father after she was one month old. Byron wrote 
poignant passages about Ada in some of his poetry, and she asked to be buried next to 
him--probably to spite her mother, who outlived her. Ada's mother, portrayed by 
biographers as a vain and overbearing Victorian figure, thought a daily dose of a 
laudanum-laced "tonic" would be the perfect cure for her beautiful, outspoken daughter's 
nonconforming behavior, and thus forced an addiction on her! 

Ada exhibited her mathematical talents early in life. One of her family's closest friends 
was Augustus De Morgan, the famous British Logician. She was well tutored, but always 
seemed to thirst for more knowledge than her tutors could provide. Ada actively sought 
the perfect mentor, whom she thought she found in a contemporary of her mother's--
Charles Babbage. 

Mrs. De Morgan was present at the historic occasion when the young Ada Byron was 
first shown a working model of the Difference Engine, during a demonstration Babbage 
held for Lady Byron's friends. In her memoirs, Mrs. De Morgan remembered the effect 
the contraption had on Augusta Ada: "While the rest of the party gazed at this beautiful 
invention with the same sort of expression and feeling that some savages are said to have 
shown on first seeing a looking glass or hearing a gun, Miss Byron, young as she was, 
understood its working and saw the great beauty of the invention."  

Such parlor demonstrations of mechanical devices were in vogue among the British upper 
classes during the Industrial Revolution. While her elders tittered and gossiped and failed 
to understand the difference between this calculator and the various water pumps they 
had observed at other demonstrations, young Ada began to knowledgeably poke and 
probe various parts of the mechanism, thus becoming the first computer whiz kid. 

Ada was one of the few to recognize that the Difference Engine was altogether a different 
sort of device than the mechanical calculators of the past. Whereas previous devices 
were analog (performing calculation by means of measurement), Babbage's 
was digital (performing calculation by means of counting). More importantly, 
Babbage's design combined arithmetic and logical functions. (Babbage eventually 
discovered the new work on the "algebra of Logic" by De Morgan's friend George Boole-
-but, by then, it was too late for Ada.) 

Ada, who had been tutored by De Morgan, the foremost logician of his time, had ideas of 
her own about the possibilities of what one might do with such devices. Of Ada's gift for 
this new type of partially mathematical, partially logical exercise, Babbage himself noted: 
"She seems to understand it better than I do, and is far, far better at explaining it." 
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At the age of nineteen, Ada married Lord King, Baron of Lovelace. Her husband was also 
something of a mathematician, although his talents were far inferior to those of his wife. 
The young countess Lovelace continued her mathematical and computational partnership 
with Babbage, resolutely supporting what she knew to be a solid idea, at a time when 
less-foresighted members of the British establishment dismissed Babbage as a crank. 

Babbage toured the Continent in 1840, lecturing on the subject of the device he never 
succeeded in building. In Italy, a certain Count Menabrea in Italy took extensive notes at 
one of the lectures and published them in Paris. Ada translated the notes from French to 
English and composed an addendum which was more than twice as long as the text she 
had translated. When Babbage read the material, he urged Ada to publish her notes in 
their entirety. 

Lady Lovelace's published notes are still understandable today and are particularly 
meaningful to programmers, who can see how truly far ahead of their contemporaries 
were the Analytical Engineers. Professor B. H. Newman in the Mathematical Gazette has 
written that her observations "show her to have fully understood the principles of 
a programmed computer a century before its time."  

Ada was especially intrigued by the mathematical implications of the punched pasteboard 
cards that were to be used to feed data and equations to Babbage's devices. Ada's Essay, 
entitled "Observations on Mr. Babbage's Analytical Engine," includes more than one 
prophetic passage, unheeded by most of her contemporaries, but which have grown in 
significance with the passage of a century:  

The distinctive characteristic of the Analytical Engine, and that which has rendered it possible to endow 
mechanism with such extensive faculties as bid fair to make this engine the extensive right hand of algebra, 
is the introduction into it of the principle which Jacquard devised for regulating, by means of punched 
cards, the most complicated patters in the fabrication of brocaded stuffs. It is in this that the distinction 
between the two engines lies. Nothing of the sort exists in the Difference Engine. We may say most aptly 
that the Analytical Engine weaves algebraical patterns just as the Jacquard loom weaves flowers and 
leaves. . . . 

The bounds of arithmetic were, however, outstepped the moment the idea of applying cards had occurred; 
and the Analytical Engine does not occupy common ground with mere "calculating machines." It holds a 
position wholly its own; and the considerations it suggests are most interesting in their nature. In enabling 
mechanism to combine together general symbols, in successions of unlimited variety and extent, a uniting 
link is established between the operations of matter and the abstract mental processes of the most abstract 
branch of mathematical science. A new, a vast and a powerful language is developed for the future use of 
analysis, in which to wield its truths so that these may become of more speedy and accurate practical 
application for the purposes of mankind than the means hitherto in our possession have rendered possible. 
Thus not only the mental and the material, but the theoretical and the practical in the mathematical world, 
are brought into intimate connexion with each other. We are not aware of its being on record that anything 
partaking of the nature of what is so well designated the Analytical Engine has been hitherto proposed, or 
even thought of, as a practical possibility, any more than the idea of a thinking or a reasoning machine.  

As a Mathematician, Ada was excited about the possibility of automating laborious 
calculations. But she was far more interested in the principles underlying the 
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programming of these devices. Had she not died so young, it is possible that Ada could 
have advanced the nineteenth-century state of the art to the threshold of true computation. 

Even thought the Engine was yet to be built, Ada experimented with writing sequences of 
instructions. She noted the value of several particular tricks in this new art, tricks that are 
still essential to modern computer languages--subroutines, loops and jumps. If your 
object is to weave a complex calculation out of subcalculations, some of which may be 
repeated many times, it is tedious to rewrite a sequence of a dozen or a hundred 
instructions over and over, Why not just store copies of often-used calculations, or 
subroutines, in a "library" of procedures for later use? Then your program can "call" for 
the subroutine from the library automatically, when your calculation requires it. Such 
libraries of subprocedures are now a part of virtually every high-level programming 
language. 

Analytical Engines and digital computers are very good at doing things over and over 
many times, very quickly. By inventing an instruction that backs up the card-reading 
device to a specified previous card, so that the sequence of instructions can be executed a 
number of times, Ada created the loop--perhaps the most fundamental procedure 
in every contemporary programming language. 

It was the conditional jump that brought Ada's gifts as a logician into play. She came up 
with yet another instruction for manipulating the card-reader, but instead of backing up 
and repeating a sequence of cards, this instruction enabled the card-reader to jump to 
another card in any part of the sequence, if a specific condition was satisfied. The 
addition of that little "if" to the formerly purely arithmetic list of operations meant that 
the program could do more than calculate. In a primitive but potentially meaningful way, 
the Engine could now make decisions. 

She also noted that machines might someday be built with capabilities far beyond those 
possible with Victorian era technology, and speculated about the possibility of whether 
such machines could ever achieve intelligence. Her argument against artificial 
intelligence, set forth in her "Observations," was immortalized almost a century later by 
another software prophet, Alan Turing, who dubbed her line of argument "Lady 
Lovelace's Objection." It is an opinion that is still frequently heard in debates about 
machine intelligence: "The Analytical Engine," Ada wrote, "has no pretensions whatever 
to originate anything. It can do whatever we know how to order it to perform." 

It is not known how and when Ada became involved in her clandestine and 
disastrous gambling ventures. No evidence has ever been produced that Babbage had 
anything to do with introducing Ada to what was to be her lifelong secret vice. For a 
time, Lord Lovelace shared Ada's obsession, but after incurring significant losses he 
stopped. She continued, clandestinely. 

Babbage became deeply involved in Ada's gambling toward the end of her life. For her 
part, Ada helped Babbage in more than one scheme to raise money to construct the 
Analytical Engine. It was a curious mixture of vice, high intellectual adventure, and 
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bizarre entrepreneurship. They built a tic-tac-toe machine, but gave up on it as a 
moneymaking venture when an adviser assured them that P. T. Barnum's General Tom 
Thumb had sewn up the market for traveling novelties. Ironically, although Babbage's 
game-playing machines were commercial failures, his theoretical approach created a 
foundation for the future science of game theory, scooping even that twentieth-century 
genius John von Neumann by about a hundred years. 

It was Charley and Ada's attempt to develop an infallible system for betting on the ponies 
that brought Ada to the sorry pass of twice pawning her husband's family jewels, without 
his knowledge, to pay off blackmailing bookies. At one point, Ada and Babbage--never 
one to turn down a crazy scheme--used the existing small scale working model of the 
Difference Engine to perform the calculations required by their complex handicapping 
scheme. The calculations were based on sound approaches to the theory of handicapping, 
but as the artificial intelligentsia were to learn over a century later, even the best 
modeling programs have trouble handling truly complex systems. They lost big. To make 
matters worse, when she compounded her losses Ada had to turn to her mother, who was 
not the most forgiving soul, to borrow the money to redeem the Lovelace jewels before 
her husband could learn of their absence. 

Ada died of cancer at the age of thirty-six. Babbage outlived her by decades, but without 
Ada's advice, support, and sometimes stern guidance, he was not able to complete his 
long-dreamed-of Analytical Engine. Because the toolmaking art of his day was not up to 
the tolerance demanded by his designs, Babbage pioneered the use of diamond-tipped 
tools in precision-lathing. In order to systematize the production of components for his 
Engine, he devised methods to mass-manufacture interchangeable parts and wrote a 
classic treatise on what has since become known as "mass production." 

Babbage wrote books of varying degrees of coherence, made breakthroughs in some 
sciences and failed in others, gave brilliant and renowned dinner parties with guests like 
Charles Darwin, and seems to have ended up totally embittered. Bowden noted that 
"Shortly before Babbage died he told a friend that he could not remember a single 
completely happy day in his life: 'He spoke as if he hated mankind in general, 
Englishmen in particular, and the English Government and Organ Grinders most of all.'" 

While Ada Lovelace has been unofficially known to the inner circles of programmers 
since the 1950s, when card-punched batch-processing was not altogether different from 
Ada's kind of programming, she has been relatively unknown outside those circles until 
recently. In the 1970s, the U.S. Department of defense officially named its 
"superlanguage" after her. 

George Boole  
 
Although it came too late to assist in the original design of the Analytical Engine, yet 
another discovery that was to later become essential to the construction of computers was 
made by a contemporary of Babbage and Lovelace. The creation of an algebra of 
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symbolic logic was the work of another mathematical prodigy and British individualist, 
but one who worked and lived in a different world, far away from the parlors of upper-
class London. 

A seventeen-year-old Englishman by the name of George Boole was struck by an 
astonishing revelation while walking across a meadow one day in 1832. The idea came so 
suddenly, and made such a deep impact on his life, that it led Boole to make pioneering if 
obscure speculations about a heretofore unsuspected human facility that he called "the 
unconscious." Boole's contribution to human knowledge was not to be in the field of 
psychology, however, but in a field of his own devising. As Bertrand Russell remarked 
seventy years later, Boole invented pure mathematics. 

Although he had only recently begun to study mathematics, the teenage George Boole 
suddenly saw a way to capture some of the power of human reason in the form of an 
algebra. And Boole's equations actually worked when they were applied to logical 
problems. But there was a problem, and it wasn't in Boole's concept. The problem, at the 
time, was that nobody cared. Partly because he was from the wrong social class, and 
partly because most mathematicians of his time knew very little about logic, Boole's 
eventual articulation of this insight didn't cause much commotion when he published it. 
His revelation was largely ignored for generations after his death. 

When the different parts of computer technology converged unexpectedly a hundred 
years later, electrical engineers needed mathematical tools to make sense of the 
complicated machinery they were inventing. The networks of switches they created were 
electrical circuits whose behavior could be described and predicted by precise equations. 
Because patterns of electrical pulses were now used to enclose logical operations like 
"and," "or," and the all important "if," as well as the calculator's usual fare of "plus," 
"minus," "multiply," and "divide," there arose a need for equations to describe the logical 
properties of computer circuits. 

Ideally, the same set of mathematical tools would work for both electrical and logical 
operations. The problem of the late 1930s was that nobody knew of any mathematical 
operations that had the power to describe both logical and electrical networks. Then the 
right kind of mind looked in the right place. An exceptionably astute graduate student at 
MIT named Claude Shannon, who later invented information theory, found Boole's 
algebra to be exactly what the engineers were looking for. 

Without Boole, a poverty-stricken, self-taught mathematics teacher who was born the 
same year as Ada, the critical link between logic and mathematics might never have been 
accomplished. While the Analytical Engine was an inspiring attempt, it had remarkably 
little effect on the later thinkers who created modern computers. Without Boolean 
algebra, however, however, computer technology might never have progressed to the 
electronic speeds where truly interesting computation becomes possible. 

Boole was right about the importance of his vision, although he wouldn't have known 
what to do with a vacuum tube or a switching circuit if he saw one. Unlike Babbage, 
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Boole was not an engineer. What Boole discovered in that meadow and worked out on 
paper two decades later was destined to become the mathematical linchpin that 
coupled the logical abstractions of software with the physical operations of 
electronic machines. 

Between them, Babbage's and Boole's inspirations can be said to characterize the two 
different kinds of motivation that caused imaginatives over the centuries to try and 
eventually to succeed in building a computer. On the one side are scientists and 
engineers, who would always yearn for a device to take care of tedious computations for 
them, freeing their thoughts for the pursuit of more interesting questions. On the other 
side is the more abstract desire of the mathematical mind to capture the essence of human 
reason in a set of symbols. 

Ada, who immediately understood Babbage's models when she saw them, and who was 
tutored by De Morgan, the one man in the world best equipped to understand Boole, was 
the first person to speculate at any length about the operations of machines capable of 
performing logical as well as numerical operations. Boole's work was not published until 
after Lady Lovelace died. Had Ada lived but a few years longer, her powerful intuitive 
grasp of the principles of programming would have been immeasurably enhanced by the 
use of Boolean algebra. 

Babbage and Lovelace were British aristocrats during the height of the Empire. Despite 
the derision heaped on Babbage in some quarters for his often-peculiar public behavior, 
he counted the Duke of Wellington, Charles Dickens, and Prince Albert among his 
friends. Ada had access to the best tutors, the finest laboratory equipment, and the latest 
books. They were both granted the leisure to develop their ideas and the privilege of 
making fools of themselves of the Royal Society, if they desired. 

Boole was the son of a petty shopkeeper, which wasn't the best route to a good scientific 
education. At the age of sixteen, his family's precarious financial situation obliged Boole 
to secure modest employment as a schoolteacher. Faced with the task of teaching his 
students something about mathematics, and by now thoroughly Lincolnesque in his self-
educating skills, Boole set out to learn mathematics. He soon learned that it was the most 
cost-effective intellectual endeavor for a man of his means, requiring no laboratory 
equipment and a fairly small number of basic books. At seventeen he experienced the 
inspiration that was to result in his later work, but he had much to learn about both 
mathematics and logic before he was capable of presenting his discovery to the world. 

At the age of twenty he discovered something that the greatest mathematicians of his time 
had missed--an algebraic theory of invariance that was to become an indispensable tool 
for Einstein when he formulated the theory of relativity. In 1849, after his long years as 
an elementary-school teacher, Boole's mathematical publications brought him an 
appointment as professor of mathematics at Queen's College, Cork, Ireland. Five years 
later, he published An investigation of the laws of thought, on which are founded the 
Mathematical Theories of Logic and Probabilities. 
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Formal logic had been around since the time of the Greeks, most widely known in the 
syllogistic form perfected by Aristotle, the simplified version of which most people learn 
no more than: "All men are mortal. Socrates is a man. Therefore Socrates is mortal." 
After thousands of years in the same form, Aristotelian logic seemed doomed to remain 
on the outer boundaries of the metaphysical, never to break through into the more 
concretely specified realm of the mathematical, because it was still just a matter of words. 
The next level of symbolic precision was missing. 

For over a thousand years, the only logic-based system that was expressible in symbols 
rigorous and precise enough to be called "mathematical" had been the geometry set down 
by Euclid. Just as Euclid set down the basic statements and rules of geometry in axioms 
and theorems about spatial figures, Boole set down the basics of logic in algebraic 
symbols. This was no minor ambition. While knowledge of geometry is a widely useful 
tool for getting around the world, Boole was convinced that logic was the key to 
human reason itself. He knew that he had found what every metaphysician from 
Aristotle to Descartes had overlooked. In his first chapter, Boole wrote:  

1. The design of the following treatise is to investigate the fundamental laws of those operations of the 
mind by which reasoning is performed; to give expression to them in the symbolic language of a Calculus, 
and upon this foundation to establish a science of Logic and construct its method . . . to collect from the 
various elements of truth brought to view in the course of these inquiries some probable imitations 
concerning the nature and constitution of the human mind. . . . 

2. . . . To enable us to deduce correct inferences from given premises is not the only object of logic . . . 
these studies have also an interest of another kind, derived from the light which they shed on the 
intellectual powers. They instruct us concerning the mode in which language and number serve as 
instrumental aids to the process of reasoning; they reveal to some degree the connexion between different 
powers of our common intellect; they set before us . . . the essential standards of truth and correctness--
standards not derived from without, but deeply founded in the constitution of the human faculties . . . To 
unfold the secret laws and relations of those high faculties of thought by which all beyond the merely 
perceptive knowledge of the world and of ourselves is attained or matured, is an object which does not 
stand in need of commendation to a rational mind.  

Although his discovery had profound consequences in both pure mathematics and 
electrical engineering, the most important elements of Boole's algebra of logic were 
simple in principle. He used the algebra everybody learns in school as a starting point, 
made several small but significant exceptions to the standard rules of algebraic 
combination, and used his special version to precisely express the syllogisms of classical 
logic. 

The concept Boole used to connect the two heretofore different thinking tools of logic 
and calculation was the idea of a mathematical system in which there were only two 
quantities, which he called "the Universe" and "Nothing" and denoted by the signs 1 and 
0. Although he didn't know it at the time, Boole had invented a two-state 
system for quantifying logic that also happened to be a perfect method for 
analyzing the logic of two-state physical devices like electrical relays or 
vacuum tubes. 
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By using the symbols and operations specified, logical propositions could be reduced to 
equations, and the syllogistic conclusions could be computed according to ordinary 
algebraic rules. By applying purely mathematical operations, anyone who knew Boolean 
algebra could discover any conclusion that was logically contained in any set of specified 
premises. 

Because syllogistic logic so closely resembles the thought processes of human reasoning, 
Boole was convinced that his algebra not only demonstrated a valid equivalence between 
mathematics and logic, but also represented a mathematical systemization of human 
thought. Since Boole's time, science has learned that the human instrument of reason is 
far more complicated, ambiguous, unpredictable, and powerful that the tools of formal 
logic. But mathematicians have found that Boole's mathematical logic is much more 
important to the foundation of their enterprise than they first suspected. And the inventors 
of the first computers learned that a simple system with only two values can weave very 
sophisticated computations indeed. 

The construction of a theoretical bridge between mathematics and logic had been 
gloriously begun, but was far from completed by Boole's work. It remained for later 
minds to discover that although it is probably not true that the human mind resembles a 
machine, there is still great power to be gained by thinking about machines that resemble 
the operations of the mind. 

Nineteenth-century technology simply wasn't precise enough, fast enough, or powerful 
enough for ideas like those of Babbage, Lovelace, and Boole to become practicalities. 
The basic science and the industrial capabilities needed for making several of the most 
important components of modern computers simply didn't exist. There were still 
important problems that would have to be solved by the inventors rather than the 
theorists. 

The next important development in the history of computation, and the last important 
contribution of the nineteenth century, had nothing to do with calculating tables of 
logarithms or devising laws of thought. The next thinker to advance the state of the art 
was Herman Hollerith, a nineteen-year-old employee of the United States Census 
Office. His role would have no effect on the important theoretical foundations of 
computing. Ultimately, his invention became obsolete. But his small innovation 
eventually grew into the industry that later came to dominate the commercial use of 
computer technology. 

Hollerith made the first important American contribution to the evolution of computation 
when his superior at the Census Office set him on a scheme for automating the collection 
and tabulation of data. On his superior's suggestion, he worked out a system that used 
cards with holes punched in them to feed information into an electrical 
counting system. 

The 1890 census was the point in history where the processing of data as well as the 
calculation of mathematical equations became the object of automation. As it turned out, 
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Hollerith was neither a mathematician nor a logician, but a data processor. He was 
grappling, not with numerical calculation, but with the complexity of collecting, sorting, 
storing, and retrieving a large number of small items in a collection of information. 
Hollerith and his colleagues were unwitting forerunners of twentieth-century information 
workers, because their task had to do with finding a mechanical method to keep track of 
what their organization knew. 

Hollerith was introduced to the task by his superior, John Shaw Billings, who had been 
worrying about the rising tide of information since 1870, when he was hired by the 
Census Office to develop new ways to handle large amounts of information. Since he was 
in charge of the collection and tabulation of data for the 1880 and 1890 census, Billings 
was acutely aware that the growing population of the nation was straining the ability of 
the government to conduct the constitutionally mandated survey every ten years. In the 
foreseeable future, the flood of information to be counted and sorted would take fifteen or 
twenty years to tabulate! 

Like the stories about the origins of other components of computers, there is some 
controversy about the exact accreditation for the invention of the punched-card system. 
One account by a man named Willcox, who worked with both Billings and Hollerith in 
the census office stated:  

While the returns of the Tenth (1881) Census were being tabulated at Washington, Billings was walking 
with a companion through the office in which hundreds of clerks were engaged in laboriously transferring 
items of information from the schedules to the record sheets by the slow and heartbreaking method of hand 
tallying. As they were watching the clerks he said to his companion, 'There ought to be some mechanical 
way of doing this job, on the principle of the Jacquard loom, whereby holes in a card can regulate the 
pattern to be woven.' The seed fell on good ground. His companion was a talented young engineer in the 
office who first convinced himself that the idea was practicable and then that Billings had no desire to 
claim or use it.  

The "talented young engineer," of course, was Hollerith, who wrote this version in 1919:  

One Sunday evening at Dr. Billings' tea table, he had said to me that there ought to be a machine for doing 
the purely mechanical work of tabulating population and similar statistics. We talked the matter over and I 
remember . . . he thought of using cards with the description of the individual shown by notches punched in 
the edge of the card. . . .After studying the problem I went back to Dr. Billings and said that I thought I 
could work out a solution for the problem and asked him if he would go in with me. The Doctor said that he 
was not interested any further than to see some solution of the problem worked out.  

The system Hollerith put together used holes punched in designated locations on 
cardboard cards to represent the demographic characteristics of each person interviewed. 
Like Jacquard's and Babbage's cards, and the "player pianos" then in vogue, the holes in 
Hollerith's cards were meant to allow the passage of mechanical components. Hollerith 
used an electromechanical counter in which copper brushes closed certain electrical 
circuits if a hole was encountered, and did not close a circuit if a hole was not present. 

An electrically activated mechanism increased the running count in each category by one 
unit every time the circuit for that category was closed. By adding sorting devices that 
distributed cards into various bins, according to the patterns of holes and the kind of 
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tabulation desired, Hollerith not only created the ability to keep up with large 
amounts of data, but created the ability to ask new and more complicated 
questions about the data. The new system was in place in time for the 1890 census. 

Hollerith obtained a patent on the system that he had invented just in time to save the 
nation from drowning in its own statistics. In 1882-83, he was an instructor in mechanical 
engineering at the Massachusetts Institute of Technology, establishing the earliest link 
between that institution and the development of computer science and technology. In 
1896, Hollerith set up the "Tabulating Machine Company" to manufacture both the cards 
and the card-reading machines. In 1900, Hollerith rented his equipment to the Census 
Bureau for the Twelfth Census. 

Some years later, Hollerith's Tabulating Machine had become an institution 
known as "International Business Machines," run by a fellow named Thomas 
Watson, Senior. But there were two World Wars ahead, and several more thinkers--the 
most extraordinary of them all--still to come before a manufacturer of tabulating 
machines and punch cards would have anything to do with true computers. The modern-
day concerns of this company--selling machines to keep track of the information that 
goes along with doing business--would have to wait for some deadly serious business to 
be transacted. 

The War Department, not the Census Office or a business machine company, was the 
mother of the digital computer, and the midwives were many--from Alan Turing's British 
team who needed a special kind of computing device to crack the German code, to John 
von Neumann's mathematicians at Los Alamos who were faced with the almost 
insurmountable calculations involved in making the atomic bomb, to Norbert Weiner's 
researchers who were inventing better and faster ways to aim antiaircraft fire, to the 
project of the Army Ballistic Research Laboratory that produced the Electronic 
Numerical Integrator and Calculator (ENIAC). 

It would be foolish to speculate about what computers might become in the near future 
without realizing where they originated in the recent past. The historical record is clear 
and indisputable on this point: ballistics begat cybernetics. ENIAC, the first electronic 
digital computer, was originally built in order to calculate ballistic firing tables. When 
ENIAC's inventors later designed the first miniature computer, it was the BINAC, a 
device small enough to fit in the nose cone of an ICBM and smart enough to navigate by 
the position of the stars. 

Although the first electronic digital computer was constructed in order to produce more 
accurate weapons, the technology would not have been possible without at least one 
important theoretical breakthrough that had nothing to do with ballistics or bombs. The 
theoretical origins of computation are to be found, not in the search for more 
efficient weaponry, but in the quest for more powerful and elegant symbol 
systems. 
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The first modern computer was not a machine. It wasn't even a blueprint. The digital 
computer was conceived as a symbol system--the first automatic symbol 
system --not as a tool or a weapon. And the person who invented it was not concerned 
with ballistics or calculation, but with the nature of thought and the nature of machines.  
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Chapter Three: 
The First Hacker and His Imaginary Machine 
Throughout the winter of 1936, a young Cambridge don put the finishing touches on a 
highly technical paper about mathematical logic that he didn't expect more than a dozen 
people around the world to understand. It was an unusual presentation, not entirely 
orthodox by the rather rigid standards of his colleagues. The young man wasn't entirely 
orthodox, himself. Although his speech revealed his upper-middle class origins, his 
manner of dress, his erratic grooming, and his grating voice put off most of his peers. An 
outsider to the loftier academic-social circles of the university, he had few friends, 
preferring to spend his time at mathematics, chemistry experiments, chess puzzles, and 
long runs in the countryside.  

Computation, when it was finally invented, a century after Babbage, did not come in the 
form of some new gadget in an inventor's workshop or a scientist's laboratory. The very 
possibility of building digital computers was given to the world in the form of 
an esoteric paper in a mathematics journal in 1936. Nobody realized at the time 
that this peculiar discovery in the obscure field of metamathematics would 
eventually lead to a world-changing technology, although the young author, 
Alan Mathison Turing, knew he was on the track of machines that could 
simulate the human thought processes. 

That mathematics paper was a pivotal point in the cultural history of Western civilization. 
The first move in the intellectual game that resulted in digital computers was also the last 
move in another game that had gone on for millennia. In Egypt and Babylonia, where 
systems for measuring land and forecasting the course of the stars originated, only the 
priests and their chosen craftsmen were privileged to know the esoteric arts of reckoning. 
During the flowering of Greek civilization into the fifth and sixth centuries B.C., these 
protosciences were shaped into the mental tools known as axiomatic systems. 

In an axiomatic system you start with premises that are known to be true, and rules that 
are known to be valid, in order to produce new statements that are guaranteed to be true. 
Conclusions can be reached by manipulating symbols according to sets of rules. 
Euclidean geometry is the classic example of the kind of generally useful tools made 
possible by formal axiomatic systems. 

An axiomatic system is a tool for augmenting human thought. Except for rare "lightning" 
calculators, people are not able to add two six-figure numbers in their head. Give 
virtually all people over the age of ten a piece of paper and a pencil, however, and they'll 
tell you the answer in less than a minute. The magic ingredient that makes a schoolchild 
into a calculating machine is the kind of step-by-step recipe for performing a calculation 
that is known as an algorithm. The reason we know such algorithms work is because they 
are based on the formal system known as arithmetic, which we know to be true. 
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What Turing's paper did, and what made digital computers possible, resulted in 
the millennia-long effort to reduce the various formal systems to one basic 
system that underlies them all. Science--our civilization's preeminent system for 
gathering and validating knowledge--was built on mathematics, which was in turn a 
logical formalization of the primitive number theories of the Babylonians and the Greeks. 
Computation was the unexpected result of the attempt to prove that the 
mathematical truths could be reduced to logical truths. 

At the same time that our civilization's methods for predicting and understanding the 
universe grew powerful as the result of these intellectual systems (i.e., science, 
mathematics, and logic), a few people continued to ask whether these same systems could 
be reduced to their basic components. If all sciences, when they become advanced 
enough, can be reduced to mathematical equations, is it possible to reduce mathematics to 
the most fundamental level of logic? 

Since our certainty in the completeness and consistency of our knowledge system could 
depend on whether such a reduction was possible, it was very disconcerting to Western 
thinkers when evidence began to appear that there were exceptions, anomalies, 
paradoxes--holes in the structure of mathematics that might prevent any such grand 
reduction of formal systems. Those two intellectual quests--the effort to reduce 
mathematics to a fundamental, formal symbol system, and the attempt to patch up the 
paradoxes that cropped up during the pursuit of that grand reduction--led directly but 
unexpectedly to computation. 

In the first decades of the twentieth century, mathematicians and logicians were trying to 
formalize mathematics. David Hilbert and John von Neumann set down the rules of 
formalism in the 1920s (as we shall see in the next chapter). Before Hilbert and von 
Neumann, Alfred North Whitehead and Bertrand Russell demonstrated in their Principia 
Mathematica that some aspects of human reasoning could be formally described, thus 
linking this awakened interest in mathematical logic to the ideas of the long-forgotten 
originator of the field, George Boole. The idea of formal systems was of particular 
interest, because it appeared to bridge the abstractions of mathematics and the mysteries 
of human thought. 

A formal system is a rigidly defined kind of game that specifies rules for manipulating 
tokens. The qualifications for making a formal system are very much like the rules for 
any other game. To tell someone how to play a game, and for the set of rules to qualify as 
a formal system, the same three aspects of the game must be communicated -- the nature 
of the tokens, a description of the starting position (or the starting layout of the "board"), 
and a listing of what moves are allowed in any given position. Chess checkers, 
mathematics, and logic are examples of formal systems that satisfy these criteria. By the 
1930s, the effort to reduce mathematics to logically secure foundations brought about 
several attempts to treat arithmetic -- the branch of mathematics concerned with 
operations on numbers -- as a formal system. 
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In 1936, at the age of twenty-four, Alan M. Turing established himself as one 
of the greatest mathematical prodigies of all time when he pointed out to his 
colleagues that it was possible to perform computations in number theory by 
means of a machine -- a machine that embodied the rules of a formal system. 
Although the machine itself didn't exist as a working model, Turing emphasized from the 
beginning that such machines could actually be built. His finding was a milestone in the 
effort to formalize mathematics and, at the same time, a watershed in the history of 
computation. 

In his brilliant solution to one of the key metamathematical problems posed by the 
formalists, Alan Turing described in precise mathematical terms how an 
automatic formal system with extremely simple rules of operation could have 
very powerful capabilities. An automatic formal system is a physical device which 
automatically manipulates the tokens of a formal system according to the system's rules. 
Turing's theoretical machine was both an example of his theory of computation and a 
proof that a certain kind of computing machine could, in fact, be constructed. 

When he brought mathematics and logic together in the form of a machine, Turing made 
symbol-processing systems possible. He proposed that the vast majority of intellectual 
problems could be converted to the form "find a number n such that . . . " Even more 
important than this provocative statement connecting the abstractions of intellect with the 
more concrete realm of numbers -- an implication that still inspires the efforts of artificial 
intelligence researchers -- was Turing's recognition that the numbers were more 
important as symbols in this case than as elements of mathematical calculations. 

One of Turing's greatest insights was his understanding, from the very beginning, of 
something that the majority of the computer priesthood has yet to understand -- the fact 
that numbers are only one possible way of interpreting the internal states of an 
automatic formal system. Babbage's "patterns of action" were now formalized with 
mathematical rigor. Turing's "states" provided the crucial metaphor for bridging the 
power of human cognition and the capabilities of machines. 

What, Turing asked, does a human symbol processor do when performing a calculation? 
He decided that mental calculations consist of operations for transforming the input 
numbers into a series of intermediate states which progress from one to the next 
according to a fixed set of rules, until an answer is found. Sometimes, people use pencil 
and paper to keep track of the states of their calculations. The rules of mathematics 
require more rigid definitions than those provided by the fussily described human states 
of mind discussed by metaphysicians, so Turing concentrated on defining these states in a 
way that was so clear and unambiguous that the description could be used to command 
the operations of a machine. 

Turing started with a precise description of a formal system, in the form of 
"instruction tables" describing which moves to make for every possible 
configuration of states in the system. He then proved that the description of these 
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instructions, the steps of formal axiomatic system like logic, and the machine states that 
make up the "moves" in an automatic formal system are all equivalent to one another. 
Such matters as formal systems and Turing machines sound very far away from what 
computers actually do, but in fact they underlie the entire technology of digital computers 
-- which wasn't to come into existence until over a decade after Alan Turing published his 
epochal paper. 

The process of computation was graphically depicted in Turing's paper when he asked the 
reader to consider a device that can read and write simple symbols on a paper tape that is 
divided into squares. The "reading/writing head" can move in either direction along the 
tape, one square at a time, and a control unit that directs the actions of the head can 
interpret simple instructions about reading and writing symbols in squares. The single 
square that is "scanned" or "read" at each stage is known as the active square. Imagine 
that new sections can be added at either end of the existing tape, so it is potentially 
infinite. 

Suppose the symbols are "X" and "O". Suppose that the device can erase either symbol 
when it reads it in the active square and replace it with the other symbol (i.e., erase an X 
and replace it with an O, and vice versa). The device also has the ability to move left or 
right, one square at a time, according to instructions interpreted by the control unit. The 
instructions cause a symbol to be erased, written, or left the same, depending on which 
symbol is read. 

Any number of games can be constructed using these rules, but they would not all 
necessarily be meaningful. One of the first things Turing demonstrated was that some of 
the games constructed under these rules can be very sophisticated, considering how crude 
and automaton-like the primitive operations seem to be. The following example 
illustrates how this game can be used to perform a simple calculation.  

The rules of the game to be played by this Turing machine are simple: Given a starting 
position in the form of a section of tape with some Xs and Os on it, and a starting square 
indicated, the device is to perform the actions dictated by a list of instructions and follows 
the succeeding instructions one at a time until it reaches an instruction that forces it to 
stop. (If there is no explicit instruction in the table of instructions for a particular tape 
configuration, there is nothing that the machine can do when it reaches that configuration, 
so it has to stop.) 

Each instruction specifies a particular action to be performed if there is a certain symbol 
on the active square at the time it is read. There are four different actions; they are the 
only legal moves of this game. They are:  

Replace O with X. 
Replace X with O.  
Go one square to the right.  
Go one square to the left.  
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An example of an instruction is: "If there is an X on the active square replace it with O." 
This instruction causes the machine to perform the second action listed above. In order to 
create a "game," we need to make a list that specifies the number of the instruction that is 
being followed at every step as well as the number of the instruction that is to be 
followed next. That is like saying "The machine is now following (for example) 
instruction seven, and the instruction to be followed next is (for example) instruction 
eight." 

Here is a series of instructions, given in coded form and the more English-like translation. 
Taken together, these instructions constitute an "instruction table" or a "program" that 
tells a Turing machine how to play a certain kind off game: 

1X02 (Instruction #1: if an X is on the active square, replace 
 it with O, then execute instruction #2.) 
2OR3 (Instruction #2: if an O is on the active square, go right  
 one square and then execute instruction #3.) 
3XR3 (Instruction #3: if an X is on the active square, go right 
 one square and then execute instruction #3; 
3OR4 but if an O is on the active square, go right one square 
 and then execute instruction #4.) 
4XR4 (Instruction #4: if an X is on the active square, go right 
 one square and then execute instruction #4; 
4OX5 but if an O is on the active square, replace it with X and 
 then execute instruction #5.) 
5XR5 (Instruction #5: if an X is on the active square, go right 
 one square and then execute instruction #5; 
5OX6 but if an O is on the active square, replace it with X and 
 then execute instruction #6.) 
6XL6 (Instruction #6: if an X is on the active square, go left 
 one square and then execute instruction #6 
6OL7 but if an O is on the active square, go left one square and
 then execute instruction #7.) 
7XL8 (Instruction #7: if an X is on the active square, go left 
 one square and then execute instruction #8.) 
8XL8 (Instruction #8: if an X is on the active square, go left 
 one square and then execute instruction #8; 
8OR1 but if an O is on the active square, go right one square 
 and then execute instruction #1.) 

Note that if there is an O on the active square in instruction #1 or #7, or if there is an X 
on the active square in instruction #2, the machine will stop. 
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In order to play the game (run the program) specified by the list of instructions, one more 
thing must be provided: a starting tape configuration. For our example, let us consider a 
tape with two Xs on it, bounded on both sides by an infinite string of Os. The changing 
states of a single tape are depicted here as a series of tape segments, one above the other. 
The active square for each denoted by a capital X or O. When the machine is started it 
will try to execute the first available instruction, instruction #1. The following series of 
actions will then occur:  

Instruction Tape What the Machine Does 
#1 ...ooXxooooooo... One (of two) Xs is erased. 
#2 ...ooOxooooooo...  

   
#3 ...oooXooooooo... Tape is scanned to the 
#3 ...oooxOoooooo... right. 
#4 ...oooxoOooooo...  
#5 ...oooxoXooooo... Two Xs are written. 
#5 ...oooxoxOoooo...  
#6 ...oooxoxXoooo...  

   
#6 ...oooxoXxoooo... Scanner returns to the 
#6 ...oooxOxxoooo... other original X. 
#7 ...oooXoXXoooo...  
#8 ...ooOxoxxoooo...  
#1 ...oooXoxxoooo...  

   
#2 ...oooOoxxoooo... This X is erased. 

   
#3 ...ooooOxxoooo...  Scanner moves to the right 
#4 ...oooooXxoooo... of the two Xs that were 
#4 ...oooooxXoooo... written earlier. 
#4 ...oooooxxOooo...  

   
#5 ...oooooxxXooo... Two more Xs are written. 
#5 ...oooooxxxOoo...  
#6 ...oooooxxxXoo...  

   
#6 ...oooooxxXxoo... Scanner looks for any more 
#6 ...oooooxXxxoo... original Xs. 
#6 ...oooooXxxxoo...  
#6 ...ooooOxxxxoo...  
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#7 ...oooOoxxxxoo... The machine stops because there is no 
  instruction for #7 if O is being scanned. 

This game may seem rather mechanical. The fact that it is mechanical was one of the 
points Turing was trying to make. If you look at the starting position, note that there are 
two adjacent Xs. Then look at the final position and note that there are four Xs. If you 
were to use the same instructions, but start with a tape that had five Xs, you would wind 
up with ten Xs. This list of instructions in the specification for a calculating procedure 
that will double the input and display the output. It can, in fact, be done by a machine. 

In essence, every Turing machine moves marks from one position on a tape to another 
position on a tape, in the way the procedure outlined above moved Xs and Os from 
square to square. These days, the marks can be electronic impulses in microcircuits, and 
the tape can be an array of memory locations in a memory chip, but the essential idea is 
the same. Turing proved that his hypothetical machine is an automated version of a 
formal system specified by the starting position (the pattern of Os and Xs on the tape at 
the beginning of the computation) and the rules (the instructions given by the instruction 
tables). The moves of the game are the changing states of the machine that correspond to 
the specified steps of the computation. 

Turing then proved that for any formal system, there exists a Turing machine that 
can be programmed to imitate it. This kind of general formal system with the ability 
to imitate any other formal system was what Turing was getting at. These systems are 
now known as "universal Turing machines." The theory was first stated in a paper with 
the forbidding title "On Computable Numbers, with an application to the 
Entscheidungsproblem."  

The Turing Machine was a hypothetical device Turing invented on the way to settling a 
critical question about the foundations of mathematics as a formalized means of thinking. 
He showed that his device could solve infinitely many problems, but that there 
are some problems that cannot be solved because there is no way of predicting 
in advance whether or when the machine is going to stop. Here is where the 
parting of the ways between metamathematics and computation occurred. 

Our simple example of a doubling program took only twenty-six steps. But there is no 
way of knowing whether or not other programs (which can be direct translations of 
theorems in number theory) will ever stop. By proving this, Turing made an equivalent 
point about all mechanical systems (i.e., systems in which the procedures are definite 
enough to be carried out by a machine). 

Turing and his colleagues ended the long search for a logically certain basis underlying 
formal systems by making the shocking discovery that there are a number of important 
features about formal systems about which we can never be certain. Formal systems, by 
their very nature, have certain inherent limitations. At this point, the theory of 
computation became something more than an important branch of metamathematics, as 
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the properties of formal systems faded into the background and the properties of 
machines emerged in a wholly unexpected and dramatic manner -- because at the same 
time that Turing put a limit on the capabilities of formal systems, he showed 
that there is indeed such a thing as a universal formal system. And that is what a 
computer is, in the most basic sense. 

The way the universal Turing machine imitates other Turing machines is as automatic as 
the way our doubling machine multiplies the input by two. Assuming that the control unit 
of the device is capable of interpreting simple instructions -- something that had been a 
matter for toolmakers, not mathematicians since Babbage's time -- it is possible to encode 
a more complex list of instructions describing various Turing machines and put them 
onto the input tape, along with the starting position. 

Just as the instructions followed by the machine can be stated in English (or German or 
French, etc.), or in an abbreviated form like "7XL8," they can be encoded in an even 
more primitive form. A code can be devised, using the same Xs and Os, that can uniquely 
represent every instruction and instruction table (program). Both the instructions and the 
data can be put onto the same tape. A universal Turing machine can then scan that coded 
tape and perform the function specified in the code (doubling the number on the data 
portion of the tape, in our example). 

This code can be interpreted by a machine, a machine that automatically manipulates the 
tokens, given a list of instructions and a starting configuration. When the machine stops, 
you read the tape and you get the output of the program. In this case, you put the number 
you want to double in the starting configuration, and then let the machine metaphorically 
clank away one square at a time, erasing and writing Os or Xs. When the machine stops, 
you count the Xs in the final tape configuration. 

The list of instructions is what turns the universal Turing machine into the doubling 
machine. Mechanically, there is no difference between the two machines. The particular 
instructions described by the code are what the universal Turing machine operates upon. 
If you can describe, in similarly codable instructions, a machine for tripling, or extracting 
square roots, or performing differential equations, then your basic, dumb old universal 
Turing machine can imitate your tripling machine or square root machine. 

That ability to imitate other machines is what led to computers. The numbers (or 
Xs and Os) on the tape aren't that important. They are only symbols for states of a 
process -- markers in a "doubling game." The list of instructions (the program) is what 
enables the machine to double the input number. The instructions, not the symbols that 
keep track of the way they are carried out -- the rules, not the markers -- are what make 
the Turing machine work. Universal Turing machines are primarily symbol manipulators. 
And digital computers are universal Turing machines. 

It isn't easy to think of the rules of a game as a kind of machine. The task is somewhat 
easier if you think about "mechanical processes" that are so clearly and specifically 
defined that a machine can perform them by referring to an instruction table. All 
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universal Turing machines are functionally identical devices for following the 
program specified by an instruction table. The instruction tables can differ, and 
they can turn the universal Turing machine into many different kinds of 
machine. For this reason, the programs are sometimes called "virtual 
machines." 

The distinction between a universal Turing machine and the many different Turing 
machines it is able to imitate is a direct analogy to digital computers. Like universal 
Turing machines, all digital computers are functionally identical. At the most basic level, 
every digital computer operates in the way our doubling machine did with the squares 
and Os and Xs. Instead of building a different physical machine to solve different 
problems, it is more practical to describe to an instruction-following machine different 
virtual machines (programs) that use this one-square-at-a-time mechanical instruction-
following process to solve complicated problems through a pattern of simple operations. 

Following instructions is the nature of digital computers. The difference between a 
computer calculator and a computer typewriter, for example, lies in the instructions it 
follows -- the coded description it is given of the virtual machine it is meant to imitate in 
order to perform a task. Since computers understand "bits" that can correspond to O and 
X, or 0 and 1, or "on" and "off," you can use these symbols to write descriptions that turn 
the general machine into the specific machine you want. That's what programmers do. 
They think of machines people might want to use, and figure out ways to describe those 
machines to general machines -- computers, that is. 

It would be too time-consuming to achieve anything significant in programming if 
programmers had to spend all their time thinking of ways to describe machines in strings 
of Os and Xs. The O and X code is similar to what is now called machine language, and 
a relatively small number of programmers are actually able to write programs in it. But 
what if you could build a virtual machine on top of a virtual machine? What if 
there were a coded program written in terms of Os and Xs, much like the system we 
described for the doubling machine, except that this new system's task is to translate 
symbols that humans find easier to use and understand -- instructions like "go left" or 
even "double this number" -- into machine language? 

Assembly language, a close relative of machine language except that is uses recognizable 
words instead of strings of Xs and Os, is a lot more manageable than machine language, 
so that's what most programmers use when they write video games or word processors. 
Assembly language makes it easier to manipulate the information in the "squares" -- the 
memory cells of the computer -- by using words instead of numbers. You use the 
translation program described above, called an assembler, to translate assembly language 
into machine language. 

Every different microprocessor (the actual silicon chip hardware at the core of every 
modern computer) has a list of around a hundred primitive machine language operations -
- known as "firmware" -- wired into it. When the assembler follows the instructions in the 
assembly language programs, using machine language to talk to the microprocessor, the 
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virtual machine meets the actual machine, and the computer is able to accomplish the 
specified task for the human who started the whole process. 

Since you have to accomplish tasks in assembly language by telling the computer very 
specifically where to find the information you want, when to move it into an "active 
square" called an accumulator, and where to store it when it is processed, writing 
anything complicated in assembly language can be a chore -- like writing a book with 
semaphore flags, or measuring a city with a yardstick. 

For example, to add two numbers in assembly language you have to specify what the first 
number is and assign it to the accumulator, then you have to specify the second number 
and instruct the machine to add it to the number already in the accumulator. Then you 
have to specify where to store the answer, and issue step-by-step instructions on how to 
send the answer to your printer or monitor. 

Obviously, it is easier to do the whole thing in a procedure like the one in BASIC: You 
simply type something on the keyboard, like "PRINT 2 + 3," and some part of the 
software takes care of accumulators and memory addresses. Your printer prints out "5," 
or it is displayed on your monitor, and the computer doesn't bother you with details about 
its internal operations. 

At the core of every computer language is something very much like the doubling 
machine. Since it is possible to describe machines that describe machines, under the rules 
of the universal Turing machine game, it is possible to write a machine language program 
that describes a machine that can translate assembly language into machine language. 
Having done that, this new tool can be used to create yet another level of communication 
that is even more manageable than assembly language, by making a code-language that is 
still closer to English. 

That last virtual machine -- the English-like one -- is called a high-level programming 
language. High-level doesn't mean that a language is intellectually lofty, only that it us a 
virtual machine interpreted by a lower-level machine, which in turn may be interpreted 
by an even lower level machine, until you get to the lowest level of on and off impulses 
that translate the Os and Xs into electronically readable form. BASIC and FORTRAN 
and other languages that programmers work with are actually virtual machines that are 
described to the computer by other virtual machines equivalent to the assemblers 
mentioned above, known as interpreters and compilers. 

The first compiler, however, was not to be written until 1953, seventeen years after 
Turing's theoretical paper was published in 1936. The emergence of the digital computer, 
based on the principles of Turing's machine, was stimulated by World War II, which was 
still four years in the future. In 1936, Claude Shannon had yet to discover that the algebra 
invented by George Boole to formalize logical operations was identical with the 
mathematics used to describe switching circuits. John von Neumann and his colleagues 
had yet to devise the concept of stored programming. Norbert Wiener hadn't formalized 

 38



the description of feedback circuits in control systems. Several crucial electronic 
developments were yet to come. 

Although only a half-dozen metamathematicians thought about such things during the 
1930s, the notion of machines whose functions depend on the descriptions of how they 
operate happened to have one real-world application that suddenly became very 
important toward the end of the decade. In 1940, the British government developed an 
intense interest in Turing's theories. 

WWII 
  
A top-secret project code-named "Ultra," under the direction of an intelligence officer 
code-named "Intrepid," had captured and brought to London the secret German cipher 
machine known as "Enigma." The machine enabled the Nazi high command to send 
orders to field commanders in the form of an uncrackable code. Even though they had the 
machine in their hands British intelligence was still baffled by the encoding mechanism. 
Even the best of the old-style cryptographers couldn't suggest a solution. 

The British high command recruited brilliant mathematicians, engineers, and logicians, 
inadvertently creating one of the seminal research groups in the field that was to be 
known as artificial intelligence. Among them was Donald Michie, then only twenty-two, 
who was later to become the leading British machine intelligence researcher. Another 
very young colleague who later distinguished himself was I. J. Good, a prankster who 
once wrote Her Majesty the Queen suggesting that he be made peer of the realm, because 
then his friends would be forced to remark, "Good Lord, here comes Lord Good," when 
they saw him coming. 

The place known as Bletchley Park is far less famous than Omaha Beach, but many 
historians contend that the European war was won, in large part, in a closely guarded 
Victorian mansion in Hertfordshire, England, by the group of thinkers who succeeded in 
breaking the German code. The brilliant, young, unorthodox code-crackers were housed 
near Bletchley Park while they performed their role in the top-secret operation. One of 
the code breakers was twenty-eight-year-old Alan Turing. 

Turing was eccentric, fun-loving, disheveled, painfully honest, erratic, introspective, 
prodigiously and elegantly brilliant, and somewhat inept socially. Turing was an early 
model of the similar maladroit and analogously otherworldly computer hackers 
who were to come later: He was a sloppy dresser and a passionate chessplayer, fond of 
children's radio programs and dedicated to long-distance running. (Sometimes he even 
timed himself with an alarm clock tied around his waist.) Even one of his few intimate 
friends described his speech as "a shrill stammer and crowing laugh which told upon the 
nerves even of his friends." 

He never quite got the hang of automobiles, which was probably safer, considering the 
way Turing's mind wandered far away from the realities of the roadway. He preferred the 
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battered bicycle of the Cambridge don. The bicycle and his habit of running twenty or 
thirty miles to attend a meeting were the objects of sundry anecdotes about "the Prof," as 
Turing was known around Bletchley. He was once detained by the local constable 
for bicycling around in a gas mask, which Truing claimed alleviated his hay 
fever. 

Turing and his colleagues at Bletchley Park ended up solving the Enigma enigma by 
devising a series of machines known as "bombes," "the Robinsons," and a culminating 
contraption known as "Colossus." Their purpose? To imitate "Enigma," of course! 

The Bletchley Park devices were by no means universal machines by Turing's 1936 
definition, but they did use important aspects of Turing's ideas. Using high-speed devices 
for feeding instructions encoded on paper tapes, and electrical circuitry for performing 
simple but tedious logical operations upon coded messages, the decoding machines began 
operating in 1943. The machines enabled the British to crack Enigma's code, in part by 
imitating crucial functions of the enemy coding machine. 

The fact that these young academecians had broken the code was a secret of unparalleled 
importance, perhaps the most closely kept secret of the war, because the ability of the 
Bletchley machines to continue to successfully decode German messages depended upon 
the Nazi high command's continuing ignorance that their unbreakable code had been 
cracked. 

Despite the importance of this work, early wartime bureaucracy and the thickets of 
secrecy surrounding the project threatened to cancel the incredible strategic advantage the 
1943 Enigma breakthrough had handed the Allies. Turing appealed directly to Winston 
Churchill, who gave the project top priority. The codes continued to be cracked 
throughout the duration of the war, and in 1944 and 1945 the valuable information was 
disguised in the form of other kinds of intelligence, then relayed to British commanders 
in the Atlantic. 

The tide of the critical U-boat conflict was turned, and the invasion of Europe became 
possible, largely because of Turing's success with the naval version of the Enigma. The 
Germans never caught on, and Turing's esoteric work in metamathematics turned out to 
have dramatically practical applications after all. Because of the growing strategic 
significance of advanced cryptanalysis methods in the cold war era, the project continued 
to be held secret for decades after the war. After 1945, a very few people knew that 
Turing had done something important for the war effort but nobody knew exactly what it 
was, because he still wasn't allowed to allude to it. 

His role at Bletchley wasn't Turing's only wartime contribution. He was sent over to 
America, at a time when it was indeed dangerous to take a North Atlantic cruise, to share 
crucial aspects of British cryptanalytic progress with American intelligence and to lend 
his intelligence to several American war-related scientific projects. 
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It was during this American visit that Turing picked up practical knowledge of 
electronics. Turing had first become acquainted with what were then called "electronic 
valves" when he investigated the possibility of using the exotic vacuum-tube devices 
coming out of radar research to speed up the massive information-processing tasks 
needed by the Bletchley code-breakers. In America, Turing was involved in another 
hypersecret project, this time involving voice encryption -- what the spy novels call 
"scramblers." Because of this work on the device that was code-named "Delilah," Turing 
learned his electronics from some of the best in the business -- the engineers at Bell 
Laboratories in New York (including one named Claude Shannon, a prodigy of a 
different kind, who will enter the story again). 

By the end of the war, the knowledge that electronic technology could be used to speed 
up logical switching circuits, and the possibility of building working models of Turing's 
universal machines, led His Majesty's government to once again support an automatic 
calculating device. This time, it was not called the "Analytical Engine," but the 
"Automatic Computing Engine" -- or ACE, as it became known. At the end of World 
War II, despite the work in America of Mauchly and Eckert (ENIAC's inventors), the 
British were in an excellent position to win the race to build the first true electronic 
digital computer. But unfortunately for Alan Turing, postwar computer research in 
Britain was not pursued as aggressively and on the same scale as the American effort. 

Turing, of course, was in the thick of the postwar computer development effort, but not at 
the center, and certainly not in control. As it turned out, his heroic and secret war work 
helped to make him the victim of scientific politics, not their master. His reports on the 
hardware and software design for ACE were ambitious, and if the machine he originally 
envisioned had been constructed as soon as it was designed, it would have put ENIAC to 
shame. 

While a succession of other men took over the direction of the computer projects at the 
National Physical Laboratory and at the University of Manchester, Turing hovered at the 
periphery of the political power while he put his mind to the actual construction of one of 
his long-imaginary universal machines. In this he was hampered by the attitude prevalent 
among his peers that upper-middle-class Cambridge theoreticians simply did not get their 
hands dirty with "engineering." But rigid conformity to social standards was not Alan's 
strong point. He forged ahead with what he knew was important -- the development of a 
science of software. 

Programming 
 
Turing's ideas about the proper approach to computer design stressed the need to build 
computing capabilities into the program, not the hardware. He was particularly 
interested in the programming operations -- or "coding," as it was already coming to 
be called -- by which truly interesting mathematical operations, and possibly "thinking" 
itself, eventually might be simulated by an electronic computer. And while Turing's first 
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attempt at writing programming languages would be considered crude by today's 
standards, his ideas were far more advanced than the state of the hardware then available. 

While his colleagues and the American team scrambled to put together the most 
elementary models of electronic digital computers, Turing was already looking far 
beyond the clumsy contraptions constructed in the late forties and early fifties. His public 
talks and private conversations indicated a strong belief that the cost of electronic 
technology would drop while its power as a medium for computation would increase in 
the coming decades. He also believed that the capabilities of these devices would quickly 
extend beyond their original purposes. 

Programs for doubling numbers or extracting square roots or breaking codes are handy 
tools, but Turing was aware that calculation was only one of the kinds of formal systems 
that could be imitated by a computational device. In particular, he saw how the simple 
"instruction tables" of his theoretical machines could become elements of a powerful 
grammar that the machines could use to modify their own operations. 

One innovation of Turing's stemmed from the fact that computers based on Boolean 
logic operate only on input that is in the form of binary numbers (i.e., numbers expressed 
in powers of two, using only two symbols), while humans are used to writing numbers in 
the decimal system (in which numbers are expressed in powers of ten, using ten symbols. 
Turing was involved in the writing of instruction tables that automatically converted 
human-written decimals to machine-readable binary digits. If basic operations like 
addition, multiplication, and decimal-to-binary conversion could be fed to the machine in 
terms of instruction tables, Turing saw that it would be possible to build up heirarchies of 
such tables. The programmer would no longer have to worry about writing each and 
every operational instruction, step by repetitive step, and would thus be freed to write 
programs for more complex operations. 

Turing wrote a proposal shortly after the end of the war in which he discussed both the 
hardware and "coding" principles of his long-hypothetical machines. He foresaw that the 
creation of these instruction tables would become particularly critical parts of the entire 
process, for he recognized that the ultimate capabilities of computers would not always 
be strictly limited by engineering considerations, but by considerations of what was not 
yet known as "software." 

Turing not only anticipated the fact that software engineering would end up more 
difficult and time-consuming than hardware engineering, but anticipated the importance 
of what came to be known as "debugging":  

Instruction tables will have to be made up by mathematicians with computing experience and perhaps a 
certain puzzle-solving ability. There will probably be a good deal of work of this kind to be done, for every 
known process has got to be translated into instruction table form at some stage. This work will go on 
whilst the machine is being built, in order to avoid some delay between the delivery of the machine and the 
production of the results. Delay there must be, due to the virtually invisible snags, for up to a point it is 
better to let the snags be there than to spend such time in design that there are none (how many decades 
would this course take?). This process of constructing instruction tables should be very fascinating. There is 
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no real danger of it ever becoming a drudge, for any processes that are quite mechanical may be turned 
over to the machine itself. 
Except for the almost equally advanced ideas of a German inventor by the name of 
Konrad Zuse, which were long unknown to British and American scientists, Turing's 
postwar writings about the logical complexities and mathematical challenges 
inherent in the construction of instruction tables were the first significant steps 
in the art and science of computer programming. Turing was fascinated with the 
intricacies of creating coded instruction tables, but he was also interested in what might 
be done with a truly sophisticated programming language. His original metamathetical 
formalism had stemmed from his attempt to connect the process of human thought to the 
structure of formal systems, and Turing was still intrigued by the possibility that 
automatic formal systems -- computers -- might one day emulate aspects of human 
reasoning. 

The most profound questions Turing raised concerning the capabilities of universal 
machines were centered around this hypothesized future ability of computing engines to 
simulate human thought. If machinery might someday help in creating its own 
programming, would machinery ever be capable, even in principle, of 
performing activities that resembled human thought? His 1936 paper was 
published in a mathematical journal, but it eventually created the foundation of a whole 
new field of investigation beyond the horizons of mathematics -- computer science. In 
1950, Turing published another article that was to have profound impact; the piece, more 
simply titled "Computing Machinery and Intelligence," was published in the 
philosophical journal Mind. In relatively few words, using tools no more esoteric 
than common sense, and absolutely no mathematical formulas, Turing provided 
the boldest subspecialty of computer science -- the field of artificial 
intelligence.  

Despite the simplicity of Turing's hypothetical machine, the formal description in the 
mathematics journal makes very heavy reading. The 1950 article, however, is worth 
reading by anyone interested in the issue of artificial intelligence. The very first sentence 
still sounds as direct and provocative as Turing undoubtedly intended it to be: "I propose 
to consider the question 'Can machines think?' " 

In typical Turing style, he began his consideration of deep AI issues by describing -- a 
game! He called this one "The Imitation Game," but history knows it as the "Turing 
Test." Let us begin, he wrote, by putting aside the question of machine intelligence and 
consider a game played by three people -- a man, a woman, and an interrogator of either 
gender, who is located in a room apart from the other two. The object of the game is to 
ask questions of the people in the other room, and to eventually identify which one is the 
man and which is the woman -- on the basis of the answers alone. In order to disguise the 
appearance, voice, and other sensory clues from the players, the interrogation takes place 
over a teletype. 
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Turing then asks us to substitute a machine for one of the unknown players and make a 
new object for the game: This time, the interrogator is to guess, on the basis of the 
teletyped conversation, which inhabitant of the other room is a human being and which 
one is a machine. In describing how such a conversation might go, Turing quoted a brief 
"specimen" of such a dialog: 

Q: Please write me a sonnet on the subject of the Forth Bridge.  
A: Count me out on this one. I could never write poetry.  
Q: Add 44957 to 70764.  
A: (pause about 30 seconds and then give as answer) 105621.  
Q: Do you play chess?  
A: Yes.  
Q: I have K at my K1, and no other pieces. You only have K at K6 and R at R1. It 
is your move. What do you play?  
A: (After a pause of 15 seconds) R-R8 mate.  

Note that if this dialog is with a machine, it is able to do faulty arithmetic (39457 + 7064 
does not equal 105621) and play decent chess at the same time. 

Having established his imitation game as the criterion for determining whether or not a 
machine is intelligent, and before proceeding to consider various objections to the idea of 
artificial intelligence, Turing explained his own beliefs in the matter:  

. . . I believe that in about fifty years' time it will be possible to program computers, ... to make them play 
the imitation game so well that an average interrogator will not have more than 70 percent chance of 
making the right identification after five minutes of questioning. The original question, "Can machines 
think?" I believe to be too meaningless to deserve discussion. Nevertheless I believe that at the end of the 
century the use of words and educated opinion will have altered so much that one will be able to speak of 
machines thinking without expecting it to be contradicted.  

In the rest of the paper, Turing presented, then countered, a number of principal 
objections to the possibility of artificial intelligence. The titles Turing gave these 
objections reveal his whimsical streak "The Theological Objection," "The 'Heads in the 
Sand' Objection," "The Mathematical Objection," "Lady Lovelace's Objection," "The 
Argument from Consciousness," "Arguments from the Continuity in the Nervous 
System," "The Argument from Informality of Behavior," and "The Argument from 
Extrasensory Perception." 

In this paper, Turing made evident his knowledge of his intellectual antecedents in this 
field by countering the objection raised by Ada in her commentary, in which she stated 
the problem that is still cited by most people in an argument about the possibility of 
machine intelligence: "The Analytical Engine has no pretensions to originate anything. It 
can do whatever we know how to order it to perform. Turing pointed out that Ada might 
have spoken differently if she had seen, as he had, evidence that electronic equipment 
could be made to exhibit a primitive form of "learning," by which programs would be 
able to eventually master tasks that had never been specifically programmed, but which 
emerged from trial-and-error techniques that had been preprogrammed. 
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Turing's work in computing, mathematics, and other fields was cut short by his tragic 
death in June, 1954, at the age of forty-two. Besides being a genius, Turing was also a 
homosexual. During the early 1950s, following the defection of two homosexual spies to 
the Soviet Union, Great Britain was an especially harsh environment for anyone caught 
engaging in prohibited sexual acts -- especially for someone who had something even 
more secret than radar or the atomic bomb in his head. Turing was arrested and convicted 
of "gross indecency," and sentenced to probation on the condition that he submit to 
humiliating and physically debilitating female hormone injections. Turing's war record 
was still too secret to even be mentioned in his defense. 

Turing put up with the hormones and the public disgrace, and quietly began to break 
ground for another cycle of brilliant work in the mathematical foundations of biology -- 
work that might have had even more momentous consequences, if it had been completed, 
than his work with computable numbers. For nearly two years after his arrest, during 
which time the homophobic and "national security" pressures grew even stronger, Turing 
worked with the ironic knowledge that he was being destroyed by the very government 
his wartime work had been instrumental in preserving. In June, 1954, Alan Turing lay 
down on his bed, took a bite from an apple, dipped it in cyanide, and bit again. 

Like Ada, Alan Turing's unconventionality was part of his undoing, and like her he saw 
the software possibilities that stretched far beyond the limits of the computing machinery 
available at the time. Like her, he died too young. 

Other wartime research projects and other brilliant mathematicians were aware of 
Turing's work, particularly in the United States, where scientists were suddenly emerging 
into the nuclear age as figures of power. Military-sponsored research-and-development 
teams on both sides of the Atlantic continued to work on digital computers of their own. 
A few of these independent research efforts grew out of Ballistics work. Others were 
connected with the effort to build the first nuclear fission and fusion bombs. 

Over a hundred years had passed between Babbage and Turing. The computer age 
might have been delayed for decades longer if World War II had not provided 
top-notch engineering teams, virtually unlimited funds, and the will to apply 
scientific findings to real-world problems at the exact point in the history of 
mathematics when the theory of computation made computers possible. While 
the idea undoubtedly would have resonated in later minds, the development of the 
computer was an inevitable engineering step once Turing explained computation. 

When an equally, perhaps even more gifted thinker happened upon the same ideas Turing 
had been pursuing, it was no accident of history that Turing's theoretical insights were 
converted to workable machinery. A theory of computation is one very important step -- 
but you simply cannot perform very sophisticated computations in a decently short 
interval if you are restricted to a box that chugs along a tape, erasing Os and writing Xs. 
The next step in both software and hardware history was precipitated by the thinking of 
another unique, probably indispensable figure in the history of programming -- John von 
Neumann. 
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Turing had worked with von Neumann before the war, at Princeton's Institute for 
Advanced Study. Von Neumann wanted the young genius to stay on with him, as his 
protégé and assistant, but Turing returned to Cambridge. Von Neumann's profound 
understanding of the implications of Turing's work later became a significant factor in the 
convergence of different lines of research that led to the invention of the first digital 
computers. 

It isn't often that the human race produces a polymath like von Neumann, then sets him to 
work in the middle of the biggest crisis in human history. Von Neumann was far more 
than an embellisher of Turing's ideas -- he built the bridge between the 
abstractions of mathematicians and the practical concerns of the people who 
were trying to create the first generation of electronic computers. He was a key 
member of the team who designed the software for the first electronic computer and who 
created the model for the physical architecture of computers. He also added elegance and 
power to Turing's first steps towards creating a true programming language. 
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Chapter Four: 
Johnny Builds bombs and Johnny Builds Brains 
If you asked ten thousand people to name the most influential thinker of the twentieth 
century, it is likely that not one of them would nominate John von Neumann. Few would 
even recognize his name. Despite his obscurity outside the communities of 
mathematicians and computer theorists, his thoughts had an incalculable impact on 
human destiny. He died in 1957, but the fate of the human race still depends on how we 
and our descendants decide to use the technologies von Neumann's extraordinary mind 
made possible.  

At the end of his life he was an American, and a power behind the scenes of American 
scientific policy and foreign policy. But that was only the last of several equally 
distinguished identities in different countries and fields of thought. Janos Neumann, 
known as "Jansci," was a prodigious young chemical engineer turned mathematician and 
logician in Hungary in the early 1920s. Johann von Neumann was one of the elite 
quantum physics revolutionaries in Gottingen, Germany, in the late twenties. And from 
1933 until his death, he was John von Neumann of Princeton, New Jersey; Los Alamos, 
New Mexico; and Washington, D.C., known to professors and Presidents as "Johnny." 

Ada and Babbage could only dream of the day their device could be put to work. Turing 
was a tragic victim of political events before he could get his hands on a computer worth 
the name. Johnny, however, not only managed to get his machines built and use them to 
create the first working principles of software -- but he also ended up telling his 
government how to use the new technology. He was responsible for much more than the 
first boost in accelerating American effort to develop computer technology. 

A combination of many different scientific and political developments led to the 
invention of ENIAC. Electronic tube technology, Boolean logic, Turing-type 
computation, Babbage-Lovelace programming, and feedback-control theories were 
brought together because of the War Department's insatiable hunger for raw calculating 
power. John von Neumann was the only man who not only knew enough about 
the scientific issues but moved comfortably enough in the societies of Princeton 
and Los Alamos and Washington to grasp the threads and weave them together 
in an elegant and powerful design. 

Von Neumann was a very important, probably indispensable, member of the Manhattan 
Project scientific team. Oppenheimer, Fermi, Teller, Bohr, Lawrence, and the other 
members of the most gifted scientific gathering of minds in history were as awed by 
Johnny's intellect as anyone else who ever met him. More impressively, they were as 
reliant on his mathematical judgment as anyone else. In that galactic cluster of world-
class physicists, chemists, mathematicians, and engineers, it was a rare tribute that von 
Neumann was put in charge of the mathematical calculations upon which all their 
theories -- and the functioning of their "gadget" -- would depend. 
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As if his significant contributions to the development of the first nuclear weapons and the 
first computers were not enough for one man, he was also one of the original logicians 
who had posed the questions that Turing and Kurt Gödel answered in the 1930s. He was 
a cofounder of the modern science of game theory (picking up where Babbage left off), 
one of the founders of operational research (also, curiously, advancing a field first 
explored by Babbage), an active participant in the creation of quantum physics, one of the 
first people to suggest analogies and differences between computer circuits and brain 
processes, and one of the first scientists since Turing to examine the relationship between 
the mathematics of code-making and the mystery of biological reproduction. 

Von Neumann ended up a key policy-maker in the fields of nuclear power, 
nuclear weapons, and intercontinental ballistic weaponry: he was the director of 
the Atomic Energy Commission and an influential member of the ICBM Committee. 
Generals and senators were lucky to get an appointment. Even when he was dying, the 
most powerful men in the world gathered around for a final consultation. According to 
Admiral Lewis Strauss, former chairman of the Atomic Energy commission: "On one 
dramatic occasion near the end, there was a meeting at Walter Reed Hospital where, 
gathered around his bedside and attentive to his last words of advice and wisdom, were 
the secretary of Defense and his Deputies, the Secretaries of the Army, Navy, and Air 
Force, and all the military Chiefs of Staff." 

John von Neumann's political views, undoubtedly rooted in his upper-class Hungarian 
past, were unequivocal and extreme, according to the public record and his biographers. 
He not only used his scientific expertise to hasten and accelerate the 
development of nuclear weapons and computer-guided missiles, but counseled 
military and political leaders to think about using these new American 
inventions against the USSR in a "preventive war." (In an article in Life magazine, 
published shortly after he died, von Neumann was quoted as saying: "If you say why not 
bomb them tomorrow, I say, why not today. If you say at five o'clock, I say why not one 
o'clock.") 

In contrast to Turing, whom he knew from Turing's prewar stay at Princeton and from 
their wartime work, von Neumann was a sophisticated, worldly, and gregarious fellow, 
famous for the weekly cocktail parties he and his wife hosted during his tenure at 
Princeton's Institute for Advanced Study and up on the Mesa at Los Alamos. He had a 
substantial private income and an additional $10,000 a year from the Institute. He was 
widely known to have a huge repertoire of jokes in several languages, a vast knowledge 
of risqué limericks, and a casual manner of driving so recklessly that he demolished 
automobiles at regular intervals, always managing to emerge miraculously unscathed. 

Despite his apparently charmed existence, von Neumann, like Ada Lovelace and Alan 
Turing, died relatively young. Lovelace died of cancer at thirty-six, Turing of cyanide at 
forty-two, and von Neumann of cancer at fifty-three. Like many other Los Alamos 
veterans, he may have been a victim of exposure to radiation during the early nuclear 
bomb tests. His death came as a shock to all who knew him as a vital, lively, peripatetic, 
seemingly invulnerable individual. Stanislaw Ulam, von Neumann's mathematical 
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colleague and lifelong friend, in a memorial to Johnny published in a mathematical 
journal shortly after von Neumann's death, described his physical presence in loving 
detail: 

Johnny's friends remember him in his characteristic poses: standing before a blackboard or discussing 
problems at home. Somehow his gesture, smile, and the expression of the eyes always reflected the thought 
or the nature of the problem under discussion. He was of middle size, quite slim as a young man, then 
increasingly corpulent; moving in small steps with considerable random acceleration, but never with great 
speed. A smile flashed on his face whenever a problem exhibited features of a logical or mathematical 
paradox. Quite independently of his liking for abstract wit, he had a strong appreciation (one might almost 
say a hunger) for the more earthy type of comedy and humor.  

Everyone who knew him remembers to point out two things about von Neumann -- how 
charming and personable he was, no matter what language he was speaking, and how 
much more intelligent that other human beings he always seemed to be, even in a crowd 
of near-geniuses. Among his friends, the standard joke about Johnny was that he 
wasn't actually human but was as skilled at imitating human beings as he was at 
everything else. 

Born into an upper-class Hungarian Jewish family, Jansci was fluent in five or six 
languages before the age of ten, and he once told his collaborator Herman Goldstine that 
at age six he and his father often joked with each other in classical Greek. It was well 
known that he never forgot anything once he read it, and his ability to perform lightning 
fast calculations was legendary. 

One night in the middle of the summer of 1944, von Neumann encountered by 
happenstance a mathematician of past acquaintance in the Aberdeen, Maryland, train 
station. History might have been far different if one of their trains had been scheduled a 
few minutes earlier. That accidental meeting in Aberdeen presented von Neumann with a 
nearly completed approach to a problem the strategic significance of which he was 
uniquely equipped to understand, the details of which were complex and profound 
enough to attract his intellectual curiosity, the successful completion of which could be 
hastened by the use of his political clout. 

Lieutenant Herman Goldstine, then associated with the U.S. Army Ordnance Ballistic 
Laboratory at Aberdeen, Maryland, didn't know anything about the other projects von 
Neumann was juggling at that time. But he knew that von Neumann's security clearance 
was miles above his and that he was a member of the Scientific Advisory Committee at 
the Ballistic Research Laboratory. So Goldstine happened to mention that an Army 
project at the Moore School of Engineering was soon to produce a device capable of 
performing mathematical calculations at phenomenal speeds. 

Years later, Goldstine remembered that he was understandably nervous upon meeting the 
world-famous mathematician on the platform at the Aberdeen station. Goldstine recalled: 

Fortunately for me, von Neumann was a warm friendly person who did his best to make people feel relaxed 
in his presence. The conversation soon turned to my work. When it became clear to von Neumann that I 
was concerned with the development of an electronic computer capable of 333 multiplications per second, 
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the whole atmosphere of our conversation changed from one of relaxed good humor to one more like the 
oral examination for the doctor's degree in mathematics.  

Because he had all-important reasons for wanting a fast automatic calculator, von 
Neumann asked for a demonstration. At the Moore School of Engineering, he met the 
gadget's inventors, Mauchly and Eckert, and the next years saw Johnny adding Aberdeen 
as a regular stop on his Princeton-D.C.-Los Alamos shuttle. Like everything else he 
turned his mind to, von Neumann immediately seemed to see more clearly than anyone 
else the future potential of what was then only a crude prototype. While the other 
principal creators of the first electronic computer were either mathematicians or electrical 
engineers, von Neumann was also a superb logician, which enabled him to understand 
what few others did -- that these gadgets were in a class quite far beyond that of superfast 
calculating engines. 

From those early meetings in 1944 to the eras of ENIAC, EDVAC, UNIVAC, MANIAC, 
and (yes) JOHNNIAC, the problem of assigning legal and historical credit to the 
inventors of the first electronic digital computers becomes a tangled affair in which 
easy explanations are impossible and many conflicts are still unresolved. Goldstine -- the 
other man on the platform with von Neumann -- had his own version of the key events in 
early computer history. Mauchly and Eckert had a distinctly different point of view. 
There was a tale of Stibitz at Bell Labs. IBM's Thomas Watson, Senior, had yet another 
story. And a man in Iowa named Atanasoff eventually had the unexpected last laugh in a 
courtroom in 1973. 

Monumental court cases have been fought over the issue of assigning credit for the 
invention of the modern computer, and even the legal decisions have been somewhat 
murky. Certainly it was a field in which a few people all over the world, working 
independently, reached similar conclusions. In the case of the ENIAC team, it was a case 
of several determined minds working together. 

It isn't hard to envision von Neumann coming onto the scene after others have worked for 
years on the considerable engineering problems involved in building ENIAC (Electronic 
Numerical Integrator and Calculator), then dominating the voice of the group when they 
articulated their discoveries, not out of self-aggrandizement, but because he undoubtedly 
had the most elegant way of stating the conclusions that the group had arrived at, working 
in concert. Because of von Neumann's prominence in other fields, and the way his charm 
worked on journalists as well as generals, he was often described by the mass media as 
the sole inventor of key concepts like the all-important "stored program" -- a credit he 
never claimed himself. 

Although the matter of assigning credit for the earliest computer hardware is a tricky 
business, there is no denying von Neumann's central role in the history of software. His 
contributions to the science of computation in the late forties and early fifties were 
preceded by even earlier theoretical work that led to the notion of computation. He was 
one of the principal participants in both of the lines of thought that converged into the 
construction of ENIAC -- mathematical logic and ballistics. 
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John von Neumann's role in the invention of computation began nearly twenty years 
before the ENIAC project. In the late 1920s, between his major contributions to quantum 
physics, logic, and game theory, young Johann von Neumann of Göttingen was one of 
the principal players in the international game of mathematical riddles that started with 
Boole seventy years prior and led to Turing's invention of the universal machine a decade 
later. 

The impending collision of philosophy and mathematics that was becoming evident at the 
end of the nineteenth century made mathematicians extremely uncomfortable. Slippery 
metaphysical concepts associated with human thought might have appealed to minds like 
Boole's or Turing's. But to David Hilbert of Göttingen and others of the early 1900s, such 
vagueness was a grave danger to the future of an enterprise that intended to reduce all 
scientific laws to mathematical equations. 

The logical and metamathematical foundations of more "pure" forms of mathematics, 
Hilbert insisted, could only be stated clearly in terms of numerical problems and precisely 
defined symbols and rules and operations. This was the doctrine of formalism that later 
spurred Turing to make his astonishing discovery about the capabilities of machines. 
Johann von Neumann, a student of Hilbert's, was one of the stars of the formalists. In 
itself, von Neumann's metamathematical achievement was remarkable. His work in 
formalism, however, was only part of what von Neumann achieved in several disparate 
fields, all in the same dazzling year. 

In 1927, at the age of twenty-four, von Neumann published five papers that 
were instant hits in the academic world, and which still stand as monuments in 
three separate fields of thought. It was one of the most remarkable interdisciplinary 
triple plays in history. Three of his 1927 masterpieces were critical to the field of 
quantum physics. Another paper established the new field of game theory. The paper 
most directly to the future of computation was about the relationship between formal 
logic systems and the limits of mathematics. 

In his last 1927 paper, von Neumann demonstrated the necessity of proving that all 
mathematics was consistent, a critically important step toward establishing the theoretical 
basis for computation (although nobody yet knew that). This led, one year later, to a 
paper published by Hilbert that listed three unanswered questions about mathematics that 
he and von Neumann had determined to be the most important questions facing logicians 
and mathematics of the modern era. 

The first of these questions asked whether or not mathematics was complete. 
Completeness, in the technical sense used by mathematicians, means that every true 
mathematical statement can be proven (i.e., is the last line of a valid proof). 

The second question, the one that most concerned von Neumann, asked whether 
mathematics (or any other formal system) was consistent. Consistency in the technical 
sense means that there is no valid sequence of allowable steps (or "moves" or "states") 
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that could prove an untrue statement to be true. If arithmetic was a consistent system, 
there would never be a way to prove that 1 + 1 = 3. 

The third question, the one that opened the side door to computation, asked whether or 
not mathematics was decidable. Decidability means that there is some definite method 
that is guaranteed to correctly determine whether an assertion is provable. 

It didn't take long for a shocking answer to emerge in response to the first Hilbert-von 
Neumann question. In 1930, yet another young mathematician, Kurt Gödel, showed that 
arithmetic cannot be complete, because there will always be at least one true assertion 
that cannot be proved. In the course of demonstrating this, Gödel crossed a crucial 
threshold between logic and mathematics when he showed that any formal system that is 
as rich as the number system (i.e., contains the mathematical operators + and =) can be 
expressed in terms of arithmetic. This means that no matter how complicated 
mathematics (or any other equally powerful formal system) becomes, it can always be 
expressed in terms of operations to be performed on numbers, and the parts of the system 
(whether or not they are inherently numerical) can be manipulated by rules of counting 
and comparing. 

Von Neumann's and Hilbert's third question about the decidability of mathematics led 
Turing to his 1936 breakthrough. The "definite method" (of determining whether a 
mathematical assertion is provable) that was demanded by the decidability question was 
formulated by Alan Turing as a machine that could operate in definite steps on statements 
encoded as symbols on tape. Gödel had shown how numbers could represent the 
operations of formal system, and Turing showed how the formal system could be 
described numerically to a machine equipped to decode such a description (e.g., translate 
the system's rules into the form "find a number n, such that . . . ", "n" being expressible as 
a string of ones and zeroes). 

All of these questions were terribly important at the time they were formulated -- to the 
few dozen people around the world who were equipped to understand their significance. 
But in 1930, the rest of the population had more important things to worry about that the 
hypothetical machines of the metamathematicians. Even those who understood that 
universal machines could in fact be built were in no position to begin such a task. 
Making a digital computer was an engineering project that would require the 
kind of support that only a national government could afford. 

John von Neumann was at the Institute for Advanced Study at Princeton by the time 
young Gödel and Turing came along. Although he was keenly aware of the latest 
developments in the "foundation crisis of mathematics" he had helped initiate in the late 
1920s, von Neumann's restless intellect was attacking half a dozen new problems by the 
early 1930s. To Johnny, still in his twenties, the most important thing in life was to find 
"interesting problems." 

In particular, he was interested in mathematical questions involving the phenomenon of 
turbulence, and the dynamics of explosions and implosions happened to be one area 
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where such questions could be applied. He was also interested in new mathematical 
methods for modeling complex phenomena like global weather patterns or the passage of 
radiation through matter -- methods that were powerful but required such enormous 
numbers of calculations that future progress in the field was severely limited by the 
human inability to calculate the results of the most interesting equations in a reasonable 
length of time. 

Von Neumann seemed to have a kind of "Midas Touch." The problems he tackled, 
no matter how abstruse and apparently obscure they might have seemed at the time, had a 
way of becoming very important a decade or two later. For example, he wrote a paper in 
the 1920s on the mathematics underlying economic strategies. A quarter of a century later 
it turned out to be a perfect solution to the problem of how airplanes should search for 
submarines (as well as one of the first triumphs of "operational research," one of the 
fields pioneered by Babbage). 

By the 1940s, von Neumann's expertise in the mathematics of hydrodynamic turbulence 
and the management of very large calculations took on unexpected importance because 
these two specialties were especially applicable to a new kind of explosion that was being 
cooked up by some of the old gang from Göttingen, now gathered in New Mexico. The 
designers of the first fission bomb knew that hellish mathematical problems in both areas 
had to be solved before any of the elegant equations of quantum physics could be 
transformed into the fireball of a nuclear detonation. As von Neumann already suspected, 
the mathematical work involved in designing nuclear and thermonuclear weapons created 
an avalanche of calculations. 

The calculating power needed in the quest for thermonuclear weaponry ended up being 
one of the highest-priority uses for ENIAC -- top-secret calculations for Los Alamos 
were the subject of the first official programs run on the device when it became 
operational -- although the reason the electronic calculator had been 
commissioned in the first place was to generate the mathematical tables needed 
for properly aiming conventional artillery. 

The ENIAC project was started under the auspices of the Army Ballistic Research 
Laboratory. Herman Goldstine, a historian of computation as well as one of the key 
participants, took the trouble to point out that the word ballistics is derived from the Latin 
ballista, the name of a large device for hurling missiles. Ballistics in the modern sense is 
the mathematical science of predicting the path of a projectile between the time it is 
launched and the moment it hits the target. Complex equations concerning moving bodies 
are complicated further by the adjustments necessary for winds of different velocities and 
for the variations in air resistance encountered by projectiles fired from very large guns as 
they travel through the atmosphere. The results of all possible distance, altitude, and 
weather calculations for guns of each specific size and muzzle velocity are given in 
"firing tables" which artillerymen consult as they set up a shot. 

The application of mass-production techniques to weapons meant that new types of guns 
and shells were coming along at an unprecedented pace, making the ongoing production 
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of firing tables no easy task. During World War I, such calculations were done by 
humans who were called "computers." But even then it was clear that new methods of 
organizing these large-scale calculations, and new kinds of mechanical calculators to help 
the work of human computers, would be an increasingly important part of modern 
warfare. 

In 1918 the Ballistics Branch of the Chief of Ordnance set up a special mathematical 
section at the Aberdeen Proving Ground in Maryland. One of the early recruits was the 
young Norbert Wiener, who was to feature prominently in another research tributary of 
the mainstream of ballistic technology -- the automatic control of antiaircraft guns -- and 
who was later to become one of the creators of the new computer-related discipline of 
cybernetics. 

In the 1930s, both the Aberdeen laboratory and an associated group at the University of 
Pennsylvania's Moore School of Engineering obtained models of the automatic analog 
computer constructed by Vannevar Bush at MIT, a gigantic mechanical device known as 
the "differential analyzer." It was a marvelous aid to calculation, but it was far from being 
a digital computer, in either its design or its performance. 

With the aid of these machines, the work of performing ballistic calculations was 
somewhat relieved. Before World War II, the machines were still second to the main 
resource -- mathematics professors emeriti at the Moore School, who performed the 
calculations by hand, with the aid of hand-cranked mechanical calculators. Shades of 
Babbage's Cornish clergymen! 

When war broke out, it was obvious that the institutions in charge of producing ballistic 
calculations for several armed services needed expert help. It was for this reason that a 
mobilized mathematician, Lieutenant Herman Goldstine, reported for duty at Aberdeen in 
August, 1942, and was assigned the task of streamlining ballistic computations. He soon 
found the Moore School facilities inadequate, and started to expand the staff of human 
"computers" by adding a large number of young women recruited from the Women's 
Army Corps to the small cadre of elderly ex-professors. 

Goldstine's wife, Adele, herself a mathematician who was to play a prominent role in the 
programming of early computers (she and six other women were eventually assigned the 
task of programming the ENIAC), became involved with recruiting and teaching new 
staff members. Von Neumann's wife, Klara, performed a similar role at Los Alamos, both 
before and after electronic computing machines became available. The tradition of using 
women for such work was widespread -- the equivalent roles in Britain's code-breaking 
efforts were played by hundreds of skilled calculators whom Turing and his colleagues 
called "girls" as well as "computers." 

The expansion of the human computing staff at Aberdeen to nearly two hundred people, 
mostly WACs, was a stopgap measure. The calculation of firing tables was already out of 
hand. As soon as a new kind of gun, fuse, or shell became available for combat, a new 
table had to be calculated. The final product was either printed in a booklet that gunners 
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kept in their pockets, or was mechanically encoded in special aiming apparatus called 
automata. (An entirely different mathematical research effort by Julian Bigelow, Warren 
Weaver, and Norbert Wiener was to concentrate on the characteristics of these automatic 
aiming machines.) 

The answer to the firing table dilemma, as Goldstine was one of the first to recognize, 
was to commission the invention of an entirely new kind of mechanical calculating aid. 
The Vannevar Bush calculators were no longer the most efficient calculating devices. 
Faster machines, built on different principles, had been built by Dr. Howard Aiken and an 
IBM team at Harvard, and by a group led by a man named George Stibitz at Bell 
laboratories. But Goldstine knew that what they really needed at Aberdeen and the Moore 
School was an automatic calculator that was hundreds, even thousands of times faster 
than the fastest existing machines. 

Such dreams would have been akin to an Air Force officer wishing for a ten-thousand-
mile-per-hour airplane, except for the fact that another new technology, one that only a 
few people even thought of applying to mathematical problems, looked as if it might 
make such a machine possible in theory, if only questionably probable in execution. 
Research in the young field of electronics had been uncovering all sorts of marvelous 
properties of the vacuum tube. Over in Great Britain, the whiz kids at Bletchley Park 
were using such devices in Colossus, their not-quite-computational code-breaking 
machine. 

Until the war, electronic vacuum tubes had been used almost exclusively as amplifiers. 
But they could also be used as very fast switches. Since the rapid execution of a large 
number of on/off impulses is the hallmark of digital computation, and vacuum 
tubes could switch on and off as fast as a million times a second, electronic switching (as 
opposed to the mechanical switching of Vannevar Bush's machine) was an unbelievably 
good candidate for the key component of an ultrafast computing machine. 

By 1943, unknown to Goldstine and almost all of his superiors, another, much higher-
ranking scientist was also searching for an ultrafast computing machine. Goldstine beat 
the other fellow to it. Goldstine found Mauchly and Eckert in 1942. John von Neumann, 
and chance, found Goldstine in 1944. 

John W. Mauchly and J. Presper Eckert have been properly credited with the invention of 
ENIAC, but before they implemented the key ideas of electronic digital computing 
machines, a man named Atanasoff in Iowa, in the 1930s, built small, crude, but 
functioning prototypes of electronic calculating machines. His name has not been as 
widely known, and his fortunes turned out differently from those of other pioneers when 
computers grew from an exotic newborn technology to a powerful infant industry. But in 
1973 a Unites Stated district court ruled that John Vincent Atanasoff invented the 
electronic digital computer. 

It was a complicated decision, reached after years of litigation, and was not as clear-cut 
as it might have been if both did not have such strong cases. The core of the dispute 
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centered around original work Atanasoff did in the 1930s, and the influence that his work 
later had on John Mauchly's design of ENIAC. Like the Hollerith-Billings story of the 
invention of punched-card data processing, simple explanations of where one man's ideas 
left off and another's began are difficult to reconstruct at best. 

Atanasoff was the last of the lone inventors in the field of computation; after 
him, such projects were too complicated for anything less than a team effort. Like Boole, 
Atanasoff was the recipient of one of those sudden inspirations that provided the solution 
to a problem he had been grappling with for years. A theoretical physicist teaching at 
Iowa State in the early 1930s, he came up against the same obstacle faced by other 
mathematicians and physicists of his era. The approaches to the most interesting ideas 
were blocked by the problems of performing large numbers of complex calculations. 

By 1935, Atanasoff was in hot pursuit of a scheme to mechanize calculation. He was 
aware of Babbage's ideas, but he was an electronic hobbyist as well as a physicist, and 
entire technologies that didn't exist in Babbage's time were now showing great promise. 
Atanasoff was gradually convinced that an electronic computing machine was a good bet 
to pursue, but he had no idea how to go about designing one, and he wasn't sure how to 
design a machine without working out a method of programming it. In the late 1970s, 
Atanasoff told writer Katherine Fishman:  

I commenced to go into torture. For the next two years my life was hard. I thought and thought about this. 
Every evening I would go into my office in the physics building. One night in the winter of 1937 my whole 
body was in torment from trying to solve the problems of the machine. I got in my car and drove at high 
speeds for a long while so I could control my emotions. It was my habit to do this for a few miles: I could 
gain control of myself by concentrating on driving. But that night I was excessively tormented, and I kept 
on going until I had crossed the Mississippi River into Illinois and was 189 miles from where I started. I 
knew I had to quit; I saw a light, which turned out to be a roadhouse, and I went in. It was probably zero 
outside, and I remember hanging up my heavy coat; I started to drink and commenced to warm up and 
realized that I had control of myself.  

Nearly forty years later, when he testified in the patent case concerning the invention of 
the electronic computer, Atanasoff recalled that he decided upon several design elements 
and principles that night in the roadhouse -- including a binary system for encoding input 
and electronic tube technology for switching -- that would transform his dream of an 
electronic calculator into a practical plan. 

The state of each inventor's mind at the time of their discussions in 1940 and 1941 was 
the crux of the legal and historical conflict. There is no dispute that John Mauchly had 
also devoted years of thought to the idea of automated calculation. Thirty-three years old 
when he met Atanasoff, Mauchly had worked his way through Johns Hopkins as a 
research assistant, which gave him extensive experience with procedures that involve 
detailed measurement and calculation. In 1933, as head of the physics department at 
Ursinus College near Philadelphia, he began to perform research in atmospheric 
electricity. 

Mauchly was particularly interested in the long-disputed theory about the effect of 
sunspots on the earth's weather. There was no obvious connection between these huge 
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storms on the sun and terrestrial weather conditions, but that did not prove that such a 
connection did not exist. In 1936, Mauchly arranged to have many parts of the 
government's voluminous meteorological records shipped back to his office at Ursinus. 
He intended to apply modern statistical analysis to the weather data in an attempt to 
correlate them with records of sunspot activity, hoping that this probe would reveal the 
previously undetected pattern. 

As other mathematical meteorologists like von Neumann were also quickly discovering, 
Mauchly found that any calculations involving data based on weather quickly grew so 
complicated that it would take a lifetime to calculate all the equations generated from 
even the shortest periods of observation. So he found himself doing the same thing that 
the ballistics experts did -- hiring a lot of people with adding machines. A Depression-era 
agency, the National Youth Administration, helped Mauchly pay students fifty cents an 
hour to tabulate his weather data with hand calculators. Mauchly planned to obtain 
punched-card machines, once he got his crew to tackle the first part of the data. But when 
he watched a demonstration of the world's most advanced punched-card tabulator at the 
1939 World's Fair, he realized that even scores of such machines in the hands of trained 
operators might take another decade to go through the weather data. 

In 1939 and 1940, Mauchly read in scientific journals about a new measuring and 
counting system developed to assist cosmic-ray research. The part of the system that 
caught his eye was the fact that this new device, using electronic circuits, could count 
cosmic rays far faster than a dozen of the fasted punched-card tabulators. Cosmic rays 
can be detected at the rate of thousands per second, but all previous recorders failed to 
keep pace beyond 500 times a second. Mauchly tried making a few electronic circuits for 
himself, and he began to see a way that they could be used for computation. 

Mauchly took note of one circuit in particular that was developed by the cosmic-ray 
researchers -- the coincidence circuit, in which a switch would be closed only when 
several signals arrived at exactly the same time, thus, in effect, rendering a decision. 
Would a machine capable of making electronic logical operations be possible via some 
variation of this circuit? Experimenting with his own vacuum-tube circuits, Mauchly 
speculated that there might also exist circuits used in other kinds of instruments that 
would enable him to build a machine to add, subtract, multiply, and divide. At this point 
his speculations were more grandiose than his hand-wired prototypes, but the clues he 
had obtained from the cosmic-ray researchers were enough to put Mauchly's weather-
predicting machines on a collision course with a certain device the U.S. Army had in 
mind, one that had nothing to do with sunspots or the weather. 

Mauchly brought a small analog device to the AAAS meeting where he met Atanasoff, 
and in June, 1941, he hitched a ride to visit Atanasoff in Ames, Iowa. Atanasoff 
demonstrated the ABC, Mauchly stayed for five days, and thirty-two years later a court 
decided that Mauchly's later invention of the ENIAC relied upon key ideas of Atanasoff's 
that were transferred from mind to mind those five days in June. 
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The 1973 legal decision (Honeywell versus Sperry Rand, U.S. District Court, District of 
Minnesota, Fourth Division) did not state that Mauchly stole anything, but did restore 
partial credit for the invention of the electronic computer to a man whose name had been 
nearly forgotten in all the publicity and honors heaped upon Mauchly and Eckert. After 
the ruling, Mauchly said: "I feel I got nothing out of that visit to Atanasoff except the 
royal shaft later." On Mauchly's behalf, it must be noted that nobody has disputed the fact 
that the sheer scale and engineering audacity of ENIAC was far beyond the ABC, and 
that Mauchly was indeed on the right track at least as early as Atanasoff. 

Part of the reason for ENIAC's success and ABC's obscurity must be attributed to the 
accidents of history. Legal issues aside, the historical momentum shifted to Mauchly later 
in the summer of 1941, when he signed up for an Army-sponsored electronics course at 
the Moore School of Engineering. His instructor, J. Presper Eckert, was an exceptionally 
bright Philadelphia blueblood twelve years younger than Mauchly. When Eckert, the 
electronics wizard, learned of Mauchly's plan to automate large-scale numerical 
calculations, a critical mass of idea-power was reached. They were in exactly the right 
place at the right time to cook up such an ambitious project. 

Not long after thirty-four-year-old John Mauchly and twenty-two-year-old Pres Eckert 
started to sketch out a plan for an electronic computer, they became acquainted with 
Lieutenant Herman Goldstine, both as a mathematician and as a liaison officer between 
the Moore School and the Ballistic Research Laboratory. By the time he met them, 
Goldstine was sufficiently frustrated by the lack of ballistic computing power 
that he was receptive to even a science-fiction story like the one presented to 
him by these two whiz kids. 

As wild as it sounded as an engineering feat, Goldstine knew that an electronic device 
such as the one Mauchly and Eckert described to him had the potential to perform 
ballistic calculations over 1000 times faster than the best existing machine, the Aiken-
IBM-Harvard-Navy device called the Mark I. But it would cost a lot of money to find out 
if they were right. Atanasoff and Berry built their prototype for a total of $6500. These 
boys would need hundreds of thousands of dollars to lash together something so 
complicated and delicate that most electrical engineers of the time would swear it could 
never work. 

Goldstine later explained the risks associated with attempting the proposed electronic 
calculator project: 

. . . we should realize that the proposed machine turned out to contain over 17,000 tubes of 16 different 
types operating at a fundamental clock rate of 100,000 pulses per second. . . . once every 10 
microseconds an error would occur if a single one of the 17,000 tubes operated 
incorrectly; this means that in a single second there were 1.7 billion . . . chances 
of a failure occurring . . . Man has never made an instrument capable of 
operating with this degree of fidelity or reliability, and this is why the 
undertaking was so risky a one and the accomplishment so great.  

 58

http://www.scl.ameslab.gov/ABC/


The two young would-be computer inventors at the Moore School, the mathematician-
turned-lieutenant who found them, and their audacious plan for cutting through the 
calculation problem by creating the world's most complicated machine were the subject 
of a high-level meeting on April 9, 1943. Attending was one of the original founders of 
the military's mathematical research effort and President of the Institute for Advanced 
Study at Princeton, Oswald Veblen, as well as Colonel Leslie Simon, director of the 
Ballistic Research Laboratory, and Goldstine. 

The moment when the United States War Department entered the age-old quest for a 
computing machine, and thus made the outcome inevitable, was recalled by Goldstine 
when he wrote, nearly thirty years later, that Veblen, "after listening for a short while to 
my presentation and teetering on the back legs of his chair brought the chair down with a 
crash, arose, and said, 'Simon, give Goldstine the money.'" They got their money -- 
eventually as much as $400,000 -- and started building their machine. 

ENIAC was monstrous -- 100 feet long, 10 feet high, 3 feet deep, weighing 30 
tons -- and hot enough to keep the room temperature up toward 120 degrees F 
while it shunted multivariable differential equations through its more than 
17,000 tubes, 70,000 resistors, 10,000 capacitors, and 6,000 hand-set switches. 
It used an enormous amount of power -- the apocryphal story is that the lights 
of Philadelphia dimmed when it was plugged in. 

When it was finally completed, ENIAC was too late to use in the war, but it certainly 
delivered what its inventors had promised: a ballistic calculation that would have taken 
twenty hours for a skilled human calculator could be accomplished by the machine in less 
than thirty seconds. For the first time, the trajectory of a shell could be calculated in less 
time than it took an actual shell to travel to its target. But the firing tables were no longer 
the biggest boom on the block by the time ENIAC was completed. The first problem run 
on the machine, late in the winter of 1945, was a trial calculation for the hydrogen bomb 
then being designed. 

After his first accidental meeting with Goldstine at Aberdeen, and the demonstration of a 
prototype ENIAC soon afterward, von Neumann joined the Moore School project as a 
special consultant. Johnny's genius for formal, systematic, logical thinking was applied to 
the logical properties of this huge maze of electronic circuits. The engineering problems 
were still formidable, but it was becoming clear that the nonphysical component, the 
subtleties of setting up the machine's operations -- the coding, as they began to call it -- 
was equally difficult and important. 

Until the transistor came along a few years later, ENIAC would represent the physical 
upper limit of what could be done with a large number of high-speed switches. In 1945, 
the most promising approach to greater computing power was in improving the logical 
structure of the machine. And von Neumann was probably the one man west of Bletchley 
Park equipped to understand the logical attributes of the first digital computer. 
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Part of the reason ENIAC was able to operate so fast was that the routes followed by the 
electronic impulses were wired into the machine. This electronic routing was the 
materialization of the machine's instructions for transforming the input data into the 
solution. Many different kinds of equations could be solved, and the performance of a 
calculation could be altered by the outcome of subproblems, but ENIAC was nowhere 
near as flexible as Babbage's Analytical Engine, which could be reprogrammed 
to solve a different set of equations, not by altering the machine itself, but by 
altering the sequence of input cards. 

What Mauchly and Eckert gained in calculating power and speed, they paid for 
in overall flexibility. The gargantuan electronic machine had to be set up for 
solving each separate problem by changing the configuration of a huge 
telephone-like switchboard, a procedure that could take days. The origins of the 
device as a ballistics project were partially responsible for this inflexibility. It was not the 
intention of the Moore School engineers to build a universal machine. Their contract 
quite clearly specified that they create an altogether new kind of trajectory calculator. 

Especially after von Neumann joined the team, they realized that what they were 
constructing would not only become the ultimate mathematical calculator, but the first, 
necessarily imperfect prototype of a whole new category of machine. Before ENIAC was 
completed, its designers were already planning a successor. Von Neumann, especially, 
began to realize that what they were talking about was a general-purpose machine, one 
that was by its nature particularly well suited to function as an extension of the human 
mind. 

If one thing was sacred to Johnny, it was the power of human thought to penetrate the 
mysteries of the universe, and the will of human beings to apply that knowledge to 
practical ends. He had other things on his own mind at the time -- from the secrets of H-
bomb design to the structure of logic machines -- but he appeared to be most keen on the 
idea that these devices might evolve into some kind of intellectual extension. How much 
more might a thinker like himself accomplish with the aid of such a machine? One 
biographer put it this way: 

Von Neumann's enthusiasm in 1944 and 1945 had first been generated by the challenge of improving the 
general-purpose computer. He had been a proponent of using the latest in computing machines in the 
atomic bomb project, but he realized that for the impending hydrogen bomb project still better and faster 
machines were needed. In the theoretical level he was intrigued by the fact that there appeared to be 
organizational parallels between the brain and computers and that these parallels might lead to formal-logic 
theories encompassing both computers and brains; moreover, the logical theories would constitute 
interesting abstract logics in their own right. He was cautious in assuming similarity between a computer 
and the awesome functioning of the human brain, especially as in 1944 he had little preparation in 
physiology. Rather he regarded the computer as a technical device functioning as 
an extension of its user; it would lead to an aggrandizement of the human brain, 
and von Neumann wanted to push this aggrandizement as far and as fast as 
possible.  
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There is no dispute that Mauchly, Eckert, Goldstine, and Von Neumann worked together 
as a team during this crucial gestation period of computer technology. The team split up 
in 1946, however, so the matter of accrediting specific ideas has become a sticky one. 
Memoranda were written, as they are on any project, without the least expectation that 
years later they would be regarded as historical or legal documents. Technology was 
moving too fast for the traditional process of peer review and publication: the two most 
important documents from these early days were titled "First Draft . . ." and "Preliminary 
Report . . ." 

By the time they got around to sketching the design for the next electronic computer, the 
four main ENIAC designers had agreed that the goal was to design a machine that would 
use the same hardware technology in a more efficient way. The next step, the invention 
of stored programming, is where the accreditation controversy comes in. At the end of 
June, 1945, the ENIAC team prepared a proposal in the form of a "First Draft of a Report 
on the Electronic Discrete Variable Calculator" (EDVAC). It was signed by von 
Neumann, but reflected the conclusions of the group. Goldstine later said of this: "It has 
been said by some that von Neumann did not give credits in his First Draft to others. The 
reason for this was that the document was intended by von Neumann as a working paper 
for use in clarifying and coordinating the thinking of the group and was not intended for 
publication." (Mauchly and Eckert, however, took a less benign view of von Neumann's 
intentions.) The most significant innovations articulated in this paper involved the logical 
aspects of coding, as well as dealing with the engineering of the physical device that was 
to follow the coded instructions. 

Creating the coded instructions for a new computation on ENIAC was nowhere near as 
time consuming as carrying out the calculation by hand. Once the code for the 
instructions needed to carry out the calculation had been drawn up, all that had to be done 
to perform the computation on any set of input data was to properly configure the 
machine to perform the instructions. The calculation, which formerly took up the most 
time, had become trivial, but a new bottleneck was created with the resetting of switches, 
a process that took an unreasonable amount of time compared with the length of time it 
would take to run the calculation. 

Resetting the switches was the most worrisome bottleneck, but not the only one. The 
amount of time it took for the instructions to make use of the data, although greatly 
reduced from the era of manual calculation, was also significant -- in ballistics, the 
ultimate goal of automating calculation was to be able to predict the path of a missile 
before it landed, not days or hours or even just minutes later. If only there was a more 
direct way for the different sets of instructions -- the inflexible, slow-to-change 
component of the computing system -- to interact with the data stored in the electronic 
memory, the more quickly accessible component of computation. The solution, as von 
Neumann and colleagues formulated it, was an innovation based upon a logical 
breakthrough. 

The now-famous "First Draft" described the logical properties of a true general-purpose 
electronic digital computer. In one key passage, the EDVAC draft pointed out something 
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that Babbage, if not Turing, had overlooked: "The device requires a considerable 
memory. While it appears that various parts of this memory have to perform functions 
which differ somewhat in their nature and considerably in their purpose, it is nevertheless 
tempting to treat the entire memory as one organ." In other words, a general-purpose 
computer should be able to store instructions in its internal memory, along with data. 

What used to be a complex configuration of switchboard settings could be symbolized by 
the programmer in the form of a number and read by the computer as the location of an 
instruction stored in memory, an instruction that would automatically be applied to 
specified data that was also stored in memory. This meant that the program could 
call up other programs, and even modify other programs, without intervention 
by the human operator. Suddenly, with this simple change, true information 
processing became possible. 

This is the kernel of the concept of stored programming, and although the ENIAC team 
was officially the first to describe an electronic computing device in such terms, it should 
be noted that the abstract version of exactly the same idea was proposed in Alan Turing's 
1936 paper in the form of the single tape of the universal Turing machine. And at the 
same time the Pennsylvania group was putting together the EDVAC report, Turing was 
thinking again about the concept of stored programs: 

So the spring of 1945 saw the ENIAC team on one hand, and Alan Turing on the other, arrive naturally at 
the idea of constructing a universal machine with a single "tape." . . . 

But when Alan Turing spoke of "building a brain," he was working and thinking alone in his spare time, 
pottering around in a British back garden shed with a few pieces of equipment grudgingly conceded by the 
secret service. He was not being asked to provide the solution to numerical problems such as those von 
Neumann was engaged upon; he had been thinking for himself. He had simply put together things that no 
one had put together before: his one tape universal Turing machine, the knowledge that large scale pulse 
technology could work, and the experience of turning cryptanalytic thought into "definite methods" and 
"mechanical processes." Since 1939 he had been concerned with little but symbols, states, and instruction 
tables -- and with the problem of embodying these as effectively as possible in concrete forms. 

With the EDVAC design, ballistics calculators took the first step toward general-purpose 
computers, and it became clear to a few people that such devices would surely evolve 
into something far more powerful. The kind of uses the inventors envisioned for the 
future of their technology was a cause for one of several major theoretical 
disagreements that were to surface soon thereafter among the four ENIAC principals. 
Von Neumann and Goldstine saw the opportunity to build an incredibly powerful 
research tool for scientists and mathematicians. Mauchly and Eckert were already 
thinking of business and government applications outside military or research 
institutions. 

The first calculation run on ENIAC in December, 1945, six months after the "First 
Draft," was a problem posed by scientists from Los Alamos Laboratories. ENIAC was 
formally dedicated in February, 1946. By then, the patriotic solidarity enforced upon the 
research team by wartime conditions had faded away. Von Neumann was enthusiastic 
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about the military and scientific future of the computer-building enterprise, but the two 
young men who had dreamed up the computer project before the big brass stepped in 
were getting other ideas about how their brain-child ought to mature. The tensions 
between institutions, people, and ideas mounted until Mauchly and Eckert left the Moore 
School on March 31, 1946, over a dispute with the university concerning patent rights to 
ENIAC. They founded their own group shortly thereafter, eventually naming it The 
Eckert-Mauchly Computer Corporation. 

When Mauchly and Eckert later suggested that they were, in fact, the sole originators of 
the EDVAC report, they were, in Goldstine's phrase, "strenuously opposed" by Goldstine 
and von Neumann. The split turned out to be a lifelong feud. Goldstine, writing in 1972 
from his admittedly partial perspective, was unequivocal in pointing out von Neumann's 
contributions:  

First, his entire summary as a unit constitutes a major contribution and had a profound impact not only on 
the EDVAC but also served as a model for virtually all future studies of logical design. Second, in that 
report he introduced a logical notion adapted from one of McCulloch and Pitts, who used it in a study of the 
nervous system. This notation became widely used, and is still, in modified form, an important and indeed 
essential way for describing pictorially how computer circuits behave from a logical point of view. 

Third, in the famous report he proposed a repertoire of instructions for the EDVAC, and in a subsequent 
letter he worked out a detailed programming for a sort and merge routine. This represents a milestone, 
since it is the first elucidation of the now famous stored program concept together with a completely 
worked-out illustration. 

Fourth, he set forth clearly the serial mode of operation of the modern computer, i.e., one instruction at a 
time is inspected and then executed. This is in sharp distinction to the parallel operation of the ENIAC in 
which many things are simultaneously performed.  

While Mauchly and Eckert set forth to establish the commercial applications of computer 
technology, Goldstine, von Neumann, and another mathematician by the name of Arthur 
Burks put together a proposal and presented it to the Institute for Advanced Study at 
Princeton, the Radio Corporation of America, and the Army Ordnance Department, 
requesting one million dollars to build an advanced electronic digital computer. Once 
again, some of the thinking in this project was an extension of the group creations of the 
ENIAC project. But this "Preliminary Discussion," unquestionably dominated by von 
Neumann, also went boldly beyond the EDVAC conception as it was stated in the "First 
Draft." 

Although the latest proposal was aimed at the construction of a machine that would be 
more sophisticated than EDVAC, the authors went much farther than describing a 
particular machine. They very strongly suggested that their specification should be of the 
general plan for the logical structure and fundamental method of operation for all future 
computers. They were right: it took almost forty years, until the 1980s until 
anyone made a serious attempt to build "non-von Neumann machines." 

"Preliminary Discussion of the Logical Design of an Electronic Computing Instrument," 
which has since been recognized as the founding document of the modern science 
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of electronic computer design, was submitted on June 28, 1946, but was available 
only in the form of mimeographed copies of the original report to the Ordnance 
Department until 1962, when a condensed version was published in Datamation 
magazine. The primary contributions of this document were related to the logical use of 
the memory mechanism and the overall plan of what has been come to be known as the 
"logical architecture." One aspect of this architecture was the ingenious way data and 
instructions were made to be changeable during the course of a computation without 
requiring direct intervention by the human operator. 

This changeability was accomplished by treating numerical data as "values" that could be 
assigned to specific locations in memory. The basic memory component of an EDVAC-
type computer used collections of memory elements known as "registers" to store 
numerical values in the form of a series of on/off impulses. Each of these numbers was 
assigned an "address" in the memory, and any address could contain either data or an 
instruction. In this way, specific data and instructions could be located when needed by 
the control unit. One result of this was that a particular piece of data could be a variable -- 
like the x in algebra -- that could be changed independently by having the results of an 
operation stored at the appropriate address, or by telling the computer to perform an 
operation on whatever was found at that location. 

One of the characteristics of any series of computation instructions is a reference to data: 
when the instructions tell the machine how to perform a calculation, they have to specify 
what data to plug into the calculation. By making the reference to data a reference to the 
contents of a specific memory location, instead of a reference to a specific number, it 
became possible for the data to change during the course of a computation, according to 
the results of earlier steps. It is in this way that the numbers stored in the memory can 
become symbolic of quantities other than just numerical value, in the same way that 
algebra enables one to manipulate symbols like x and y without specifying the values. 

It is easier to visualize the logic of this schema if you think of the memory addresses as 
something akin to numbered cubbyholes or post-office boxes -- each address is nothing 
but a place to find a message. The addresses serve as easily located containers for the 
(changeable) values (the "messages") to be found inside them. Box #1, for example, 
might contain a number; box #2 might contain another number; box #3 might contain 
instructions for an arithmetic operation to be performed on the numbers found in boxes 
#1 and #2; box #4 might contain the operation specified in box #3. The numbers in the 
first two boxes might be fixed numbers, or they might be variables, the values of which 
might depend on the result of other operations. 

By putting both the instructions and the raw data inside the same memory, it became 
possible to perform computations much faster than with ENIAC, but it also became 
necessary to devise a way to clearly indicate to the machine that some specific addresses 
contain instructions and other addresses contain numbers for those instructions to operate 
on. 
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In the "First Draft," von Neumann specified that each instruction should be designated in 
the coding of a program by a number that begins with the digit 1, and each of the 
numbers (data) should begin with the digit 0. The "Preliminary Report" expanded the 
means of distinguishing instructions from data by stating that computers would keep 
these two categories of information separate by operating during two different time 
cycles, as well. 

All the instructions are executed according to a timing scheme based on the ticking of a 
built-in clock. The "instruction" cycles and "execution" cycles alternate: On "tick," the 
machine's control unit interprets numbers brought to it as instructions, and prepares to 
execute the operations specified by the instructions on "tock," when the "execution" cycle 
begins and the control unit interprets input as data to operate upon. 

The plan for this new category of general-purpose computer not only specified a timing 
scheme but set down what has become known as the "architecture" of the computer -- the 
division of logical functions among physical components. The scheme had similarities to 
both Babbage's and Turing's models. All such machines, the authors of the "Preliminary 
Report" declared, must have a unit where arithmetic and logical operations can be 
performed (the processing unit where actual calculation takes place, equivalent to 
Babbage's "mill"), a unit where instructions and data for the current problem can be 
stored (like Babbage's "store," a kind of temporary memory device), a unit that executes 
the instructions according to the specified sequential order (like the "read/write head" of 
Turing's theoretical machine), and a unit where the human operator can enter raw 
information or see the computed output (what we now call "input-output devices"). 

Any machine that adheres to these principles -- no matter what physical 
technology is used to implement these logical functions -- is an example of 
what has become known as "the von Neumann architecture." It doesn't matter 
whether you build such a machine out of gears and springs, vacuum tubes, or transistors, 
as long as its operations follow this logical sequence. This theoretical template was first 
implemented in the Unites States at the Institute for Advanced Study. Modified copies of 
the IAS machine were made for the Rand Corporation, an Air Force spinoff "think tank" 
that was responsible for keeping track of targets for the nation's new but fast-growing 
nuclear armory, and for the Los Alamos Laboratory. Against von Neumann's mild 
objections, the Rand machine was dubbed JOHNNIAC. The Los Alamos machine 
assigned to nuclear weapons-related calculations was given the strangely uneuphemistic 
name of MANIAC. 

(Neither EDVAC, the IAS machine, the Los Alamos machine, nor the Rand machine was 
the first operational example of a fully functioning stored-program computer. British 
computer builders, who had been pursuing parallel research and who were aware of Von 
Neumann's ideas, beat the Americans when it came to constructing a machine based on 
the logical principles enunciated by von Neumann. The first machine that was binary, 
serial, and used stored-program memory was EDSAC -- the Electronic Delay Storage 
Automatic Calculator, built at the University Mathematical Laboratory, University of 
Cambridge, England.) 

 65



In a von Neumann machine, the arithmetic and logic unit is where the basic operations of 
the system are wired in. All the other instructions are constructed out of these 
fundamentals. It is possible, in principle, to build a device of this type with very few, 
extremely simple, built-in operations. Addition, for example, could be performed over 
and over again whenever a multiplication operation is requested by a program. In fact, the 
only two operations that are absolutely necessary are "not" and "and." The problem 
with using a few very simple hardwired operations and proportionally complex 
software structures built from them is that it slows down the operation of the 
computer: Because instructions are executed one at a time ("serially") as the 
internal clock ticks, the number of basic instructions in a program dictates how 
long it takes a computer to run that program. 

The control unit specified by the "Preliminary Report" -- the component that supervises 
the execution of instructions -- was the materialization of the formal logic device created 
by Emil L. Post and Turing, who had proved that it was possible to devise codes in terms 
of numbers that could cause a machine to solve any problem that was clearly statable. 
This is where the symbol meets the signal, where sequences of on and off impulses in the 
circuits, the Xs and Os on the cells of the endless tape, the strings of numbers in the 
programmer's code, marry the human-created computation to the machine that computes. 

The input-output devices were the parts of the system that were to advance the most 
slowly while the switch-based memory, arithmetic, and control components ascended 
through orders of magnitude. For over a decade after ENIAC, punched cards were the 
main input devices, and for over two decades, teletype machines were the most common 
output devices. 

The possibility of future breakthroughs in this area and their implications were not 
overlooked. In a memorandum written in November, 1945, concerning one of the early 
proposals for the IAS machine, von Neumann anticipated the possibility of creating a 
more visually oriented output device: 

In many cases the output really desired is not digital (presumably printed) but pictorial (graphed). In such 
situations the machine should graph it directly, especially because graphing can be done electronically and 
hence more quickly than printing. The natural output in such a case is an oscilloscope, i.e., a picture on its 
fluorescent screen. In some cases these pictures are wanted for permanent storage . . . in others only visual 
inspection is desired. Both alternatives should be provided for. 
But a personal interactive computer, helpful as such a device might be to a mind such as 
von Neumann's, was not an interesting enough problem. After solving interesting 
problems about the processes that take place in the heart of stars, a scientific-
technological tour de force that also became a historical point of no return when the 
scientists' employers demonstrated their creation at Hiroshima, and then solving another 
set of problems concerned with the creation of computing machinery, all the while 
pontificating about the most potent aspects of foreign policy to the leaders of the most 
powerful nation in history, John von Neumann was aiming for nothing less than the 
biggest secret of all. In the late 1940s and early 1950s, the most interesting scientific 
question of the day was "what is life?" 
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To someone who had been at Alamogordo and the Moore School, it would not have been 
too farfetched to believe that the next intellectual conquest might bring the secret of 
physical immortality within reach. Certainly he would never know whether he could truly 
resolve the most awesome of nature's mysteries until he set his mind to decoding the 
secret of life. And that he did. Characteristically, von Neumann focused on the aspect of 
the mystery of life that appealed to his dearest instincts and most powerful capacities -- 
the pure, logical, mathematical underpinnings of nature's code. He was particularly 
interested in the logical properties of the theoretical devices known as automata, of which 
Turing's machine was an example. 

Von Neumann was especially drawn to the idea of self-reproducing automata -- 
mathematical patterns in space and time that had the property of being able to reproduce 
themselves. He was able to draw on his knowledge of computers, his growing 
understanding of neurophysiology and biology, and make particularly good use of his 
deep understanding of logic, because he saw self-replicating automata as essentially 
logical beasts. The way the task was accomplished by living organisms of the type found 
on earth was only one way it could be done. In principle, the task could be done by a 
machine that could follow a plan, because the plan, and not the mechanism that carried it 
out, was a part of the system with the special, heretofore mysterious property that 
distinguished life from nonliving matter. 

Von Neumann approached "cellular automata" on an abstract level, just as Turing did 
with his first machines. As early as 1948, he showed that any self-replicating system must 
have raw materials, a program that provides instructions, an automaton that follows the 
instructions and arranges the symbols in the cells of a Turing-type machine, a system for 
duplicating instructions, and a supervisory unit -- which turned out to be an excellent 
description of the DNA direction of protein synthesis in living cells. 

Another thing that interested Johnny was the gamelike aspect of the world. Accordingly, 
he thought about the way his self-reproducing automaton was like a game:  

Making use of the work done by his colleague Stanislav Ulam, von Neumann was able to refine his 
calculations and make them more generally applicable. Von Neumann's mental experiment, which we can 
easily present in the form of a game, makes use of a homogeneous space subdivided by cells. We can think 
of these cells as squares on a playing board. A finite number of states -- e.g., empty, occupied, or occupied 
by a specific color -- is assigned to a square. At the same time, a neighborhood is defined for each cell. This 
neighborhood can consist of either the four orthogonally bordering cells or the eight orthogonally and 
diagonally bordering cells. In the space divided up this way, transition rules are applied simultaneously to 
each cell. The transition any particular cell undergoes will depend on its state and on the states of its 
neighbors. Von Neumann was able to prove that a configuration of about 200,000 cells, each with 29 
different possible states and each placed in a neighborhood of 4 orthogonally adjacent squares, could meet 
all the requirements of a self-reproducing automaton. The large number of elements was necessary because 
von Neumann's model was also designed to simulate a Turing machine. Von Neumann's machine can, 
theoretically, perform any mathematical operation.  

In 1950, when it was evident to all that the engineering phase of computer technology 
was accomplishing impressive tasks, von Neumann postulated one such system in 
terms of a factory that contains within it the machinery and the detailed 
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blueprints for making identical factories (and identical blueprints) from raw 
materials provided to it. Take that a step up in complexity, and the details can include 
a specification for subsystems that find raw materials for the factory from the 
environment, with no human intervention. 

If one fantasizes one step farther on the complexity spectrum, the instructions and 
capabilities could specify factories capable of building spaceships to send more 
spaceships to other planets, where the raw materials found would be shaped into more 
factory-spaceship-launchpad systems, and if you could build factories that could build 
two or more such complexes, you could have a counterforce to the generally disorderly 
trend of the cosmos, in the form of a (mindless?) horde of factory-building 
factories, munching outward through the galaxies like an anti-entropic swarm 
of logical locusts. 

While it definitely sounds like a science-fiction story, and many would add that it could 
be interpreted to be an idea of such inhuman coldness as to be termed "fiendish" such 
scenarios are legitimate topics in the field of automata, and are still known as "von 
Neumann machines" (as distinguished from "the von Neumann machine," the logical 
architecture he created for digital computers). 

Von Neumann died in 1957, before he could achieve a breakthrough in the field of 
automata. Like Ada, he died of cancer, and like Ada, he was said to have suffered 
terribly, as much from the loss of his intellectual facilities as from pain. But the world he 
left behind him was powerfully rearranged by what he had accomplished before he failed 
to solve his last, perhaps most interesting problem.  
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Chapter Five: 
Ex-Prodigies and Antiaircraft Guns 
Today, when molecular biologists talk about the "coding" of the DNA molecule, 
cognitive scientists discuss the "software of the brain," and behavioral psychologists 
write about "reprogramming old habits," they are all making use of a scientific metaphor 
that emerged from the technology of computation, but which has come to encompass 
much more than the mechanics of calculating devices. Cybernetics, the study of 
communication and control in physical and biological systems, was born when yet 
another unusual mind was drawn into the software quest through the circumstances of 
war. 

Because of the discoveries of Norbert Wiener and his colleagues, discoveries that were 
precipitated by the wartime need for a specific kind of calculating engine, software has 
come to mean much more than the instructions that enable a digital computer to 
accomplish different tasks. From the secrets of life to the ultimate fate of the universe, the 
principles of communication and control have successfully been applied to the most 
important scientific puzzles of our age. These principles were discovered through a 
strange concatenation of events, and the people who were involved in those events were 
no less unusual than the software patriarchs who preceded them. 

Eccentrics and prodigies of both the blissful and agonized varieties dominated the early 
history of computation. Ada Lovelace, George Boole, John von Neumann, Alan Turing, 
and Presper Eckert were all in their early twenties or younger when they did their most 
important work. All except Eckert were also more than a little bizarre. But for raw 
prodigy combined with sheer imaginative eccentricity, Norbert Wiener, 
helmsman of the cybernetic movement, stands out even in this not-so-ordinary 
crowd. 

Norbert's father, a Harvard professor who was a colorful character in his own right, had 
definite opinions about education, and publicly declared his intention to mold his young 
son's mind. Norbert was to become a lovingly but systematically engineered genius. In 
1911, an article in a national magazine reported these plans:  

Professor Leo Wiener of Harvard University . . . believes that the secret of precocious mental development 
lies in early training . . . He is the father of four children, ranging in age from four to sixteen; and he has the 
courage of his convictions in making them the subject of an educational experiment. The results have . . . 
been astounding, more especially in the case of his oldest son, Norbert. 

This lad, at eleven, entered Tufts College, form which he graduated in 1909, 
when he was only fourteen years old. He then entered Harvard Graduate School.  

Norbert completed his examinations and his doctoral dissertation in mathematical logic 
when he was eighteen, then studied with Bertrand Russell in Cambridge and David 
Hilbert in Göttingen, where he later crossed paths with von Neumann, nine years his 
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junior, also a student of Hilbert's, and a world renowned authority in several of Wiener's 
fields of interest. One of the most immediate differences between the two prodigies, even 
this early in their careers, was the pronounced contrast between their personalities. 

Rare was the teacher or student who failed to be charmed by von Neumann, who went 
out of his way to assure fellow humans that he was just as mortal as everyone else. 
Wiener, an insecure, far less worldly, sometimes vain, and often hypersensitive 
personality, simply didn't go to as much trouble to make an impression outside the realm 
of mathematics, where he was confident to the point of arrogance. Bertrand Russell wrote 
of Wiener, in a letter to a friend:  

At the end of Sept. an infant prodigy named Wiener, Ph.D. (Harvard), aged 18, turned up with his father 
who teaches Slavonic languages there, having come to America to found a vegetarian communist colony, 
and having abandoned that intention for farming, and farming for the teaching of various subjects. . . . The 
youth has been flattered, and thinks himself God Almighty -- there is a perpetual contest between him and 
me as to which is to do the teaching.  

Like Babbage, Wiener was famous for the feuds he carried on. While a student at 
Göttingen, he impressed the administrative head of the university, Richard Courant, but 
Wiener accused him of misappropriating several of the younger man's mathematical ideas 
and appending Courant's own name to them. When he returned to Cambridge, the 
outraged young genius turned his energies to a novel that was never published, about 
someone who bore a remarkable resemblance to Courant, and who was depicted as a man 
who stole the ideas of young geniuses. 

Before World War I, Wiener wrote pieces for Encyclopedia Americana, taught 
philosophy at Harvard and mathematics at the University of Maine. During World War I, 
Private Wiener was assigned to the U.S. Army's Aberdeen proving Grounds in Maryland, 
where he was one of the mathematicians responsible for the computation of firing tables. 
His service in 1918 was one of the reasons it was natural for Wiener's friend Vannevar 
Bush to think of Norbert thirty years later, when the allies needed a way to put firing 
tables directly into the radar-guided mechanism of antiaircraft guns. 

After the end of World War I, Norbert Wiener joined the Massachusetts Institute of 
Technology as an instructor of mathematics. It turned out to be the beginning of his 
lifelong association with that institution. By the early 1920s, like his fellow polymath 
across the Atlantic, Wiener was turning out world-class papers in mathematics, logic, and 
theoretical physics. At MIT Wiener began his long friendship with Vannevar Bush, a 
man who in the early 1930s was deeply involved in the problems of building mechanical 
calculators, and in the 1940s took charge of the largest-scale administration of applied 
science in history. 

Decades later, Wiener quarreled with his lifelong friend because Bush didn't side strongly 
enough with Wiener in his feud with two other colleagues. Such feuds were one of the 
more well-known characteristics of Wiener's style -- he tended to take disagreements over 
scientific issues as personal attacks, even if the disputes involved his closest personal 
friends. Like Babbage, his judgement did not always seem equal to his imagination. 
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It must be said that Wiener did have many warm lifelong friendships that didn't go sour. 
For all his moodiness and paranoia, Wiener truly cared about "the human use of 
human beings" (as he was to title one of his later books on the implications of 
cybernetics), and passionately reminded the scientific community of their special 
responsibilities regarding the apocalyptic weaponry they had created. Despite his failure 
to get along with some of his colleagues, Wiener never wavered in his belief that the 
future of scientific enterprise lay in interdisciplinary cooperation. His friendship 
with the physiologist Arturo Rosenbluth, and their shared dream of stimulating such 
interdisciplinary pursuits, catalyzed the origins of cybernetics. But Wiener might never 
have worked with Rosenblueth if it wasn't for the Battle of Britain. 

Like von Neumann, Wiener's most important need was for interesting problems. Like von 
Neumann, he knew that the quantum revolution was the most interesting problem of the 
1920s. And one of the effects of quantum physics on the young mathematician's thinking 
was to convince him that some of the most interesting problems of purely theoretical 
mathematics could end up having the most concrete applications in the real world. 

Another effect of quantum physics was the importance of probability and 
statistical measures for dealing with phemomena based on uncertain information. 
Wiener's familiarity with these concepts was to mature under unexpected circumstances. 
Like von Neumann and Goldstine and Eckert, in the late 1930s Wiener wasn't yet aware 
that ballistics would be the avenue for bringing his knowledge of probability and 
statistics to bear on the most pragmatic problems, eventually to yield most astonishing 
results. But, like them, he would soon come to understand that his war-related task was 
leading to profound scientific consequences far beyond the bounds of ballistics. 

The scene was set for the emergence of Wiener's astounding results, not by any series of 
scientific events, but by the political circumstances of the early 1940s. When war broke 
out in Europe, Bush assigned Wiener to the antiaircraft control project at MIT, under the 
direction of Warren Weaver, himself a distinguished mathematician. It seemed like a 
natural step for Wiener, considering his prior experience in the early ballistic calculation 
efforts at Aberdeen during World War I. 

The key ideas that led to computers were in the air in the late 1930s, albeit in the rather 
rarefied air of metamathematics and other esoteric intellectual disciplines. The necessities 
of war and the coordinated scientific effort that they entailed served to bring those key 
ideas together with the few people who were equipped to understand them more quickly 
and urgently than might have happened in more normal times. 

Von Neumann and Goldstine's accidental meeting at Aberdeen was fortuitous and 
unlikely, but it could hardly be called incredible. One of the circumstances that 
brought Wiener together with the problem of antiaircraft guns, however, was 
downright weird. The technological turning point of the Battle of Britain, and a 
critical chapter in the science of communications systems in machines and 
organisms, originated when a young Bell Laboratories employee in America 
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had an odd dream. The crucial dream was not about mathematics or engineering 
problems connected with computers, but was related to technical issues involving 
antiaircraft artillery. And it was the question of how to deal with dive bombers that was 
the rather urgent if indirect problem that led to Wiener's later insights. 

The pathway between military strategy and scientific theory was far too circuitous, 
coincidental, and unlikely to have been predicted in advance, and became clearly 
discernible only in retrospect. In many respects, the birth of cybernetics was the kind of 
story more likely to be found in a novel than in a scientific journal. One of the historical 
coincidences was the position of Vannevar Bush as the leader of war-related research. In 
his role as a research administrator, Bush knew that antiaircraft technology was one of his 
top priorities. As a scientist, MIT researcher, and friend of Norbert Wiener's, Bush was 
also concerned with the task of building high-speed mechanical calculators. 

The allies' two most pressing problems in the early years of World War II were the 
devastating U-boat war in the North Atlantic and the equally devastating Luftwaffe 
attacks on Britain. Turing's secret solution to the naval Enigma machine was responsible, 
in large part, for solving the U-boat problem. But where Turing's problem was one of 
cryptanalysis, of mathematically retrieving the meaning from a garbled message, the 
Luftwaffe problem was one of predicting the future: How can you shoot at a plane that is 
going as fast as your bullets? 

Radar made it possible to track the positions of enemy aircraft, but there was no way to 
translate the radar-provided information into a ballistic equation quickly enough to do 
any good. And attacking airplanes had a disconcerting habit of taking evasive action. 
Vannevar Bush was well acquainted with the calculation problem when Bell Laboratories 
came to him with an interesting idea for an electrically operated aiming device. That is 
where the young engineer's dream came in. 

His name was D. B. Parkinson, and he was working with a group of Bell engineers on an 
automatic level recorder for making more accurate measurements of telephone 
transmissions -- a "control potentiometer," they called it. In the spring of 1940, Parkinson 
had the following dream:  

I found myself in a gun pit or revetment with an anti-aircraft gun crew. . . . There was a gun there which 
looked to me -- I had never had any close association with anti-aircraft guns, but possessed some general 
information on artillery -- like a 3 inch. It was firing occasionally, and the impressive thing was that every 
shot brought down an airplane! After three or four shots one of the men in the crew smiled at me and 
beckoned me to come closer to the gun. When I drew near he pointed to the exposed end of the left 
trunnion. Mounted there was the control potentiometer of my level recorder! There was no mistaking it -- it 
was the identical item.  

The electrical device, as it happened, was a good start on an automatic aiming 
mechanism. But very serious theoretical and mathematical problems, having to do with 
the way the control device sent and received instructions, cropped up when they tried to 
construct such a mechanism. That is when Bush turned to Weaver and Wiener. 
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During this wartime mathematical work related to radar-directed antiaircraft fire, Wiener 
recognized the fundamental relationship between two basic problems -- communication 
and control. The communication problem in the earliest days of radar was that the radar 
apparatus was like a badly tuned radio receiver. The true signal of attacking planes was 
often drowned out by false signals -- noise -- from other sources. Wiener recognized that 
this too was a kind of cryptography problem, if the location of the enemy aircraft is seen 
as a message that must somehow be decoded from the surrounding noise. 

The noisy radar was more than an ordinary "interesting problem," because once you 
understand messages and noise in terms of order and information measured 
against disorder and uncertainty, and apply statistics to predict future messages, 
it becomes clear (to a mathematician of Wiener's stature) that the issue is 
related to the basic processes of order and disorder in the universe. Once it is 
seen in statistical and mathematical terms, the communication problem leads to the heart 
of something more important, called information theory. But that branch of the story 
belongs to Claude Shannon as much as, or more than, it does to Wiener. 

The control problem was where Wiener, and his very young and appropriately brilliant 
assistant, an engineer by the name of Julian Bigelow, happened upon the general 
importance of feedback loops. Assuming that it is possible to feed information about a 
plane's path into the aiming apparatus of a gun, how can that information be used to 
predict the probable location of the plane? The use of statistics and probability theory was 
one clue. A method for predicting the end of a message based on information about the 
beginning was another clue. The device in Parkinson's dream was another clue. 

Then it occurred to Wiener and Bigelow that the human organism had already solved the 
problem they were facing. How is any human being, or a chimpanzee for that matter, able 
to reach out a hand and pick up a pencil? How are people able to put one foot in front of 
the other, fall face-forward for a short distance, and end up taking a step? Both processes 
involve continuous, precise readjustments of muscles (the servomechanisms that move 
the gun), guided by continuous visual information (radar), controlled by a continuous 
process of predicting trajectories. The prediction and control take place in the nervous 
system (the control circuits of the animating automata). 

Wiener and Bigelow looked more closely at other servomechanisms, including 
self-steering mechanisms as simple as thermostats, and concluded that feedback 
is the concept that connects the way brains, automatic artillery, steam engines, 
autopilots, and thermostats perform their functions. In each of those systems, 
some small part of the past output is fed back to the central processor as present 
input, in order to steer future output. Information about the distance from the hand to 
the pencil, as seen by the eye, is fed back to the muscles controlling the hand. Similarly, 
the position of the gun and the position of the target as sensed by radar are fed back to the 
automatic aiming device. 
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The MIT team had wondered whether someone more informed about neurophysiology 
had come across analogous mathematics of pencil pushing, with similar results. As it 
happened, there was another team that, like Wiener and Bigelow, was made up of one 
infant prodigy and one slightly older genius, by the names of Pitts and McCulloch 
respectively, who were coming down exactly the same trail from the other direction. A 
convergence of ideas that was both forced and fortuitous, related to but distinctly 
different from the convergence on digital computation, was taking place under the 
pressure of war. 

Even von Neumann was due to get into the act, as Wiener wanted him to do -- Wiener 
persuaded MIT to try to outbid Princeton for von Neumann's attentions after the war. 
Politically, militarily, and scientifically, Wiener's corner of the plot was getting 
thick. The antiaircraft problem, the possible explanations for how brain cells 
work, the construction of digital computers, the decoding of messages from 
noise -- all these seemingly unrelated problems were woven together when the 
leading characters were brought together by the war. 

The founding of the interdisciplinary study that was later named cybernetics came about 
when Wiener and Bigelow wondered whether any processes in the human body 
corresponded to the problem of excessive feedback in servomechanisms. They appealed 
to an authority on physiology, from the Instituto Nacional de Cardología in Mexico City. 
Dr. Arturo Rosenblueth replied that there was exactly such a pathological condition 
named (meaningfully) the purpose tremor, associated with injuries to the cerebellum (a 
part of the brain involved with balance and muscular coordination). 

Together the mathematician, the neurophysiologist, and the engineer plotted out a new 
model of the nervous system processes that they believed would demonstrate how 
purpose is embodied in the mechanism -- whether that mechanism is made of metal or 
flesh. Wiener, never reluctant to trumpet his own victories, later noted that this 
conception "considerably transcended that current among neurophysiologists."  

Wiener, Bigelow, and Rosenblueth's model, although indirectly derived from top-secret 
war work, had such general and far-reaching implications that it was published under the 
title "Behavior, Purpose and Technology," in 1943, in the normally staid journal 
Philosophy of Science. The model was first discussed for a small audience of specialists, 
however, at a private meeting held in New York in 1942, under the auspices of the Josiah 
Macy Foundation. At that meeting was Warren McCulloch, a neurophysiologist who had 
been corresponding with them about the mathematical characteristics of nerve networks. 

McCulloch, a neurophysiologist based at the University of Illinois, was, naturally enough 
in this company, an abnormally gifted and colorful person who had a firm background in 
mathematics. One story that McCulloch told about himself goes back to his student days 
at Haverford College, a Quaker institution. A teacher asked him what he wanted to do 
with his obviously brilliant future:  
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"Warren," said he, "what is thee going to be?" And I said, "I don't know," "And what is thee going to do?" 
And again I said, "I have no idea, but there is one question that I would like to answer: What is a number 
that man may know it, and a man that he may know a number?" He smiled and said, "Friend, thee will be 
busy as long as thee lives." 
Accordingly, the mathematician in McCulloch strongly desired a tool for 
reducing the fuzzy observations and theoretical uncertainties of 
neurophysiology to the clean-cut precision of mathematics. Turing, and Bertrand 
Russell before him, and Boole before that, had been after something roughly similar, but 
they all lacked a deep understanding of brain physiology. McCulloch's goal was to find a 
basic functional unit of the brain, consisting of some combination of nerve cells, and to 
discover how that basic unit was built into a system of greater complexity. He had been 
experimenting with models of "nerve networks" and had discovered that these networks 
had certain mathematical and logical properties. 

McCulloch started to work with a young logician by the name of Walter Pitts. Pamela 
McCorduck, a historian of artificial intelligence research, attributes to Manuel Blum, a 
student of McCulloch's and now a professor at the University of California, the story of 
Pitt's arrival on the cybernetic scene. At the age of fifteen, Walter Pitts ran away from 
home when his father wanted him to quit school and get a job. He arrived in Chicago, and 
met a man who knew a little about logic. This man, "Bert" by name, suggested that Pitts 
read a book by the logician Carnap, who was then teaching in Chicago. Bert turned out to 
be Bertrand Russell, and Pitts introduced himself to Carnap in order to point out a 
mistake the great logician had made in his book. 

Pitts studied with Carnap, and eventually came into contact with McCulloch, who was 
interested in consulting with logicians in regard to his neurophysiological research. Pitts 
helped McCulloch understand how certain kinds of networks -- the kinds of circuits that 
might be important parts of nervous systems as well as electrical devices -- could embody 
the logical devices known as Turing machines. 

McCulloch and Pitts developed a theory that regarded nerves as all-or-none, 
on-or-off, switchlike devices, and treated the networks as circuits that could be 
described mathematically and logically. Their paper, "A Logical Calculus of the 
Ideas Immanent in Nervous Activity," was published in 1943 when Pitts was still only 
eighteen years old. They felt that they were only beginning a line of work that would 
eventually address the questions of how brain physiology is linked to knowledge. 

When Wiener, Bigelow, and Rosenblueth got together with McCulloch and Pitts, in 1943 
and 1944, a critical mass of ideas was reached. Pitts joined Wiener at MIT, then worked 
with von Neumann at the Institute for Advanced Study after the war. By the time this 
interdisciplinary cross-fertilization was beginning, the ENIAC project had progressed far 
enough for digital computers to join the grand conjunction of ideas. 

A series of meetings occurred in 1944, involving an interdisciplinary blend of topics that 
seemed to be coming from subject areas as far afield as logic, statistics, communication 
engineering, and neurophysiology. The participants were an equally eclectic assortment 
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of thinkers. It was at one of these meetings that von Neumann made the acquaintance of 
Goldstine, whom he was to encounter again not long afterward, at the Aberdeen railroad 
station. Rosenblueth had to depart for Mexico City in 1944, but by December, Wiener, 
Bigelow, von Neumann, Howard Aiken of the Harvard-Navy-IBM Mark I calculator 
project, Goldstine, McCulloch and Pitts formed an association they called "The 
Teleological Society," for the purpose of discussing "communication engineering, the 
engineering of control devices, the mathematics of time series in statistics, and the 
communication and control aspects of the nervous system." In a word -- cybernetics. 

In 1945 and 1946, at the teleological society meetings, and in personal correspondence, 
Wiener and von Neumann argued about the advisability of placing too much trust in 
neurophysiology. Von Neumann thought that the kinds of tools available to McCulloch 
and Pitts put brain physiologists in the metaphorical position of trying to decipher 
computer circuits by bashing computers together and studying the wreckage, 

To von Neumann, the bacteriophage -- a nonliving microorganism that can reproduce 
itself -- was a much more promising object of study. He felt that much more could be 
learned about nature's codes by looking at microorganisms than by studying 
brains. The connection between the mysteries of brain physiology and the secrets of 
biological reproduction were later to emerge more clearly from theories involving the 
nature of information, and von Neumann turned out to be right -- biologists were to make 
faster progress in understanding the coding of biological reproduction than 
neuroscientists were to make in their quest to decode the brain's functions. 

The Macy Foundation, which had sponsored the meetings that led to the creation of the 
Teleological Society, continued to sponsor free-wheeling meetings. Von Neumann and 
Wiener were the dramatic co-stars of the meetings, and the differences in their personal 
style became part of the excited and dramatic debates that characterized the formative 
years of cybernetics. Biographer Steve Heims, in his book about the two men -- John von 
Neumann and Norbert Wiener -- noted the way their contrasting personae emerged at 
these events:  

Wiener and von Neumann cut rather different figures at the semiannual conferences on machine-organism 
parallels, and each had his own circle of admirers. Von Neumann was small and plump, with a large 
forehead and a smooth oval face. He spoke beautiful and lucid English, with a slight middle-European 
accent, and he was always carefully dressed; usually a vest, coat buttoned, handkerchief in pocket, more the 
banker than the scholar. He was seen as urbane, cosmopolitan, witty, low-key, friendly and accessible. He 
talked rapidly, and many at the Macy meetings often could not follow his careful, precise, rapid reasoning. . 
. . 

Wiener was the dominant figure at the conference series, in his role as brilliant originator of ideas and 
enfant terrible. Without his scientific ideas and his enthusiasm for them, the conference series would never 
have come into existence, nor would it have had the momentum to continue for seven years without him. A 
short, stout man with a paunch, usually standing splay-footed, he had coarse features and a small white 
goatee. He wore thick glasses and his stubby fingers usually held a fat cigar. He was robust, not the 
stereotype of the frail and sickly child prodigy. Wiener evidently enjoyed the meetings and his central role 
in them: sometimes he got up from his chair and in his ducklike fashion walked around the circle of tables, 
holding forth exuberantly, cigar in hand, apparently unstoppable. He could be quite unaware of other 
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people, but he communicated his thoughts effectively and struck up friendships with a number of the 
participants. Some were intrigued as much as annoyed by Wiener's tendency to go 
to sleep and even snore during a discussion, but apparently hearing and 
digesting what was being said. Immediately upon waking he would often make penetrating 
comments. 

Although the nerve network theory was to suffer a less than glorious fate when 
neurophysiology progressed beyond what was known about nerve cells in the 1940s, the 
nerve-net models had already profoundly influenced the design of computers. (Later 
research showed that switching circuits are not such an accurate model for the human 
nervous system, because neurons do not act strictly as "all-or-none" devices.) Despite his 
misgivings about the state of the art in theories of brain functioning, in his 1945 "first 
Draft," von Neumann adopted the logical formalism proposed by McCulloch and Pitts. 
When the architectural template of all future general-purpose computers was first laid 
down, the cyberneticists' findings influenced the logical design. 

In 1944 and 1945, Wiener was already thinking about a scientific model involving 
communication, information, self-control -- an all-embracing way of looking at nature 
that would include explanations for computers and brains, biology and electronics, logic 
and purpose. He later wrote: "It became clear to me almost at the very beginning that 
these new concepts of communication and control involved a new interpretation of man, 
of man's knowledge of the universe, and of society." 

Wiener was convinced that biology, even sociology and anthropology, were to be as 
profoundly affected by cybernetics as electronics theory or computer engineering; in fact 
anthropologist Gregory Bateston was closely involved with Wiener and later with the 
first AI researchers. While Shannon published information theory, and von Neumann 
pushed the development of computer technology, Wiener retreated from the politics of 
big science in the postwar world to articulate his grand framework. 

After the war, as the plans for the Institute for Advanced Study's computer proposed by 
von Neumann were put into action, with Julian Bigelow as von Neumann's chief engineer 
on the project, and as Mauchly and Eckert struck out on their own to start the commercial 
computer industry, Wiener headed for Mexico City to work with Rosenblueth. Then, in 
the spring of 1947, Wiener went to England, where he visited the British computer-
building projects, and spoke with Alan Turing. 

When he returned to Mexico City, Wiener wrote his book and decided to title it and the 
new field Cybernetics, from the Greek word meaning "steersman." It was subtitled: or 
Control and Communication in the Animal and the Machine. Cybernetics was the 
description of a general science of mechanisms for maintaining order in a 
disorderly universe, the process for steering a course through the random forces 
of the physical world, based on information about the past and forecasts about 
the future. 
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When a steersman moves a rudder, the craft changes course. When the steersman detects 
that the previous change of course has oversteered, the rudder is moved again, in the 
opposite direction. The feedback of the steersman's senses is the controlling element that 
keeps the craft on course. Wiener intended to embed in the name of the discipline 
the idea that there is a connection between steering and communication. "The 
theory of control in engineering, whether human or animal or mechanical," he stated, "is 
a chapter in the theory of messages."  

The mathematics underlying the steering of rudders or antiaircraft guns and the steering 
of biological systems was the same -- it was a general law, Wiener felt, like the laws of 
motion or gravity. Wiener's intuitions turned out to be correct. Communication and 
control, coding and decoding, steering and predicting, were becoming more important to 
physicists and biologists, who were interested in phenomena very different from guns or 
computing machines. 

In the late 1940s, another new category of interdisciplinary theorists who would come to 
be known as molecular biologists were beginning to think about the coding mechanism of 
genetics. Even the quantum physicists were looking into the issues that were so dear to 
Wiener, Bigelow, and Rosenblueth. It looked as if Wiener might be onto an even 
more cosmic link between information, energy, and matter. A scientific watershed 
was imminent, and many of his colleagues were expecting more major breakthroughs 
from Wiener. By the fall of 1947, prior to its 1948 publication, his book on cybernetics 
was making the rounds of government and academic experts in manuscript form. 

Robert Fano, a professor of electrical engineering who eventually became head of the 
electrical engineering department at MIT and administrative leader of MIT's pioneering 
computer project known as MAC, witnessed some strange behavior on Wiener's part 
around that time, behavior that Fano later had cause to remember when Claude Shannon 
published his work. Fano was working on his doctoral thesis in electrical engineering. 
From time to time, Wiener would walk into the student's office, inform him rather 
cryptically that "information is entropy," and walk out without saying another 
word.  

By the end of 1946, Wiener had reached a decision that had nothing to do with the cold 
formalisms of mathematics, a decision that distinguished him in yet another way from his 
weaponry-oriented colleague. Renouncing any future role in weapons-related research, 
Wiener deliberately removed himself from the hot center of the action in the development 
of computer technology (as opposed to cybernetic theory) when he stated: "I do not 
expect to publish any future work of mine which may do damage in the hands of 
irresponsible militarists." Fortunately for Wiener, and for the scientific world, the 
implications of his discoveries were not limited to military applications. It quickly 
became evident that weapons were not the only things of interest that were built from 
communication and control codes. 

By the late forties and early fifties, the atmosphere was crackling with new scientific 
ideas having to do with what nobody yet called information theory. The quantum 

 78



physicist Erwin Shroedinger gave a famous lecture at Cambridge University in 1945, 
later published, on the topic "What is Life?" One of the younger physicists in the 
audience, Francis Crick, decided to switch to biology, where the most crucial decoding 
problem in scientific history was waiting for him. Von Neumann turned out to be right in 
his dispute with Wiener -- the bacteriophage, not the nervous system, was the subject of 
the next great decoding. 

Von Neumann's ideas about self-reproducing automata -- patterns complex enough and 
highly ordered enough to direct their own replication -- seemed to point toward the same 
idea. Something about order and disorder, messages and noise, was near the heart of life. 
The manipulation of information looked like something more like a game mathematicians 
play, even more than a capability of machines. Information, in a way that was not 
mathematically demonstrated until Claude Shannon's 1948 publications, began to look 
like a reflection of the way the universe works. The whole idea was a wrenching of mind-
set, at first for scientists, then for many others. 

At the beginning of the twentieth century, scientists saw the universe in terms of particles 
and forces interacting in complicated but orderly patterns that were, in principle, totally 
predictable. In important ways, all of the nonscientists who lived in an 
increasingly mechanized civilization also saw the universe in terms of particles 
and forces and a clockwork cosmos. Around sixty years ago, quantum theory 
did away with the clockwork and predictability. Around thirty years ago, a few 
people began to look at the world and see, as Norbert Wiener put it, "a myriad of To 
Whom It May Concern messages." 

The idea that information is still a fundamental characteristic of the cosmos, like matter 
and energy, is still young, and further surprise discoveries and applications are sure to 
pop up before a better model comes along. Before the 1950s, only scientists thought 
about the idea that information had anything to do with anything. Common words like 
communication and message were given new, technical meanings by Wiener and Claude 
Shannon, who independently and roughly simultaneously demonstrated that everything 
from the random motions of subatomic particles to the behavior of electrical switching 
networks and the intelligibility of human speech is related in a way that can be expressed 
through certain basic mathematical equations. 

The information-related equations were useful in building computers and telephone 
networks, but they also had significant impact on all the sciences. Research inspired by 
the information-communication model has provided clues to some of the fundamental 
features of the universe, from the way the cellular instructions for life are woven into the 
arrangement of atoms in DNA molecules, to the process by which brain cells encode 
memory. The model has become what Thomas Kuhn calls a "scientific paradigm." The 
two fundamental pillars of this paradigm were Claude Shannon's information and 
Wiener's cybernetics. 

The significance of these two theoretical frameworks that came to the attention of 
scientists in the late 1940s and began to surface in public consciousness in the 1950s, and 
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the mass attitude shift they implied, was noted by Paula McCorduck, in her history of 
artificial intelligence research:  

Cybernetics recorded the switch from one dominant model, or set of explanations for phenomena, to 
another. Energy -- the notion central to Newtonian mechanics -- was now replaced by information. The 
ideas of information theory, such as coding, storage, noise, and so on, provided a better explanation for a 
whole host of events, from the behavior of electronic circuits to the behavior of a replicating cell. . . . These 
terms mean pretty much what you'd think. Coding refers to "a system of signals used to represent letters or 
numbers in transmitting messages"; storing means holding these signals until they're needed. Noise is a 
disturbance that obscures or affects the quality of a signal (or message) during transmission. 

It turns out that coding and storing happen to be central problems in the logical design of 
computing machines and the creation of software. The basic scientific work that resulted 
in information theory did not originate from any investigation of computation, however, 
but from an analysis of communication. Claude Shannon, several years younger than 
Turing, working about a year after the British logician's discoveries in metamathematics, 
did another nifty little bit of graduate work that tied together theory and engineering, 
philosophy, and machinery. 
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Chapter Six: 
Inside Information  
His unicycle skills notwithstanding, Claude Shannon has been more flamboyant but no 
less brilliant than his elder colleagues. Rather than advertising his own genius like 
Wiener, or blitzing the world of science with salvo after salvo of landmark findings like 
von Neumann, Claude Shannon has published unprolifically, and he spends more time 
attempting to diminish rather than embellish the mythology that grew up around his 
infrequent but monumental contributions. A modest man, perhaps, but hardly a timid one, 
when Shannon has something to publish, it usually changes the world. 

Claude Shannon was a bona fide prodigy, twenty-two years old when he published (in 
1937) the famous MIT master's thesis that linked electrical circuitry to logical 
formalisms. He was the peer of pioneers like Turing, Wiener, and von Neumann, the 
teacher of the first generation of artificial intelligence explorers like John McCarthy and 
Marvin Minsky, and the mentor of Ivan Sutherland, who has been one of the most 
important contemporary infonaut-architects. 

When Shannon's papers establishing information theory were published in 1948, he was 
thirty-two. The impact on science of this man's career was incalculable for these two 
contributions alone, but he also wrote a pioneering article on the artificial intelligence 
question of game-playing machines, published in 1950. In 1953, at about the same time 
von Neumann and Turing were both thinking about the mathematical possibilities of self-
reproducing machinery, Shannon published another major work on the subject of these 
special automata. 

In 1956, at the age of forty, Shannon was one of the organizers of the conference at 
Dartmouth that gave birth to the field of artificial intelligence. From the pre-war 
discoveries that scooped Wiener and von Neumann, to the explorations in the 1950s that 
led to both AI and multi-access computer systems, his life and ideas formed the single 
most important bridge between the wartime origins of cybernetics and digital computers 
and the present age of artificial intelligence and personal computing. 

What Shannon did in 1937 was to provide a way to design machines based on the logical 
algebra described a century before by George Boole. Boole, in The Laws of Thought, 
stated that he had succeeded in connecting the process of human reason to the precise 
symbolic power of mathematics. There were only two values in the logical calculation 
system that Boole proposed: 1 and 0. If a value is true, it can be designated by the symbol 
1; and if it is false, the symbol 0 can be used. In this system, a truth table describes the 
various possible logical states of a system. Given an input state, a truth table for a specific 
operation determines the appropriate output state for whenever that operation is applied 
to that input. Another way of saying that would be that given a starting tape, the truth 
table determines what the ending tape will be. 
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In Boolean Algebra, one fundamental logical operation is not, an operation that reverses 
the input, so that the output of a "not" operation is the opposite of the input (remember 
that there are only two symbols or states). Another fundamental operation is and, which 
dictates that the output is true (or "on" or "1") if and only if every one of the several 
inputs are also true ("on," "1"). For example, the listing in the table for "A is true and B is 
true" would be set for "1" when A is "1" and B is "1" and set for "0" in all other cases. 
One could look up the answer in the truth table by finding the input row where both A 
and B are equal to 1:  

NOT AND 
Input Output Input A Input B Output

0 1 0 0 0 
1 0 0 1 0 

  1 0 0 
  1 1 1 

The way that results are determined by matching the proper rows and columns in the 
truth tables, a purely automatic procedure, has a crucial resemblance to the "instruction 
tables" Turing proposed. 

One of the important features of Boolean algebra is the way logical operations can be put 
together to form new ones, and collections of logical operations can be put together to 
perform arithmetic operations. Logical syllogisms can be constructed in terms of 
operations on zeroes and ones, by arranging for the output of one truth table to feed input 
to another truth table. For example, it turns out that by putting a not before every and 
input, and putting another not after its output, it is possible to build an "or" operation. By 
stringing various sequences of only these two basic operations, "not" and "and," it is 
possible to build procedures for adding, subtracting, multiplying, and dividing. Logic and 
arithmetic are thus intimately and simply related. What nobody knew until Shannon told 
us was that the same algebra could describe the behavior of electrically switched circuits. 

Equally important was the way these combinations of logical and arithmetic operations 
could be used to build a "memory" operation. Boolean algebra makes it possible to devise 
a procedure, or build a device, the "state" of which can store specific information -- either 
data or operations. If electrical circuitry can perform logical and mathematical operations, 
and can also store the result of those operations, then electronic digital computers can be 
designed. 

Until Shannon, Boolean algebra had been a curious and almost totally forgotten eddy in 
the mainstream of mathematical thought for almost a century, and was certainly unknown 
to the more practical-minded world of physics and electrical engineering. And that is 
where the genius of Shannon's rediscovery lies, for he was writing a thesis in electrical 
engineering, not mathematical logic, and the objects of his concern were not the 
processes of thought but the behavior of large circuits of electrical switches connected 
together into the kinds of circuits one finds in a telephone system. 
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Shannon was interested in the properties of complicated electrical circuits that 
were built from very simple devices known as relays. A relay is a switch -- a device that 
opens or closes a circuit, permitting or blocking the flow of electricity -- not unlike an 
ordinary light switch, except a relay is not switched on or off by a human hand, but by the 
passage of an electrical current. 

A relay contains an electromagnet. When a small current flows into the relay, the 
electromagnet is activated, closing the circuit controlled by the relay until the input 
current is turned off. In other words, the electromagnet is a small electrical circuit that 
opens and closes another electrical circuit. The circuit of one relay can also control the 
electromagnet of the next relay, and so on, until you have a complete circuit that is made 
of nothing but switches, all controlling one another, depending on how they are set at the 
beginning and how they are altered by new input. 

Each relay and circuit controlled by that relay can be in only one of two states, on or off. 
This two-state characteristic of switched circuits is what links electricity to logic, for each 
relay-controlled circuit can be seen as a truth table, where current flows from the output 
only when specified input conditions are satisfied, and logical operations can be seen as 
physical devices that emit an output pulse if and only if all of their input switches are on, 
or off, or some specified combination, 

In the 1930s, telephone systems were using ever larger and more complicated mazes of 
circuits controlled by these relays. Instead of requiring a human operator to plug the 
proper jack into the right part of a switchboard, relays could close the circuit when the 
specified input conditions were reached. Using relays, all kinds of useful things could be 
done in the way of automatic dialing and routing. But the growing complexity of the 
circuitry was getting to be a problem. It was becoming harder and harder to figure out 
what these big collections of switches were doing. 

Shannon was looking for a mathematical procedure that was best suited for describing the 
behavior of relay circuits. His thesis showed how George Boole's algebra could be used 
to describe the operations of these complex circuits. And he was not unaware of the 
implications if the fact that these circuits could now be designed to represent the 
operations of logic and arithmetic.  

If logic was the formal system that most closely matched the operations of human reason, 
and if Boole's truth tables could embody such a formal system of simulated reasoning, 
then the use of truth tables as the "instruction tables" Turing discussed, and with 
switching devices like relays to represent the "states" of the machines (or the cells of the 
tape), it would be possible to build electrical circuits that could simulate some of 
the logical operations of human thought. 

When the digital computer builders got together to plan the future development of the 
technology, Shannon was in the thick of it -- and he didn't hesitate to remind his 
colleagues that what they were building was the first step toward artificial intelligence. 
But during the ten years immediately following his first breakthrough, Shannon turned to 
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a different aspect of this new field. His new employer was Bell Laboratories, and the 
electrical or electronic communication of messages was his specialty. AT&T, the 
foremost communication company in the world, was the owner of Bell Laboratories, so 
naturally the laboratory was interested in supporting Shannon's probes into the 
fundamental nature of communication. Shannon was encouraged to pursue his interesting 
questions such as: When something is communicated, what is delivered from one party to 
another? When a communication is obscured by noise or encryption, what fails to get 
across? 

This was the communication part of the communication and control problem pointed out 
by Wiener. During the war, working at top-secret defense projects for Bell Laboratories, 
Shannon was involved in cryptological work that brought him into contact with Turing. 
After the war, Shannon concentrated on describing the nature of the entity they were 
communicating and manipulating with all these logical and mathematical circuits. 

At this point, nobody knew, exactly, what information was. Just as he had found the 
perfect tool for describing relay circuits, after the war Shannon wanted to find 
mathematical tools for precisely defining the invisible but powerful commodity that these 
new machines were processing. He succeeded in finding the descriptive tools he sought, 
not in an obscure corner of mathematics, as in the case of Boole's algebra, but in the 
fundamental laws governing energy. 

Like Turing, Shannon put a surprise finishing touch on a project that scientists had 
worked at for centuries. In this case, the quest was not to understand the nature of symbol 
systems, but a more pragmatic concern with the nature of energy and its relation to 
information. Although Shannon was specifically looking at the laws underlying the 
communication of messages in man-made systems, and generally interested in the 
difference between messages and noise, he ended up dealing with the laws governing the 
flow of energy in the universe. In particular, he discovered the secrets of decoding 
telephone switching networks, hidden in the work of previous scientists who 
had discovered certain laws governing heat energy in steam engines. 

Back when the Industrial Revolution was getting started, and steam-powered engines 
were the rage, it became a practical necessity to find out something about the efficiency 
of these energy-converting devices. In the process, it was discovered that something 
fundamental to the nature of heat prevents any machine from ever becoming perfectly 
efficient. The study of the movement of heat in steam engines became the science of 
thermodynamics, given precise expression in 1850 by Rudolf Clausius, in his two laws of 
thermodynamics. 

The first law of thermodynamics stated that the energy in a closed system is constant. 
That means that energy cannot be created or destroyed in such systems, but can only be 
transformed. The second law states, in effect, that part of that unchangeable reservoir of 
energy becomes a little less stable every time a transformation takes place. When you 
pour hot water into cold water, you can't separate it back into a hot and a cold glass of 
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water again (without using a lot more energy). Entropy, meaning "transformation," was 
the word Claudius later proposed for that lost quantity of usable energy. 

Entropy 
  
Entropy as defined by Clausius is not just something that happens to steam engines or to 
glasses of water. It is a universal tendency that is as true for the energy transactions of the 
stars in the sky as it is for the tea kettle on the stove. Because the universe is presumed to 
be a closed system, and since Clausius demonstrated that the entropy of such systems 
tends to increase with the passage of time, the gloomy prediction of a distant but 
inevitable "heat death of the universe" was a disturbing implication of the second law of 
thermodynamics. "Heat death" was what they called it because heat is the most entropic 
form of energy. 

But the gloomy news about the end of time wasn't the only implication of the entropy 
concept. When it was discovered that heat is a measure of the average motion of a 
population of molecules, the notion of entropy became linked to the measure of order or 
disorder in a system. If this linkage of such disparate ideas as "heat," "average motion," 
and "order of a system" sounds confusing, you have a good idea of how nineteenth-
century physicists felt. For a long time, they thought that heat was some kind of invisible 
fluid that was transferred from one object to another. When it was discovered that heat is 
way of characterizing a substance in which the molecules were, on the average, moving 
around faster than the molecules in a "cold" substance, a new way of looking at systems 
consisting of large numbers of parts (molecules, in this case) came into being. And this 
new way of looking at the way the parts of systems are arranged led, eventually, to the 
entropy-information connection. 

Because "average motion" of molecules is a statistical measure, saying something about 
the amount of heat in a system says something about they way the parts of that system are 
arranged. Think about a container of gas. The system in this case includes everything 
inside the container and everything outside the container. The gas is considered to be hot 
if the average energy of the molecules inside the container is higher than the average 
energy of the molecules outside the container. Some of the molecules inside the container 
might, in fact, be less energetic (cooler) than some of the molecules outside the container 
-- but on the average, the population of molecules inside are more energetic than the 
population of the molecules outside.  

There is a certain order to this arrangement -- energetic molecules are more likely to be 
found inside the container, less energetic molecules are more likely to be found outside. 
If there were no container, the highly energetic molecules and the less energetic 
molecules would mix, and there would be no sharp differentiation between the hot parts 
and the cold parts of the system. 

A system with high entropy has a low degree of order. A system with low entropy has a 
higher degree of order. In a steam engine, you have the heat in one place (the boiler) and 
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it is dissipated into the cold part (the condenser). This is a very orderly (low entropy) 
system in the sense that anyone can reliably predict in which part of the engine the hot 
molecules are likely to be found. But when all the parts of a steam engine are the same 
temperature, and the hot and cold molecules are equally likely to be found in the boiler 
and the condenser (and hence the entropy is high), the engine can't do any work. 

Another physicist, Boltzmann, showed that entropy is a function of the way the parts of 
the system are arranged, compared with the number of ways the system can be arranged. 
For the moment, let's forget about molecules and think about decks of cards. There is a 
large number of ways that fifty-two cards can be arranged. When they come from the 
factory, every deck of cards is arranged in a definite order, by suit and by value. With a 
little bit of thought, anybody can predict which card is the fifth from the top of the deck. 
The predictability and orderliness disappears when the deck is shuffled. 

An unshuffled deck of cards has a lower degree of entropy because energy went into 
arranging it in an unlikely manner. Less energy is then required to put the deck into a 
more probable, less orderly, less predictable, more highly entropic state: According to the 
second law of thermodynamics, all decks of cards in the universe will eventually be 
shuffled, just as all molecules will have an equal amount of energy. 

James Clerk Maxwell, yet another nineteenth-century scientist, proposed a paradox 
concerning this elusive quality called entropy, which seems to relate such intuitively 
dissimilar measures as energy, information, order, and predictability. The paradox 
became infamous among physicists under the name "Maxwell's demon." Consider a 
container split by a barrier with an opening small enough to pass only one molecule at a 
time from one side to another. On one side is a volume of hot gas, in which the average 
energy of the molecules is higher than the average energy of the molecules in the cold 
side of the container. According to the second law, the hotter, more active molecules 
should eventually migrate to the other side of the container, losing energy in collisions 
with slower moving molecules, until both sides reach the same temperature. 

What would happen, Maxwell asked, if you could place a tiny imp at the molecular gate, 
a demon who didn't contribute energy to the system, but who could open and close the 
gate between the two sides of the container? Now what if the imp decides to let only the 
occasional slow-moving, colder molecule pass from the hot to the cold side when it 
randomly approaches the gate? Taken far enough, this policy could mean that the hot side 
would get hotter and the cold side would get colder, and entropy would decrease instead 
of increase without any energy being added to the system! 

In 1922, a Hungarian student of physics by the name of Leo Szilard (later to be von 
Neumann's colleague in the Manhattan project), then in Berlin, finally solved the paradox 
of Maxwell's demon by demonstrating that the demon does indeed need to contribute 
energy to the system, but like a good magician the demon does not expend that energy in 
its most visible activity -- moving the gate -- but in what it knows about the system. The 
demon is a part of the system, and it has to do some work in order to differentiate the hot 
and cold molecules at the proper time to open the gate. Simply by obtaining the 
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information about molecules that it needs to know to operate the gate, the demon adds 
more entropy to the system than it subtracts. 

Although Szilard showed implicitly that information and entropy were intimately 
connected, the explicit details of the relationship between these two qualities, expressed 
in the form of equations, and the generalization of that relationship to such diverse 
phenomena as electrical circuits and genetic codes, were not yet known. It was Claude 
Shannon who made information into a technical term, and that technical term 
has since changed the popular meaning of the word. 

Another puzzle related to entropy, and the cryptic partial solution to it proposed in 1945 
by another physicist, was a second clue linking it to information. Quite simply: If the 
universe tends toward entropy, how does life, a highly ordered, energy-consuming, 
antientropic phenomenon, continue to exist? In a universe flowing toward disorder, how 
on earth did one-celled creatures complicate themselves enough to build a human nervous 
system? 

Quantum physicist Erwin Schrödinger pointed out that life defies the cosmic energy tide 
courtesy of our sun. As long as the sun keeps shining, the earth is not a closed system. 
Photochemical reactions on earth capture a tiny fraction of the sun's radiant energy and 
use it to complicate things. In his famous "What Is Life?" lecture in 1945, Schrödinger 
remarked that "living organisms eat negative energy." The relationship between negative 
energy and information, like Boole's obscure algebra, was just waiting to be found when 
Shannon started to wonder how messages manage to maintain their order in a medium 
where disorder is often high. 

The matter of devising a simple code and reliably transmitting it from place to place was 
very important to British cryptographers, and Shannon had done his own work in 
cryptography. The prediction of the behavior of electrical circuits used to transmit 
messages made of these codes was another of Shannon's interests. When he put it all 
together with a formal examination of how messages can be distinguished from 
noise, and found that the very equation he sought was a variation of the 
defining equation for entropy, Claude Shannon happened upon the fact that the 
universe plays twenty questions with itself. 

The formal foundations of information theory were laid down in two papers in 1948, and 
at their core were fundamental equations that had a definite relationship to Boltzmann's 
equations relating entropy to the degree of order in a system. But the general idea behind 
the equations was simple enough for Shannon to suggest a game as a way of 
understanding the quantitative dimension of coding and communication. 

The game is a mundane version of "twenty questions." In the case of the English 
alphabet, it turns out to be a game of "five questions." Player number one thinks of a 
letter of the alphabet. Player number two tries to guess the letter, using only questions 
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like "is it earlier than L in the alphabetical sequence?" It is a strictly yes-or-no game, in 
which only one of two possible answers applies at every move. 

Shannon pointed out that it takes a maximum of five questions to locate any of the thirty 
symbols necessary for making English sentences. If the sequence of yes or no decisions 
needed to specify the correct letter is converted into a sequence of zeroes and ones or a 
sequence of on and off impulses, or any other kind of binary symbol, you have a code for 
communicating the alphabet -- which is, in fact, the basis of the code used for 
transmitting teletypewriter messages. 

This game can be visualized as a tree structure, where each letter is the only leaf on a 
branch that branches off a branch that eventually branches off a trunk. Or it can be seen 
as a garden of forking paths, where each path is a sequence of one-way-or-the-other 
decisions, and the location of any endpoint can be coded by specifying the sequence of 
decisions along the path. It is also a good way to locate an address in a computer's 
memory or to encode an instruction to be placed in that location. This basic element in 
this game-tree-code, the binary decision, was the basis for Shannon's basic 
measure of information -- the bit. Whenever computer enthusiasts speak of a "bit," 
they are referring to one of those decisions in the garden of forking paths. 

Note that each decision, each bit, reduces the uncertainty of the situation, whether you are 
designating turns in a pathway or numbers in a guessing game or the energy state of 
molecules in a container. But what if you were to use a different strategy to guess the 
right answer? What if you just named each of the possible letters, one at a time, in a 
sequence or randomly? This relates to probability theory, the mathematical principles 
governing the random selection of small samples from large populations. 

The relative probability of an event occurring, whether it is the probability of a molecule 
being hot or the probability of a symbol being a specific letter of the alphabet, depends 
upon the total number of cases in the population and the frequency of the specified event. 
If there are only two cases in the population, a single yes or no decision reduces the 
uncertainty to zero. In a group of four, it takes two decisions to be sure. In a group of 
trillions, you have to guess a little. When you are making predictions about such large 
populations, averages based on the overall behavior of the population have to replace 
precise case-by-case calculations based on the behavior of individual members of the 
population. 

One of the properties of a statistical average is that it is quite possible for a population to 
be characterized by an average value that is not held by any particular element of the 
population. If you have a population consisting of three people, and you know that one is 
three feet tall, one five feet tall, and one is six feet tall, you have quite precise information 
about that population, which would enable you to pick out individuals by height. But if 
all you know is that the average height of the population is four feet, eight inches, you 
wouldn't know anything useful about any one of the three particular individuals. 
Whenever a system is represented by an average, some information is necessarily lost, 
just as two energy states lose a little energy when they are brought into equilibrium. 
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Whenever you move from an average measure to a precise measure, you have reduced 
uncertainty about that population. And that reduction in uncertainty is where the 
statistical properties that govern the motions of populations of molecules are connected to 
the statistical properties of a binary code, where entropy meets information. To see how 
uncertainty can relate to a binary code, think about a game of twenty questions. If the 
object of the game is to guess a number between one and one hundred, and player one 
asks if the number is larger than fifty, an answer from player two (no matter if it is yes or 
no) reduces player one's uncertainty by one half. Before asking the question, player one 
had one hundred possible choices. After asking that single yes or no question, player one 
either knows that the number is greater than fifty or that it is less than fifty. 

One of the things Shannon demonstrated in 1948 was that the entropy of a system is 
represented by the logarithm of possible combinations of states in that system -- which is 
the same as the number of yes-or-no questions that have to be asked to locate one 
individual case. Entropy, as it was redefined by Shannon, is the same as the number of 
binary decisions necessary to identify a specific sequence of symbols. Taken together, 
those binary decisions, like the answers in the game, constitute a definite amount of 
information about the system. 

When it comes to arranging molecules, living organisms seem to have a great deal of 
information about how to take elementary substances and turn them into complex 
compounds. Somehow, living cells manage to take the hodgepodge of molecules found in 
their environment and arrange them into the substances necessary for sustaining life of 
the organism. From a disorderly environment, living creatures somehow create their own 
internal order. This remarkable property now sounds suspiciously like Maxwell's demon. 
The answer, as we now know, is to be found in the way the DNA molecule arranges its 
elements -- doing so in such a way that the processes necessary for metabolism and 
reproduction are encoded. The "negative entropy" that Schrodinger says is the 
nourishment of all life is information, and Shannon showed exactly how such 
coding can be done -- in molecules, messages, or switching networks. 

It has to be said, by the way, that Shannon was reluctant to use the word "entropy" to 
represent this measure implied by his equations, but von Neumann told him to go ahead 
and use it anyway, because "since nobody knows what entropy is, in a debate you will be 
sure to have an advantage." 

Remember that entropy is where Shannon ended up, not where he started. Hot molecules 
and DNA were far from his original intention. He got to the guessing game and the 
notion of bits and the relationship between uncertainty and entropy because he looked 
closely at what a message really is. How does a signal that conveys information differ 
from everything else that happens? How much energy must be put into broadcasting a 
voice over the radio to be sure that it will be understood despite atmospheric interference 
or static from other sources? These were the questions that Shannon set out to answer. 

Shannon's 1948 publication ("A Mathematical Theory of Information") presented a set of 
theorems that were directly related to the economical and efficient transmission of 
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messages on noisy media, and indirectly but still fundamentally related to the connection 
between energy and information. Shannon's work was a direct answer to an engineering 
problem that had not decreased in importance since the war: how can messages be coded 
so that they will be reliably transmitted and received over a medium where a certain 
amount of noise is going to garble reception? 

Shannon showed that any message can be transmitted with as high a reliability as one 
wishes, by devising the right code. The limit imposed by nature is concerned only with 
the limit of the communication channel. As long as there is a channel, no matter 
how noisy, a code can be devised to transmit any message with any degree of 
certainty. Entropy is a measure of the relationship between the complexity of the code 
and the degree of certainty. These theorems meant a lot to radio and telephone engineers, 
and made color television as well as broadcasts from the moon possible, but Shannon 
stated them in a way that demonstrated their universality beyond the domain of electrical 
engineering. 

The key to life itself, in fact, turned out to be a matter of information, as the world 
learned five years later, when that young physicist-turned-biologist who had attended 
Schrödinger's lecture, Francis Crick, teamed up with James Watson to decipher the 
molecular genetic coding of the DNA helix. Scientifically, and on the level of 
consciousness, people seemed to jump rather too quickly to make the transition from an 
energy-based metaphor of the universe to an information model. The rush to generalize 
information theory to all sorts of scientific areas, some of them of dubious scientific 
merit, led Shannon to decry this "bandwagon effect," remarking that information theory 
"has perhaps ballooned to an importance beyond its actual accomplishments. . . . Seldom 
do more than a few of nature's secrets give way at one time."  

Despite Shannon's disclaimer, information- and communication-based models 
have proved to be enormously useful in the sciences because so many 
important phenomena can be seen in terms of messages. Human bodies can be 
better understood as complex communication networks than as clockwork-like 
machines. The error-correcting codes guaranteed by Shannon's "noisy channel" theorem 
are just as useful for genetic control of protein synthesis as for protocols in a computer 
network. Shannon's MIT colleague, Noam Chomsky, has used a similar tool in his 
exploration of the "deep structure" of language.  

With all these higher-level abstractions, Shannon did not abandon all thought of the 
potential of digital computers. Where Wiener saw the computer as a self controlling 
mechanism and von Neumann saw a device with logical as well as mathematical 
properties, Shannon tended to think of ENIAC and UNIVAC as information processing 
machines. 

Like Turing and other mathematicians since then, Shannon was fascinated with the idea 
that something as sophisticated and essentially human as chess playing could, in theory, 
be emulated by some future version of these devices. In February, 1950, Shannon 

 90

http://www.worldmedia.com/archive/index.htm


published "A Chess Playing Machine" in The Scientific American. Half a decade before 
anyone dared to name the endeavor "artificial intelligence research," Shannon pointed 
out what a very few people then recognized -- that electronic digital computers 
could "be adapted to work symbolically with elements representing words, 
propositions or other conceptual entities." 

A chess game is a Turing machine. And a universal Turing machine, given the properly 
coded rules, ought to be able to play chess. Shannon pointed out that the way most people 
would design a machine to play chess -- to mechanically examine each alternative move 
and evaluate it, the so-called brute-force method -- would be virtually impossible, even 
on the fastest imaginable computer. He estimated that a typical chess game has 
about 10^120 possible moves, so "A machine calculating one variation each 
millionth of a second would require over 10^95 years to decide on its first 
move!" 

This "combinatorial explosion" -- the rapid and overwhelming buildup of alternatives in 
any system in which each level leads to two or more deeper levels -- was another one of 
those secrets of nature that Claude Shannon was in the habit of turning up. The explosive 
expansion of the number of alternative decisions is a barrier that confronts any attempt to 
exhaustively examine a branching structure, and continues to confront programmers who 
seek to emulate cognitive functions by performing searches through problem spaces. 

Turing and Shannon were altogether serious in their interest in chess, because of the 
complexity of the game in relation to the simplicity of its rules, and because they 
suspected that the shortcut needed to perform this kind of time-consuming search-
procedure would also be a clue to the way brains solved all sorts of problems. 

A chess playing program was also interesting because it was a relative of the kind of 
informational entities known as automata that von Neumann and Turing had been toying 
with. Once again, like Turing's universal machines, these automata were theoretical 
devices that did not exist at that time, but were possible to build, in principle. For years, 
Shannon experimented with almost absurdly simple homemade versions -- mechanical 
mice that were able to navigate simple mazes. 

In 1953, Shannon wrote a paper, "Computers and Automata," in which he posed 
questions that continue to be of acute interest to psychologists as well as 
computerists. Can a chess playing computer learn form its mistakes? Is it 
possible to build a machine that can diagnose itself and repair its own malfunctions? Can 
computer programs ("virtual machines") be created that enable computers to write their 
own software to the specifications of the human user? Can the way human brains process 
information (known in some hard-core AI circles as "wetware") ever be effectively 
simulated by hardware and software? 

In the summer of 1953, while he was working on these ideas, Shannon hired two 
temporary laboratory assistants named Minsky and McCarthy, another pair of prodigies 
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who knew some fancy mathematics and thought they could do big things with computers. 
Here were the first members of the first native generation of computer scientists, the ones 
who already knew about electronics and cybernetics and information theory and brain 
physiology and were looking for something ambitious to do with it all. They ended up in 
the right place when they dug up Shannon in the midst of Bell Laboratories. 

Shannon had long spoken of his suspicion that the future evolution of more sophisticated 
computer hardware would make it possible to construct software capable of simulating 
some parts of human cognition. But these younger guys were blatant believers. They 
were out to build an intelligence, and didn't mind saying so. McCarthy and Shannon 
edited a book on automata, and three years later, in 1956, Shannon joined Minsky, 
McCarthy, and an IBM computer researcher, Nathaniel Rochester, in sponsoring a 
summer conference at Dartmouth University, to set goals for this new field. The new 
field they gathered to discuss was a branch of science that did not yet have a name, but 
which was founded on the assumption that the existence of computers now made it 
possible to consider creating an artificial version of the most complex system known to 
science -- human intelligence. 

It was around 1956 that McCarthy started using the words "artificial 
intelligence." The Dartmouth Conference was the constitutional convention of the 
artificial intelligence faction, and it was also the place where two virtually unknown Rand 
programmers named Alan Newell and Herbert Simon breezed in from Santa Monica with 
a piece of software they wrote with Cliff Shaw. To everyone's astonishment, it was a 
program -- the famous Logic Theorist that could prove theorems from Russell and 
Whitehead's Principia Mathematica -- that actually did what the rest of them thought 
they were there to plan to do. 

Hopes were high for the AI rebels in 1956 and 1957. Major efforts were under way and 
ambitious goals were in sight. A very few unorthodox thinkers staked their careers on the 
conviction that this branch of computer science, formerly a branch of science fiction, 
would soon be seen as more important than anything else humankind had ever attempted: 
Minsky remained at MIT and concentrated on the problem of how knowledge is 
represented in minds and machines; Newell and Simon (now a Nobel Laureate) began 
their long association with one another and Carnegie-Mellon University, where they 
concentrated on the information processing approach to psychology and AI design; 
McCarthy created LISP, a language specifically for conducting AI research, and left MIT 
to preside over Stanford's AI laboratory. 

Claude Shannon went back to his chess playing machines and continued building the 
mechanical mice that could learn how to run simple mazes. In 1956, Robert Fano, the 
electrical engineering student who witnessed Norbert Wiener's "Entropy is information!" 
exclamations back in the summer of 1947, brought Shannon to MIT from Bell 
Laboratories. 

His professional standing was so far beyond reproach that his occasional unicycle 
excursions through MIT halls, and his reluctance to lecture or publish frequently, hardly 
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dented Shannon's reputation. In fact, his reputation had reached such mythological 
proportions that he had to start writing disclaimers. Fame wasn't something he wanted or 
needed. By 1960, he didn't even come to the office. 

In the 1960s Shannon became interested in the stock market as a real-world experiment in 
probability theory, and rumor has it that he didn't do too badly. He began to seriously 
extend his analysis of communications and messages to the English language. Nobody 
but Shannon knows the full extent of his discoveries. Robert Fano (who went on to 
become the administrative director of Project MAC) recently said this of Shannon:  

There is a significant body of work he did in the 1950s that has never been printed. He doesn't want 
someone else to write his papers for him, and he won't write them himself. It's as simple and as complicated 
as that. He doesn't like to teach. He doesn't like giving lectures. His lectures are jewels, all of them. They 
sound spontaneous, but in reality they are very, very carefully prepared.  

In the early sixties, one of the extremely few students Shannon personally took on, 
another MIT bred prodigy by the name of Ivan Sutherland, made quite a splash on the 
computer science scene. By the mid-1970s, Shannon, now in his sixties, had become a 
literal gray eminence. By the early 1980s, he still hadn't stopped thinking about things, 
and considering his track record, it isn't too farfetched to speculate that his most 
significant discoveries have yet to be published. 

In the late 1950s, around the time Shannon began to retreat from public life, the artificial 
intelligence pioneers began to stake out ambitious territories for their laboratories -- goals 
like automatic theorem-proving programs, or knowledge-representation languages, or 
robotics -- and it began to be possible to dream of computers that could be used as 
laboratories for running experiments in new kinds of AI programs. Then fate put a little 
pressure on the story once again. 

This time, it was not a war, but an implicit threat of war. The space race and the computer 
revolution were ready to be launched by 1957, and the information processing devices 
pioneered by the World War II creators of computing were ready to leave the laboratories 
and begin to infiltrate the real world. As usual, things started popping when an MIT 
professor stumbled onto something big.  
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Chapter Seven: 
Machines to Think With 
In the spring of 1957, while he continued to carry out the duties of an MIT researcher and 
professor, Dr. J.C.R. Licklider noted every task he did during the day and kept track of 
each one. He didn't know it then, but that unofficial experiment prepared the way for the 
invention of interactive computing -- the technology that bridged yesteryear's number 
crunchers and tomorrow's mind amplifiers. 

Licklider's research specialty was psychoacoustics. During World War II, he had 
explored ways electronics could be applied to understanding human communications. 
Specifically, he wanted to learn how the human ear and brain are able to convert 
atmospheric vibrations into the perception of distinct sounds. After the war, MIT was the 
center of a number of different attempts to use electronic mechanisms to model parts of 
the nervous system -- a movement in biology and psychology as well as engineering that 
was inspired by the work of Wiener and others in the interdisciplinary field of 
cybernetics. Licklider was one of the researchers attracted to this paradigm, not strictly 
out of the desire to build a new kind of machine, but out of the need for new ways to 
simulate the activities of the human brain. This need, inspired by cybernetics, was 
extended simultaneously into engineering and physiology. Computers were the last thing 
on Licklider's mind -- until his theoretical models of human perceptual mechanisms got 
out of hand. 

By the late 1950s, Licklider was trying to build mathematical and electronic models of 
the mechanisms the brain uses to process the perception of sounds. Part of the excitement 
generated during the early days of cybernetic research came from the prospect of 
studying mechanical models of living organisms to help create theoretical models of the 
way those organisms function, and vice-versa. Licklider thought he might be onto a good 
idea with an intricate neural model of pitch perception, but quickly learned, to his 
dismay, that his mathematical model had grown too complex to work out by hand in a 
reasonable length of time, even using the analog computers that were then available. And 
until the mathematical model could be worked out, there was no hope of building a 
mechanical model of pitch perception. 

The idea of building a mathematical or electronic model was meant to simplify 
the task of understanding the complexities of the brain, like plotting a graph to 
see the key relationships in a collection of data. But the models themselves now 
began to grow unmanageably complex. Like Mauchly with his meteorological 
data, twenty years before, Licklider found he was spending more and more of 
his time dealing with the calculations he needed to do to create his models, 
which left less time for what he considered to be his primary occupation -- 
thinking about what all that information meant. Beneath those numbers and graphs 
was his real objective -- the theoretical underpinnings of human communication. 
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Although he was primarily interested in how the brain processes auditory information, he 
felt that he was spending most of his time putting things into files or taking them out, as 
well as managing the increasing amounts of numerical data he needed to construct the 
models he had in mind. Out of curiosity, he wondered if any of his colleagues had 
looked into the way scientific researchers spent their time. 

When he couldn't find any time-and-motion studies of information-shuffling researchers 
like himself, Licklider decided to keep track of his own activities as he went through his 
normal working day. "Although I was aware of the inadequacy of the sampling," he later 
wrote, with the modesty that he is known for among his colleagues, "I served as my own 
subject."  

It didn't take long to discover that his main occupation, even when he wasn't keeping 
records of his behavior, was centered on keeping records of everything else. Astonishing 
as it must have seemed to any self-respecting scientist like himself, his observations 
revealed that about 85% of his "thinking" time was actually spent "getting into 
a position to think, to make a decision, to learn something I needed to know. 
Much more time went into finding or obtaining information than into digesting 
it."  

Like almost any other experimentalist, he couldn't begin to make sense of psychoacoustic 
data until he could see it translated into the form of graphs. Plotting the graphs took days. 
Even teaching his assistants how to plot graphs took hours. As soon as the graphs were 
finished and he was able to look at them, the relationships he was seeking became 
immediately obvious. It was grossly inefficient and tedious to spend days plotting graphs 
that took seconds to interpret. 

While he had always thought of interpretation and evaluation as his most important 
function as a scientist, Licklider's analysis of his research behavior showed that 
most of his tasks were clerical or mechanical: "searching, calculating, plotting, 
determining the logical or dynamic consequences of a set of assumptions or hypotheses, 
preparing the way for a decision or an insight. Moreover, my choices of what to attempt 
or not to attempt were determined to an embarrassingly great extent by considerations of 
clerical feasibility, not intellectual capacity." 

The conclusion he reached, while it doesn't sound so radical today, was shocking when it 
occurred to him in 1957. A less modest man might not have been able to bring himself to 
face the conclusion: Licklider decided, on the basis of his informal self-study, that 
most of the tasks that take up the time of any technical thinker would be 
performed more effectively by machines. 

This was a thought that was occurring to one or two other people at about the same time -
- notably Doug Engelbart, out in California. But because of his association with certain 
military-sponsored research projects at MIT in the 1950s, there was an important 
difference between Licklider and the others who dreamed of converting computers into 
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some kind of mind-amplifying tool. This crucial difference was the fact that Licklider 
had reached his conclusion not long before circumstances put him at the center 
of power in the one institution capable of sponsoring the creation of an entire 
new technology. 

At that point in the history of computer technology -- a field in which Licklider had been 
only tangentially involved until then -- no respectable computer scientist would dare 
suggest that computer technology ought to be totally revamped so that scientists could 
use these machines to help keep track of data and build theoretical models of the 
phenomena they were studying. To those who were wild enough to make such a 
suggestion -- especially the young MIT computer mavericks who were founding the field 
of artificial intelligence around that time -- the idea might have seemed too obvious and 
too trivial to pursue. In any case, the AI founders were more interested in 
replacing the scientist than the scientist's file clerk. Licklider, however, was neither 
a respectable computer scientist nor a computer maverick, but a psychologist with some 
expertise in electronics. And like any other competent investigator, he followed where the 
data led him. 

In the late 1950s, Licklider had no real expertise in digital computer design, and although 
he knew that only a computer could give him what he needed, he didn't think that the 
kinds of computers then available, and the kinds of things they did, were suitable for 
building a sort of "electronic file clerk." He knew that data processing wasn't what 
he wanted. 

If you were the Census Office, overflowing with information on a couple of hundred 
million people, and for some crazy reason you wanted to find out how many divorced 
people over sixty lived on farms in the sun belt, you could use a UNIVAC to perform the 
sorting and calculating needed to tell you what you wanted to know. That was data 
processing. If you had a payroll for 10,000 employees to calculate every other Friday and 
needed to transform time sheets into entries in a ledger and print up all the checks -- data 
processing power was just what you could buy from your local IBM representative. 

Data processing involved certain constraints on what could be done with computers, and 
constraints on how one went about doing these things.. Payrolls, mathematical 
calculations, and census data were the proper kinds of tasks An arcane process known as 
"batch processing" was the proper way to do these things. If you had a problem to solve, 
you had to encode your program and the data that the program was meant to operate 
upon, usually in one of the two major computer languages -- FORTRAN and COBOL. 
The encoded program and data were converted into boxes full of what had become 
universally known as "IBM cards" -- the kind you weren't supposed to spindle, fold, or 
mutilate. The cards were delivered to a systems administrator at the campus "computer 
center" or the corporate "data processing center." This specialist was the only one 
allowed to submit the program to the machine, and the person from whom you would 
retrieve your printout hours or days later. 
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But if you wanted to plot ten thousand points on a line, or turn a list of numbers into a 
graphic model of airflow patterns over an airplane wing, you wouldn't want data 
processing or batch processing. You would want modelling -- an exotic new use for 
computers that the aircraft designers were pioneering. All Licklider sought, at first, was a 
mechanical servant to take care of the clerical and calculating work that accompanied 
model building. Not long after, however, he began to wonder if computers could help 
formulate models as well as calculate them. 

When he attained tenure, later that same year, Licklider decided to join a consulting firm 
near Cambridge named Bolt, Beranek & Newman. They offered him an opportunity to 
pursue his psychoacoustic research -- and a chance to learn about digital computers. 

"BB&N had the first machine that Digital Equipment Company made, the PDP-1," 
Licklider recalled in 1983. The quarter-million-dollar machine was the first of a 
continuing line of what came to be called, in the style of the midsixties, "minicomputers." 
Instead of costing millions of dollars and occupying most of a room, these new, smaller, 
powerful computers only cost hundreds of thousands of dollars, and took up about the 
same amount of space as a couple of refrigerators. But they still required experts to 
operate them. Licklider therefore hired a research assistant, a college dropout who was 
knowledgeable about computers, an exceptionally capable young fellow by the name of 
Ed Fredkin, who was later to become a force in artificial intelligence research -- the first 
of many exceptionally capable young fellows who would be drawn to Licklider's crusade 
to build a new kind of computer and create a new style of computing. 

Fredkin and others at BB&N had the PDP-1 set up so that Licklider could directly 
interact with it. Instead of programming via boxes of punched cards over a period of 
days, it became possible to feed the programs and data to the machine via a high-speed 
paper tape; it was also possible to change the paper tape input while the program was 
running. The operator could interact with the machine for the first time. (The possibility 
of this kind of interaction was duly noted by a few other people who turned out to be 
influential figures in computer history. A couple of other young computerists at MIT, 
John McCarthy and Marvin Minsky, were also using a PDP-1 in ways computers weren't 
usually used.) 

The PDP-1 was primitive in comparison with today's computers, but it was a 
breakthrough in 1960. Here was the model builder that Licklider had first 
envisioned. This fast, inexpensive, interactive computer was beginning to 
resemble the kind of device he dreamed about back in his psychoacoustic lab at 
MIT , when he first realized how his ability to theorize always seemed constrained by the 
effort it took to draw graphs from data. 

"I guess you could say I had a kind of religious conversion," Licklider admits, 
remembering how it felt, a quarter of a century ago, to get his hands on his first 
interactive computer. As he had suspected, it was indeed possible to use computers to 
help build models from experimental data and to make sense of any complicated 
collection of information. 
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Then he learned that although the computer was the right kind of machine he needed to 
build his models, even the PDP-1 was hopelessly crude for the phenomena he wanted to 
study. Nature was far too complicated for 1960-style computers. He needed more 
memory components and faster processing of large amounts of calculations. As he began 
to think about the respective strengths and deficiencies of computers and brains, it 
occurred to him that what he was seeking was an alternative to the human-
computer relationship as it then existed. 

Since the summer of 1956, when they met at Dartmouth to define the field, several young 
computer and communication scientists Licklider knew from MIT had been talking about 
a vaguely distant future when machines would surpass human intelligence. Licklider was 
more concerned with the shorter-term potential of computer-human relations. Even at the 
beginning, he realized that technical thinkers of every kind were starting to run up against 
the problems he had started noticing in 1957. Let the AI fellows worry about ways 
to build chess-playing or language translating machines. What he and a lot of 
other people needed was an intelligent assistant. 

Although he was convinced by his "religious conversion to interactive computing" -- a 
phrase that has been used over and over again by those who participated in the events that 
followed -- Licklider still knew too little about the economics of computer technology to 
see how it might become possible to actually construct an intelligent laboratory assistant. 
Although he didn't know how or when computers would become powerful enough and 
cheap enough to serve as "thinking tools," he began to realize that the general-purpose 
computer, if it was set up in such a way that humans could interact with it directly, could 
evolve into something entirely different from the data processors and number crunchers 
of the 1950s. Although the possibility of creating a personal tool still seemed 
economically infeasible, the idea of modernizing a community-based resource, like a 
library, began to appeal to him. He got fired up about the idea Vannevar Bush had 
mentioned in 1945, the concept of a new kind of library to fit the world's new knowledge 
system. 

"The PDP-1 opened me up to ideas about how people and machines like this might 
operate in the future," Licklider recalled in 1983, "but I never dreamed at first that it 
would ever become economically feasible to give everybody their own computer." It did 
occur to him that these new computers were excellent candidates for the super-
mechanized libraries that Vannevar Bush had prophesied. In 1959, he wrote a 
book entitled Libraries of the Future, describing how a computer-based system 
might create a new kind of "thinking center." 

The computerized library as he first described it in his book did not involve anything as 
extravagant as giving an entire computer to every person who used it. Instead he 
described a setup, the technical details of which he left to the future, by which different 
humans could use remote extensions of a central computer, all at the same time. 
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After he wrote the book, during the exhilarating acceleration of research that began in the 
post-Sputnik era, Licklider discovered what he and others who were close to 
developments in electronics came to call "the rule of two": Continuing miniaturization of 
its most important components means that the cost effectiveness of computer hardware 
doubles every two years. It was true in 1950 and it held true in 1960, and beyond even the 
wildest imaginings of the transistor revolutionaries, it was still true in 1980. A small 
library of books and articles have been written about the ways this phenomenon has 
fueled the electronics revolution of the past three decades. It looks like it will continue to 
operate until at least 1990, when personally affordable computers will be millions of 
times more powerful than ENIAC. 

Licklider then started to wonder about the possibility of devising something far more 
revolutionary that even a computerized library. When it began to dawn on him that this 
relentlessly exponential rate of growth would make computers over a hundred times as 
powerful as the PDP-1 at one tenth the cost within fifteen years, Licklider began to think 
about a system that included both the electronic powers of the computer and the cortical 
powers of the human operator. The crude interaction between the operator and the PDP-1 
might be just the beginning of a powerful new kind of human-computer partnership. 

A new kind of computer would have to evolve before this higher level of human-machine 
interaction could be possible. The way the machine was operated by people would have 
to change, and the machine itself would have to become much faster and more powerful. 
Although he was still a novice in digital computer design, Licklider was familiar with 
vacuum tube circuitry and enough of an expert in the hybrid discipline of "human factors 
engineering" to recognize that the mechanical assistant he wanted would need capabilities 
that would be possible only with the ultrafast computers he foresaw in the near future. 

When he began applying the methods he had been using in human factors research to the 
informational and communication activities of technical thinkers like himself, Licklider 
found himself drawn to the idea of a kind of computation that was more 
dynamic, more of a dialogue , more of an aid in formulating as well as plotting 
models. Licklider set forth in 1960 the specifications for a new species of computer and a 
new mode of thinking to be used when operating them, a specification that is still not 
fully realized, a quarter of a century later:  

The information processing equipment, for its part, will convert hypotheses into testable models and then 
test the models against data (which the human operator may designate roughly and identify as relevant 
when the computer presents them for his approval). The equipment will answer questions. It will simulate 
the mechanisms and models, carry out procedures, and display the results to the operator. It will transform 
data, plot graphs, ("cutting the cake" in whatever way the human operator specifies, or in several alternative 
ways if the human operator is not sure what he wants). The equipment will interpolate, extrapolate, and 
transform. It will convert static equations or logical statements into dynamic models so the human operator 
can examine their behavior. In general, it will carry out the routinizable, clerical operations that fill the 
intervals between decisions. 

In addition, the computer will serve as a statistical-inference, decision-theory, or game-theory machine to 
make elementary evaluations of suggested courses of action whenever there is enough basis to support a 

 99



formal statistical analysis. Finally, it will do as much diagnosis, pattern matching, and relevance 
recognizing as it profitably can, but it will accept a clearly secondary status in those areas.  

The first research in the 1950s into the use of computing equipment for assisting human 
control of complex systems was a direct result of the need for a new kind of air defense 
command-and-control system. Licklider, as a human factors expert, had been involved in 
planning these early air defense communication systems. Like the few others who saw 
this point as early as he did, he realized that the management of complexity was 
the main problem to be solved during the rest of the twentieth century and 
beyond. Machines would have to help us keep track of the complications of 
keeping global civilization alive and growing. And humans were going to need 
new ways of attacking the big problems that would result form our continued 
existence and growth. 

Assuming that survival and a tolerable quality of existence are the most fundamental 
needs for all sane, intelligent organisms, whether they are of the biological or 
technological variety, Licklider wondered if the best arrangement for both the human and 
the human-created symbol-processing entities on this planet might not turn out to be 
neither a master-slave relationship nor an uneasy truce between competitors, but a 
partnership. 

Then he found the perfect metaphor in nature for the future capabilities he had foreseen 
during his 1957-1958 "religious conversion" to interactive computing and during those 
1958-1960 minicomputer encounters that set his mind wandering through the 
informational ecology of the future. The newfound metaphor showed him how to apply 
his computer experience to his modest discovery about how technical thinkers spend their 
time. The idea that resulted grew into a theory so bold and immense that it would alter 
not only human history but human evolution, if it proved to be true. 

In 1960, in the same paper in which he talked about machines that would help formulate 
as well as help construct theoretical models, Licklider also set forth the concept of the 
kind of human-computer relationship that he was later to be instrumental in initiating:  

The fig tree is pollinated only by the insect Blastophaga grossorum. The larva of the insect lives in the 
ovary of the fig tree, and there it gets its food. The tree and the insect are thus heavily interdependent: the 
tree cannot reproduce without the insect; the insect cannot eat without the tree; together, they constitute not 
only a viable but a productive and thriving partnership. This cooperative "living together in intimate 
association, or even close union, of two dissimilar organisms" is called symbiosis. 

"Man-computer symbiosis" is a subclass of man-machine systems. There are many man-machine 
systems. At present, however, there are no man-computer symbioses. . . . The hope is that, in not 
too many years, human brains and computers will be coupled together very 
tightly, and that the resulting partnership will think as no human being has ever 
thought and process data in a way not approached by the information-handling 
machines we know today. 
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The problems to be overcome in achieving such a partnership were only partially a matter 
of building better computers and only partially a matter of learning how minds interact 
with information. The most important questions might not be about either the brain or the 
technology, but about the way they are coupled. 

Licklider, foreseeing the use of computers as tools to build better computers, concluded 
that 1960 would begin a transitional phase in which we humans would begin to build 
machines capable of learning to communicate with us, machines that would eventually 
help us to communicate more effectively, and perhaps more profoundly, with one 
another. 

By this time, he had strayed far enough off the course of his psychoacoustic research to 
be seduced by the prospect of building the device he first envisioned as a tool to help him 
make sense of his laboratory data. Like Babbage who needed a way to produce accurate 
logarithm tables, or Goldstine, who wanted better firing tables, or Turing, who wanted a 
perfectly definite way to solve mathematical and cryptological problems, Licklider 
began to move away from his former goals as he got caught up in the 
excitement of creating tools he needed. 

Except Licklider wasn't an astronomer and tinkerer like Babbage, a ballistician like 
Goldstine, or a mathematician and code-breaker like Turing, but an experimental 
psychologist with some practical electronic experience. He had set out to build a small 
model of one part of human awareness -- pitch perception -- and ended up dreaming 
about machines that could help him think about models. 

As other software visionaries before and after him knew very well, Licklider's vision, as 
grandiose as it might have been, wasn't enough in itself to ensure that anything would 
ever happen in the real world. An experimental psychologist, even an MIT professor, is 
hardly in a position to set armies of computer engineers marching toward an interactive 
future. Like von Neumann and Goldstine meeting on the railroad platform at Aberdeen, 
or Mauchly and Eckert encountering each other in an electronics class at the Moore 
School, Licklider happened upon his destiny through accidental circumstances, because 
of the time he spent at a place called "Lincoln Laboratory," an MIT facility for top-secret 
defense research, where he was a consultant during a critical transition period in the 
history of information processing. 

It was his expertise in the psychology of human-machine interaction that led Licklider to 
a position where he could make big things out of his dreams. In the early and mid 1950s, 
MIT and IBM were involved in building what were to be the largest computers ever built, 
the IBM AN/FSQ-7, as the control centers of a whole new continental air defense system 
for the United States. SAGE (Semi-Automatic Ground Environment) was the Air Force's 
answer to the new problem of potential nuclear bomber attack. The computers 
weighed three hundred tons, took up twenty thousand feet of floor space, and 
were delivered in eighteen large vans apiece. Ultimately, the Air Force bought 
fifty-six of them. 

 101



MIT set up Lincoln Laboratory in Lexington, Massachusetts, to design SAGE. At the 
other end of the continent, System Development Corporation in Santa Monica (the center 
of the aircraft industry) was founded to create software for SAGE. Some of the thorniest 
problems that were encountered on this project had to do with devising ways to make 
large amounts of information available in human-readable form, quickly enough for 
humans to make fast decisions about that information. It just wouldn't do for your 
computers to take three days to evaluate all the radar and radio-transmitted data before 
the Air Defense Command could decide whether or not an air attack was underway. 

Some of the answers to these problems were formulated in the "Whirlwind" project at the 
MIT computing center, where high-speed calculations were combined with computer 
controls that resembled aircraft controls. Other answers came from specialists in human 
perception (like Licklider), who devised new ways for computers to present information 
to people. With the exception of the small crew of the earlier Whirlwind project, SAGE 
operators were the first computer users who were able to see information on visual 
display screens; moreover, operators were able to use devices called "lightpens" to alter 
the graphic displays by touching the screens. There was even a primitive decision-making 
capacity built into the system: the computer could suggest alternate courses of action, 
based on its model of the developing situation. 

The matter of display screens began to stray away from electronics and into the area of 
human perception and cognition which was Licklider's cue to join the computer builders. 
But even before Lincoln Laboratory was established in 1953-1954, Licklider had been 
consulted about the possibility of developing a new technology for displaying computer 
information to human operators for the purpose of improving air defense capabilities. 
Undoubtedly, the seeds of his future ideas about human-computer symbiosis 
were first planted when he and other members of what was then called "the 
presentation group" considered the kinds of visual displays air defense 
command centers would need. 

The presentation group was where he first became acquainted with Wesley Clark, one of 
MIT's foremost computer builders. Clark had been a principle designer of Whirlwind, the 
most advanced computer system to precede the SAGE project. Whirlwind, the purpose of 
which was to act as a kind of flight simulator, was in many ways the first hardware 
ancestor of the personal computer, because it was designed to be operated by a single 
"test pilot." It was also used for modeling aerodynamic equations. While it was only 
barely interactive in the sense that Licklider desired, Whirlwind was the first computer 
fast enough to solve aerodynamic equations in "real time" -- as the event that was being 
modeled was actually happening. Real-time computation was not only a practical 
necessity for the increasingly complicated job of designing high-speed jet aircraft; it was 
a necessary prerequisite for creating the guidance systems of rockets, the technological 
successors to jet aircraft. 

Ironically, by the time SAGE became fully operational in 1958, the entire concept of 
ground-based air defense against bomber attack had been made obsolete on one shocking 
day in October, 1957, when a little beeping basketball by the odd name of "Sputnik" 
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jolted the American military, scientific, and educational establishments into a frenzy of 
action. The fact that the Russians could put bombs in orbit set off the most intensive 
peacetime military research program in history. When the Soviets repeated their triumph 
by putting Yuri Gagarin into space, a parallel impetus started the U.S. manned space 
effort on a similar course. 

In the same way that the need for ballistics calculations indirectly triggered the invention 
of the general-purpose digital computer, the aftermath of Sputnik started the development 
of interactive computers, and eventually led directly to the devices now known as 
personal computers. Just as von Neumann found himself in the center of political-
technological events in the ENIAC era, Licklider was drawn into a central role in what 
became known as "the ARPA era." 

The "space race" caused a radical shakeup in America's defense research bureaucracy. It 
was decided at the highest levels that one of the factors holding up the pace of space-
related research was the old, slow way of evaluating research proposals by submitting 
them for anonymous review by knowledgeable scientists in the field (a ritual known as 
"peer review" that is still the orthodox model for research funding agencies). 

The new generation of Camelot-era whiz kids from the think tanks, universities, and 
industry, assembled by Secretary McNamara in the rosier days before Vietnam, were 
determined to use the momentum of the post-Sputnik scare to bring the Defense 
Department's science and technology bureaucracy into the space age. Something had to 
be done to streamline the process of technological progress in fields vital to the national 
security. One answer was NASA, which grew from a tiny sub-agency to a bureaucratic, 
scientific, and engineering force of its own. And the Defense Department created the 
Advanced Research Projects Agency, ARPA. ARPA's mandate was to find and fund 
bold projects that had a chance of advancing America's defense-related 
technologies by orders of magnitude -- bypassing the peer review process by 
putting research administrators in direct contact with researchers. 

Because of their involvement with previous air defense projects, a few of Licklider's 
friends from Lincoln, like Wesley Clark, were involved in the changeover to the fast-
moving, forward-thinking, well funded, results-oriented ARPA way of doing things. 
Clark designed the TX-0 and TX-2 computers at MIT and Lincoln. The first of these 
machines became famous as the favorite tool of the "hackers" in "building 26," who later 
became the legendary core of Project MAC. The second machine was designed expressly 
for advanced graphic display research. 

Graphic displays were esoteric devices in 1960, known only to certain laboratories and 
defense facilities. Aside from the PDP-1, almost every computer displayed information 
via a teletype machine. But there was an idea floating around Lincoln that SAGE-like 
displays might be adapted to many kinds of computers, not just the big ones used to 
monitor air defenses. By 1961, the psychology of graphic displays had become something 
of a specialty for Licklider. Between BB&N and Lincoln, he was spending more time 
with electrical engineers than with psychologists. 
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Through his computer-oriented colleagues, Licklider became acquainted with Jack Ruina, 
director of ARPA in the early 1960s. Ruina wanted to do something about computerizing 
military command and control systems on all levels -- not just air defense -- and wanted 
to set up a special office within ARPA to develop new information processing 
techniques. ARPA's goal was to leapfrog over conventional research and development by 
funding attempts to make fundamental breakthroughs. And Licklider's notion of creating 
a new kind of computer capable of directly interacting with human operators via a 
keyboard and a display screen interface (instead of relying on batch processing or even 
paper-tape input) convinced Ruina that the minority of computer researchers Licklider 
was talking about might just lead to such a possible breakthrough. 

"I got Jack to see the pertinence of interactive computing, not only to military command 
and control, but to the whole world of day-to-day business," Licklider recalls. "So, in 
October, 1962 I moved into the Pentagon and became the director of the Information 
Processing Techniques Office." And that event, as much as any other development of that 
era, marked the beginning of the age of personal computing. 

The unprecedented technological revolution that began with the post-Sputnik 
mobilization and reached a climax with Neil Armstrong's first step on the moon a little 
more than a decade later was in a very large part made possible by a parallel revolution in 
the way computers were used. The most spectacular visual shows of the space age were 
provided by the enormous rockets. The human story was concentrated on the men in the 
capsules atop the rockets. But the unsung heroics that ensured the success of the space 
program were conducted by men using new kinds of computers. 

Remember the crew at mission control, who burst into cheers at a successful launch, and 
who looked so cool nineteen hours later when the astronaut and the mission depended on 
their solutions to unexpected glitches? When the bright young men at their computer 
monitors were televised during the first launches from Cape Canaveral, the picture 
America saw of their working habitat reflected the results of the research Licklider and 
the presentation group had performed. After all, the kinds of computer displays you need 
for NORAD (North American Air Defense Command) aren't too different from the kind 
you need for NASA -- in both cases, groups of people are using computers to track the 
path of multiple objects in space. NASA and ARPA shared results in the computer field -
- a kind of bureaucratic cooperation that was relatively rare in the pre-Sputnik era. 

Because the Russians appeared to be far ahead of us in the development of huge booster 
rockets, it was decided that the United States should concentrate on guidance systems and 
ultralight (i.e., ultraminiature) components for our less powerful rockets -- a policy that 
was rooted in the fundamental thinking established by the ICBM committee a few years 
back, in the von Neumann days. Therefore the space program and the missile 
program both required the rapid development of very small, extremely reliable 
computers. 

The decision of the richest, most powerful nation in history to put a major part of its 
resources into the development of electronic-based technologies happened at an 
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exceptionally propitious moment in the history of electronics. The basic scientific 
discoveries that made the miniaturization revolution possible -- the new field of 
semiconductor research that produced the transistor and then the integrated circuit -- 
made it clear that 1960 was just the beginning of the rapid evolution of computers. The 
size, speed, cost, and energy requirements of the basic switching elements of computers 
changed by orders of magnitude when electron tubes replaced relays in the late 1940s, 
and again when transistors replaced tubes in the 1950s, and now integrated circuits were 
about to replace transistors in the 1960s. In the blue-sly labs, where the engineers were 
almost outnumbered by the dreamers, they were even talking about "large-scale 
integration." 

When basic science makes breakthroughs at such a pace, and when 
technological exploitation of those discoveries is so deliberately intensified, a 
big problem is being able to envision what's possible and preferable to do next. 
The ability to see a long range goal, and to encourage the right combination of boldness 
and pragmatism in all the subfields that could contribute to achieving it, was the 
particular talent that Licklider brought onto the scene. And with Licklider came a new 
generation of designers and engineers who had their sights on something the pre-Sputnik 
computer orthodoxy would have dismissed as science fiction. Suddenly, human-
computer symbiosis wasn't an esoteric hypothesis in a technical journal, but a 
national goal. 

When Licklider went to ARPA, he wasn't given a laboratory, but an office, a budget, and 
a mandate to raise the state of the art of information processing. He started by supporting 
thirteen different research groups around the country, primarily at MIT; System 
Development Corporation (SDC); the University of California at Berkeley, Santa 
Barbara, and Los Angeles; USC; Rand; Stanford Research Institute (now SRI 
International); Carnagie-Mellon University; and the university of Utah. And when his 
office decided to support a project, that meant providing thirty or forty times the budget 
that the researchers were accustomed to, along with access to state-of-the-art research 
technology and a mandate to think big and think fast. 

A broad range of new capabilities that Licklider then called "interactive computing" 
was the ultimate goal, and the first step was an exciting new concept that came 
to be known as time-sharing. Time-sharing was to be the first, most important step in 
the transition from batch processing to the threshold of personal computing (i.e., one 
person to one machine). The idea was to create computer systems capable of interacting 
with many programmers at the same time, instead of forcing them to wait in line with 
their cards or tapes. 

Exploratory probes of the technologies that could make time-sharing possible had been 
funded by the Office of Naval Research and Air Force Office of Scientific Research 
before ARPA stepped in. Licklider beefed up the support to the MIT Cambridge 
laboratory where AI researchers were working on their own approach to "multi-access 
computing." Project MAC, as this branch became known, was the single node in the 
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research network where AI and computer systems design were, for a few more years, 
cooperative rather than divergent. 

MAC generated legends of its own, from the pioneering AI research of McCarthy, 
Minsky, Papert, Fredkin, and Weizenbaum, to the weird new breed of programmers who 
called themselves "hackers," who held late night sessions of "Spacewar" with a PDP-1 
they had rigged to fly simulated rockets around an ocilloscope screen and shoot dots of 
light at one another. MAC was one of the most important meeting grounds of both the AI 
prodigies of the 1970s and the software designers of the 1980s. By the end of the ARPA-
supported heyday, however, the AI people and the computer systems people were no 
longer on the same track. 

One of Licklider's first moves in 1962-1963 was to set up an MIT and Bolt, Beranek and 
Newman group in Massachusetts to help Systems Development Corporation in Santa 
Monica in producing a transistorized version of the SAGE-based time-sharing prototypes, 
which were based on the old vacuum tube technology. The first step was to get a machine 
to all the researchers that was itself interactive enough that it could be used to design 
more interactive versions -- the "bootstrapping" process that became the deliberate policy 
of Licklider and his successors. The result was that university laboratories and think tanks 
around the country began to work on the components of a system that would depend on 
engineering and software breakthroughs that hadn't been achieved yet. 

The time-sharing experience turned out to be a cultural as well as a 
technological watershed. As Licklider had predicted, these new tools changed 
the way information was processed, but they also changed the way people 
thought. A lot of researchers who were to later participate in the creation of personal 
computer technology got their first experience in the high-pressure art and science of 
interactive computer design in the first ARPA-funded time-sharing projects. 

One of the obstacles to achieving the kind of interactive computing that Licklider and his 
growing cadre of "converts" envisioned lay in the slowness and low capacity of the 
memory component of 1950-style computers; this hardware problem was solved when 
Jay Forrester, director of the Whirlwind project, came up with "magnetic core memory." 
The advent of transistorized computers promised even greater memory capacity and 
faster access time in the near future. A different problem, characterized by the batch-
processing bottleneck, stemmed from the way computers were set up to accept input from 
human operators; a combination of hardware and software innovations were converging 
on direct keyboard-to-computer input. 

Another one of the obstacles to achieving the overall goal of interactive computing lay 
not in the way computer processed information -- an issue that was addressed by the 
time-sharing effort -- but the primitive way computers were set up to display information 
to human operators. Lincoln Laboratory was the natural place to concentrate the graphics 
effort. Another graphics-focused group was started at the University of Utah. The 
presentation group veterans, expanded by the addition of experts in the infant technology 
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of transistor-based computer design, began to work intensively on the problem of display 
devices. 

Licklider remembers the first official meeting on interactive graphics, where the first 
wave of preliminary research was presented and discussed in order to plan the assault on 
the main problem of getting information from the innards of the new computers to the 
surface of various kinds of display screens. It was at this meeting, Licklider recalls, that 
Ivan Sutherland first took the stage in a spectacular way. 

"Sutherland was a graduate student at the time," Licklider remembers, "and he hadn't 
been invited to give a paper." But because of the graphics program he was creating for his 
Ph.D. thesis, because he was a protégé of Claude Shannon, and because of the rumors 
that he was just the kind of prodigy ARPA was seeking, he was invited to the meeting. 
"Toward the end of one of the last sessions," according to Licklider, "Sutherland stood up 
and asked a question of one of the speakers." It was the kind of question that indicated 
that this unknown young fellow might have something interesting to say to this high-
powered assemblage. 

So Licklider arranged for him to speak to the group the next day: "Of course, he brought 
some slides, and when we saw them everyone in the room recognized his work to be 
quite a lot better than what had been described in the formal session." Sutherland's thesis, 
a program developed on the TX-2 at Lincoln, demonstrated an innovative way to handle 
computer graphics -- and a new way of commanding the operations of computers. He 
called it Sketchpad, and it was clearly evident to the assembled experts that he had leaped 
over their years of research to create something that even the most ambitious of them had 
not yet dared. 

Sketchpad allowed a computer operator to use the computer to create, very rapidly, 
sophisticated visual models on a display screen that resembled a television set. The visual 
patterns could be stored in the computer's memory like any other data, and could be 
manipulated by the computer's processor. In a way, this was a dramatic answer to 
Licklider's quest for a fast model-builder. But Sketchpad was much more than a tool for 
creating visual displays. It was a kind of simulation language that enabled computers to 
translate abstractions into perceptually concrete forms. And it was a model for totally 
new ways of operating computers; by changing something on the display screen, it was 
possible, via Sketchpad, to change something in the computer's memory. 

"If I had known how hard it was to do, I probably wouldn't have done it," Alan Kay 
remembers Sutherland saying about his now-legendary program. Not only was the 
technical theory bold, innovative, and sound, but the program actually worked. With a 
lightpen, a keyboard, a display screen, and the Sketchpad program running on 
the relatively crude real-time computers available in 1962, anyone could see for 
themselves that computers could be used for something else beside data 
processing. And in the case of Sketchpad, seeing was truly believing. 

 107

http://www.kzoo.edu/%7Eabrady/CS400/bioW96/soulier.html


When he left ARPA in 1964, Licklider recommended Sutherland as the next director of 
the IPTO. "I had some hesitance about recommending someone so young," remembers 
Licklider, "but Bob Sproull, Ruina's successor as ARPA director, said he had no problem 
with his youth if Sutherland was really as bright as he was said to be." By that time, 
Sutherland, still in his early twenties, had established a track record for himself doing 
what ARPA liked best -- racing ahead of the technology to accomplish what the 
orthodoxy considered impossible or failed to consider altogether. 

When Sutherland took over, the various time-sharing, graphics, AI, operating systems, 
and programming language projects were getting into full swing, and the office was 
growing almost as fast as the industries that were spinning off the space-age research 
bonanza. Sutherland hired Bob Taylor, a young man from the research funding arm of 
NASA, to be his assistant, and ultimately his successor when he left IPTO in 1965. 
Licklider went to the IBM research center in 1964, and then back to MIT to take charge 
of Project MAC in 1968. 

In 1983, over a quarter of a century since the spring day he decided to observe his own 
daily activities, Licklider is still actively counseling those who build information 
processing technologies. After three decades of direct experience with "the rule of two," 
he is not sure that information engineers have even approached the physical limits of 
information storage and processing. 

One thing scientists and engineers know now that they didn't know when he 
and the others started, Licklider points out, is that "Nature is very much more 
hospitable to information processing than anybody had any idea of in the 
1950s. We didn't realize that molecular biologists had provided an existence 
proof for a fantastically efficient, reliable, information processing mechanism -- 
the molecular coding of the human genetic system. The informational 
equivalent of the world's entire fund of knowledge can be stored in less than a 
cubic centimeter of DNA, which tells us that we haven't begun to approach the 
physical limits of information processing technology." 

The time-sharing communities, and the network of communities that followed them, were 
part of another dream -- the prospect of computer-mediated communities throughout the 
world, extending beyond the computer experts to thinkers, artists, and business people. 
Licklider believes it is entirely possible that the on-line, interactive human-computer 
community he dreamed about will become technologically feasible sometime within the 
next decade. He knew all along that the frameworks of ideas and the first levels of 
hardware technology achieved in the 1960s and 1970s were only the foundation for a lot 
of work that remained to be done. 

When the bootstrapping process of building better, cheaper, experimental interactive 
information processing systems intersects with the rising curve of electronic capabilities, 
and the dropping curve of computational costs, it will become possible for millions, 
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rather than a thousand or two, to experience the kind of information environment the 
ARPA-sponsored infonauts knew. 

In the early 1980s, millions of people already own personal computers that will become 
obsolete when versions a hundred times as fast with a thousand times the memory 
capacity come along at half of today's prices. When tens of millions of people get their 
hands on powerful enough devices, and a means for connecting them, Licklider still 
thinks the job will only be in its beginning stages. 

Looking toward the day when the "intergalactic network" he speculated about in the mid 
sixties becomes feasible, he remains convinced that the predicted boost in human cultural 
capabilities will take place, but only after enough people use an early version of the 
system to think up a more capable system that everybody can use: "With a large enough 
population involved in improving the system, it will be easier for new ideas to be born 
and propagated," he notes, perhaps remembering the years when interactive computing 
was considered a daring venture by a bunch of mavericks. The most significant issue, 
he still believes, is whether the medium will become truly universal. 

"What proportion of the total population will be able to join that community? 
That's still the important question," Licklider concludes, still not sure whether 
this new medium will remain the exclusive property of a smaller group who 
might end up wielding disproportionate power over others by virtue of their 
access to these tools, or whether it will become the property of the entire 
culture, like literacy.  
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Chapter Eight: 
Witness to Software History: The Mascot of Project 
MAC  
When he tried the doorknob and found it unlocked, then opened the door to Building 26 
and poked his head into a room full of weirdos having a high old time with candy bars 
and computer programs, David Rodman knew he had discovered something. The year 
was 1960. David Rodman was ten years old. And 1960 was still at least four years too 
early for weird people to be anything but a rarity, even on college campuses.  

It turned out that these pasty-faced, hollow-eyed, jargon-spewing, insanely 
cackling young men were the first, founding generation of dropout 
programming wizards to call themselves "hackers," and Building 26 was where 
the hotshot hired programmers of MIT's artificial intelligence Project MAC 
were caged until they all moved to the ninth floor of 545 Technology Square, in 
the early sixties. 

Technology Square was MIT's space-age temple of sci-tech. The geographical move from 
outpost to the pinnacle of the technohierarchy reflected an elevation in the importance of 
the whole field of man-machine systems. MAC was set up originally by Licklider, later 
administered at various times by Fano, Minsky, and Papert, and the ambiguity about the 
meaning of the acronym was deliberate. On the level of the hackers' employers, it meant 
both "machine-aided cognition" and "Multi-access computing," because in the 
early 1960s computer system design and AI research had not yet parted ways. 

Down in Building 26, where the dirty work went on, where this motley group of 
exceptionally gifted programmers got their fingers into the logical guts of machines and 
made them do their bidding, they were Maniacs And Clowns, Men Against Computers, 
and numerous unprintable variations. They were the unruly but indispensable hired 
craftsmen of the projects directed by the likes of McCarthy and Minsky and funded by 
Licklider -- the ones who built the software probes their employers launched into the 
frontiers of machine intelligence. 

At the moment David walked in, a young man named Richard Greenblatt, who lived on 
the stereotypical hacker diet of soft drinks, candy bars, and Rolaids, and who didn't stop 
to sleep, much less to wash or change clothing, was explaining to a circle of awed 
admirers, which included some of the computer scientists who had hired him, how he 
intended to write a chess playing program good enough to beat a human. Greenblatt's 
thesis advisor, Marvin Minsky, tried to discourage Greenblatt, telling him there was little 
hope of making progress in chess playing software. 

Six years after he first stumbled upon the inhabitants of building 26, sixteen-year-old 
David Rodman, by now a dropout, acidhead, and professional AI programmer of his own, 
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albeit smaller, repute, was in the group that watched Greenblatt's "MacHack" program 
demolish Hubert Dreyfus, the number one critic of the whole AI field, in a much-
heralded and highly symbolic game of chess. The MacHack versus Dreyfus duel has 
become one of the hacker legends, and MacHack became the first program to be granted 
honorary membership in the American Chess Federation. 

The Dreyfus chess match was only one of several historic moments in AI history that 
David witnessed from his vantage point of mascot, then apprentice, then full-fledged 
hired hacker, during the heyday of MAC, between 1960 and 1967. He was there when his 
motley colleagues began to build the programming and operating systems for the TX-0 
and PDP-1 computer hardware, thus establishing the first software thrust into the age of 
interactive computing. David was also there when Joseph Weizenbaum, to his later regret 
unveiled ELIZA, probably the most widely quoted and widely misunderstood program in 
history -- the program that seems to be an uncannily perceptive psychiatrist, but is 
actually a programmer's semantic trick. 

David came upon the hackers through a mixture of mischief and happenstance. He was 
one of those prodigies who was angry about having a brain like his trapped for another 
eight years in the body of a child. Since he was six, he had been an exceptional musician, 
but he gave up the piano at ten because he despised performing for adults. He was a 
loner, a wanderer, a looker through doorways, an urban spelunker -- a snoop, but not a 
thief, unless you consider knowledge of how to find your way through a complicated 
system as a stealable property. By the age of fifteen, David and his friends could find 
their way into any building in the MIT complex, via the system of underground utility 
tunnels. 

Wandering through the halls of MIT, where his father worked in the medical school, was 
one of his favorite pastimes. He liked to try doors and see what was behind the unlocked 
ones. When he cast his eyes on those strange guys gathered around an odd-looking 
television set with wires coming out of it, and then joined them at a game called 
"Spacewar," using a control panel made out of a cigar box, and nobody seemed to notice 
that he was ten years old -- David knew he had found his new intellectual home. 

"They treated me with some subtlety. I think it was a kind of recognition. They had all 
been through it, but they weren't about to tell me anything before I figured it out for 
myself," David recalled, twenty years later. He just sat down and there was a keyboard 
and someone got him started, and although they were the first people he had met who 
didn't make a fuss over his intelligence, they noticed how quick he picked it up, all right. 

After David returned a few times, and demonstrated his ability to find his way around the 
computer, the hackers made him a mascot, and when he was a full-blooded initiate 
("when they started calling me 'Rodman' instead of 'hey, kid'"), they started giving him 
small tasks in machine language, eventually showing him tricks in the sexy new 
programming language known as LISP invented specifically for AI programmers by John 
McCarthy, one of the project's founders. 
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Marvin Minsky's secretary took a liking to this wiseass ten-year-old who seemed to take 
to programming as some kids take to chess or tennis or ballet, and Minsky, who had 
always been the hackers' patron in MIT computer circles, let David use his password. 

Today, having grown up through the early days of the hackers and AI research, the 
ARPAnet years, the consulting contracts and security clearances, the regular escalation of 
his income, and the transformation of the social status of computer programmers from 
weirdo outsiders to millionaire culture heroes, David Rodman is the president of a 
microcomputer software company whose primary product is a system of programs he 
wrote himself. His personal odyssey from the inner sanctums of AI hackdom to the 
rough-and-tumble capitalism of the microcomputer industry is a kind of capsule history 
of the whole strange journey of interactive computing from laboratory curiosity to home 
appliance. 

But like many others who are now in their middle thirties and who didn't wear suits and 
carry briefcases, the early history was colorful and not a little painful: "At the age of ten, 
I was like a coiled spring inside -- lonely, uptight, angry, cynical. I was unable to balance 
my intelligence against the rest of the world. Then suddenly, here were people not unlike 
myself, who showed me a device that would respond to me when I sat down to program 
it. Those people knew what was happening to me, and when I began programming, they 
encouraged it." 

MIT, to begin with, was the engineers' school of engineers' schools, where the 
undergraduates hold an annual "ugliest man on campus" contest -- an unashamed, self-
proclaimed, national haven for supernerds. The campus population was primarily 
composed of the people from all the high schools in the country who stayed home and 
learned integral calculus or built ham radios while everybody else was at the sock hop. 
Amid all this self-styled rejection of conventional youth culture and the 
atmosphere of cultivated unfashionability, computer obsessives were 
considered oddballs even by the other outcasts. Their standards were entirely their 
own. They and their computers, and a few people in ARPA, were the only ones who 
knew that the top hackers were really the insiders. Although they were outcasts from the 
wider society, from their fellow techies, and even from most other computer scientists, 
they happened to be the people who were creating the future of computing -- the first 
time-sharing systems. 

They were having so much fun with what they all knew to be the hot technology of the 
future that they seemed to deliberately encourage their unappetizing image. You don't 
just barge in and make yourself a hacker. You've gotta hack. And that means making a 
computer do things its manufacturers never expected it to do. (This kind of 
programming is known among hackers as "black magic.") It also meant surviving what 
the other hackers could do to the results of all your work if you weren't clever enough to 
prevent them. 

There was a matter of intellectual style. Boldness and speed and raw power 
were as important as (critics of hackers would say more important than) 
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elegance and efficiency when it came to "cutting code" (writing the detailed 
machine language or high-level language lists of instructions that make programs do what 
computer users want them to do.). One common comeback when an outsider asked 
what "hacker" meant was "somebody who makes furniture with an axe." 
Orthodox programming style was hardly de rigeur in this crowd. The challenge was to 
think of a clever way to do something that most normal computer experts would do some 
other way or not at all. The performance standards were idiosyncratic and subtle, but all-
important. These people judged each other by criteria that the rest of the world didn't 
even understand, and the hackers didn't mind keeping it that way. 

They were other kinds of outcasts besides social outcasts, self-selected or otherwise. 
Their values were entirely their own: academic or commercial success was too trivial to 
be considered a driving motivation; the opportunity to work with like-minded colleagues 
on state-of-the-art equipment was paramount. They had their own culture, their own 
ethic, even their own dialect. The eighteen-year-old MIT dropouts David Rodman wanted 
to emulate were distinguished from the hippies and radicals they superficially resembled 
because they all happened to have a talent that was particularly valued in those days, and 
still is -- the ability to write code that makes computers useful to 
nonprogrammers. 

While all their former classmates were on to their doctorates and assistant professorships 
and corporate research laboratories, the misfits suddenly found their conventionally 
successful peers, at a job where they weren't relegated to working out a payroll system or 
an airline reservation service. The hackers knew, even if nobody else did, that they -- and 
not IBM, or even their straighter "FORTRAN type" colleagues in computer science -- 
were the test pilots of the computational frontier, pushing the limits of what could be 
done with each fresh generation of hardware. 

Their mandate was to dream up new things for computers to do, and in the 
process what they did was invent a whole new computer system and computer-
oriented society, a technology and social order in which their own little 
fraternity of ex-outsiders, and not the conventional computer types, were 
privileged to know the inner mysteries. When the rest of the world caught up with 
them, they knew they would be on to something even more mysterious to the outsider and 
more exciting to the hacker. None of them would deny the charges of addiction. Some of 
the same people who were in that room when David walked in, almost a quarter of a 
century ago, are still sitting in front of a computer terminal, somewhere on the upper 
floors of 545 Technology Square. 

Spacewar 
  
Their superiors were smart enough to know that the best of the hackers would come 
up with amazing things if they were left to their own devices. Spacewar, which 
spread from MIT to other campus computer centers, was one of the rites of passage and 
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defining characteristics of any den of hackers. It was invented by a MAC hacker named 
Russell, known as "Slug", and was perfected in a communal effort by generations, and it 
survived wherever it sprouted, like some antibiotic resistant organism, because every 
computer laboratory manager in the country learned that productivity dove 
when Spacewar was banned and shot back up when the game was reinstated. 

It was Spacewar that influenced Nolan Bushnell to create, over a decade later, a much 
simpler version called Pong, a commercial venture that created the first incarnation of 
Atari Corporation and a billion-dollar video game industry. Before Pong succeeded, 
however, Bushnell had failed to get people interested in a more complex game, a more 
direct derivation of Spacewar. But in those days, the people who put quarters into video 
machines at bars and arcades hadn't yet been educated in their video game sensibilities by 
the Space Invaders and Pac-Man phenomena of the late 1970s and early 1980s. 

But fun and games were only part of the fun and games. One of the things the hackers 
were building when David arrived was the software for one of the first time-sharing 
systems. They were writing a time-sharing operating system that they intended to use to 
create the greatest hacks, the biggest pranks, the most amazing demonstrations of 
programming virtuosity in hacker history. The fact that they were pioneering a whole 
new way to use computers that would eventually bring the outside population in on it was 
not the first thing on their mind. They wanted to get their own hands on the system, so 
they built it in record time. 

Actually, there were two MIT time-sharing projects. The more staid project was CTSS -- 
Compatible Time-Sharing System, so named because it was designed to be compatible 
with other systems that were being constructed elsewhere. The MAC hackers were 
designing an operating system they called ITS -- the Incompatible Time-sharing System. 
They couldn't care less about making it easy for outsiders to use. They were having too 
much fun to share it with the kind of straight-arrow programmers who could stand to eat 
or sleep before finishing a good hack. 

There were hackers and there were metahackers. Richard Greenblatt, because of what his 
program did to Dreyfus, and because of his ability to improvise great code without fully 
understanding how he did it, was at the top of the hacking order. He was a dropout and 
looked the part of the "Pepsi-guzzling, nonsleeping, single-minded 
programming addict who ate only food that came from a vending machine and 
whose skin had not absorbed anything but fluorescent light in three years," as 
Rodman fondly remembered him, three decades later. But Greenblatt's peers knew him as 
a Nijinsky, a Frank Lloyd Wright, a Johann Sebastian Bach of LISP programming. 

The matter of pranks, of what the hackers called "wheel wars" -- mucking up each others 
files, trying to thwart each other or "crash" the operating system -- was part of the 
working environment. Crashing the system could be accomplished by running some kind 
of unrunnable self-swallowing program that the programmer who designed the system 
hadn't made precautions for. When such a prank succeeds, everybody connected to the 
system can lose important data. In the early sixties, at places like MAC, it was understood 
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that, despite its unfortunate side effects, crashing was an allowable test of the system if 
the hack revealed an important system vulnerability. 

Two decades later, when mischievous and sometimes vandalistic teenagers with home 
computers started calling themselves "hackers" and crashed the files of nonhackers via 
the telephone, they were doing something quite different in its ultimate effect, if not in its 
outward appearance, from what the first such outlaws at MAC were trying to accomplish. 
The excuse was that they were "just exploring" an interesting vulnerability in the system 
had some real validity back when the hackers were creating and testing new time-sharing 
systems, and when their expertise was aimed toward a common goal. But when the 
system that crashes, as nearly happened in 1983, is an operational computer used by a 
hospital to keep track of patient medication records, it is a somewhat different matter. 
The same kind of iconoclastic mischief that had one meaning in the 1960s took on 
another meaning in the 1980s. 

"Phone-hacking" was another kind of prank pioneered by MAC hackers in the early 
1960s that was to spawn anarchic variants in the 1970s. The self-taught mastery of 
complex technologies is the hallmark of the hacker's obsession, the conviction 
that all information (and information delivery technologies) ought to be free is 
a central tenet of the hacker ethical code, and the global telephone network is a 
complex technological system par excellence, a kind of ad hoc worldwide 
computer. The fact that a tone generator and a knowledge of switching circuits could 
provide access to long-distance lines, free of charge, led to a number of legendary phone 
hacks. But the mythology didn't die there. 

In California, the Stanford AI Laboratory (SAIL) and the proximity to Silicon Valley led 
to the growth of another phone-hacking subcult of "phone Phreaks" in the 1970s, whose 
hero was a fellow who went by the name of Captain Crunch. A gap-toothed, crazy-eyed, 
full-bearded fellow who now writes software and stays away from illegal activities, 
Crunch traveled the highways in the late sixties and early seventies with a van full of 
electronic equipment, playing virtuoso pranks from roadside phone booths -- until he was 
caught, prosecuted, sentenced, and jailed. One of Crunch's phone hacking buddies from 
the outlaw days, Steve Wozniak, went on to bigger fame when he invented the first Apple 
computer. Captain Crunch, also known as John Draper, now makes very decent 
legitimate money as "Cap'n Software," the sole programmer for the microcomputer 
software company of the same name. 

At Project MAC, and at the subcultural counterparts at Stanford (where they began to 
blend some of their California brand of craziness into the hacker formula) and elsewhere, 
you had to suffer in order to be admitted to the more interesting levels of hacker wisdom. 
As in any closed subculture, the hackers spared no one their own kind of rites of passage. 
David was the youngest initiate, but they didn't go any easier on him than any other 
newcomer. You just weren't part of things at MAC until you met the now-legendary 
"cookie monster" and some of its nastier relatives. 
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Crashing the system was a fact of life and an implicit challenge at the higher reaches of 
hackdom -- if you were smart enough to come up with something that the system 
programmers hadn't guarded against, it was more of an honor than a misdemeanor to 
bring the computer to a halt, dumping hours or weeks of someone's work. By 
comparison, the cookie monster was relatively mild. Unlike an operating system crash, 
the cookie monster struck only selected victims, rather than everybody who was 
unfortunate enough to be using the system when a crash was perpetrated. 

The cookie monster would strike most often at four in the morning. (All-night hacking 
began with time-sharing systems, not only because it fit in with the hacker's 
weird self-image, but because time-shared systems run faster at night, when all 
the nonhackers are out having dates or studying poetry or sleeping or whatever 
nonhackers do at night in the real world.) You would be looking for a bug 
somewhere in the two-thousandth line of your program. Suddenly, without warning, the 
words "I WANT A COOKIE!!" appear on your monitor screen -- and all your 
painstakingly crafted code is relentlessly munched into oblivion by the word COOKIE!!, 
multiplied over and over until you finally figure out or (horror of horrors) somebody has 
to tell you: you have to type the word COOKIE!! on your keyboard. 

In their own way, the MAC hackers were the forerunners of other kinds of psychic 
desperadoes who appeared on college campuses in the 1960s. A contempt for middle-
class values and an abiding interest in the workings of their own mind were two 
characteristics that hackers were to share with later subcultures who had nothing to do 
with computers. David Rodman was a confirmed hacker in the late 1960s, when he began 
to dabble in a very different yet strangely similar outlaw subculture that was springing up 
in the Cambridge student community. 

"I would characterize my first acid trip as a quantum leap into the innards of my own 
psychology," David recalls today. "Suddenly, there I was -- inside myself. I didn't know 
the path to get in, but there I was. I could observe myself playing the guitar or writing 
code, and think to myself while improvising. 'Where am I going and how do I know how 
to go there and what am I really expressing?' It was the trip of all trips." 

David thinks that "for my peculiar cognitive style, programming was a perfect 
preparation for psychedelics, because it allowed me to model a little piece of my 
personality in the machine, and interact with it. The older hackers would tell me 'never 
mind what the main program does, we want you to write a program that moves a chess 
piece on a chessboard,' so I wrote a small, gemlike part of the utility package that went 
into one of the chess programs. The next time I found myself in one of those gemlike 
structures on my first acid trip." 

The small "gemlike structures" that David created were incorporated into early versions 
of Greenblatt's MacHack, the program that eventually became an emblem of the hackers' 
sovereignty within the AI community when MacHack met Dreyfus in 1967. It all started 
when Hubert Dreyfus had the temerity to question not only the chances of success but the 
very legitimacy of AI research. The entire field of artificial intelligence had been 
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challenged as a fraud, and very serious efforts that went beyond the usual acrimony of 
academic debate were being made to cut off funding for the foolishness Minsky et al. 
were attempting. The Dreyfus affair began in the summer of 1965, when Hubert Dreyfus 
-- a philosopher, not a computer scientist -- spent a few months at the Rand Corporation. 
The paper that Dreyfus wrote at the end of that summer, entitled "Alchemy and Artificial 
Intelligence," was informally circulated as a Rand report. 

Dreyfus thought that AI was a crock. He specifically attacked some of the claims AI 
enthusiasts had made about the future of their field. He claimed that the "progress" the AI 
folks had been citing was an illusion, and attempted to prove that their goal was a 
delusion. An IBM researcher, Arthur Samuels, had recently created a pretty decent 
checkers program that was on its way to becoming a champion. To Dreyfus, saying that 
the checkers program represented a step toward a true human-like machine intelligence 
was like saying that an ape who could climb to the top of a tree was making progress 
toward flying to the moon. 

Dreyfus challenged the idea that a chess playing program of any significance could ever 
be built, pointed out that in 1957 Herbert Simon had predicted an unbeatable chess 
playing program within ten years, and noted that the time was about up. Greenblatt came 
out of nowhere with his carefully constructed chess hack, and Seymour Papert, then 
codirector of MAC, maneuvered Dreyfus into a public match. 

David and other witnesses remember the game as a dramatic and unpredictable match -- a 
cliff-hanger that was far more suspenseful and ingenious and less mechanical than what 
any of them had expected. This was more than a friendly rivalry. The source of their 
funds was being attacked, and it was just possible that this . . . this . . . philosopher might 
manage to get people so stirred up that they would take their precious terminals away. It 
was a grudge match, no question about it. 

MacHack won. Gleefully, the bulletin of the Special Interest Group in Artificial 
intelligence (SIGART) of the Association for Computing Machinery reported the results 
of the match under a headline taken from Dreyfus' paper: "A Ten-Year-Old Can Beat the 
Machine -- Dreyfus." The SIGART editors amended it with a subhead of their own: "But 
the Machine Can Beat Dreyfus." The SIGART article touched off a series of letters to 
editors, accusations, and counteraccusations, and Dreyfus ended up writing a book, What 
Computers Can't Do in which he admitted: "Embarrassed by my expose of the disparity 
between their enthusiasm and their results, AI workers finally produced a reasonably 
competent program. R. Greenblatt's program called MacHack did in fact beat the author, 
a rank amateur."  

MacHack went on to become an honorary member of the U. S. Chess federation, and the 
Dreyfus-versus-AI controversy has dragged on for decades, albeit without the hand-to-
hand fury of 1967, when a hacker rose brilliantly to the defense of his art with a 
legendary hack, then retreated back to his terminal while others argued the significance of 
what he had done. The event had more than symbolic significance: the formal paper 
Greenblatt wrote about the program was of historical value to those who still hope to 
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fulfill Turing's, von Neumann's, and Shannon's dreams of playing against a true master 
chess-machine  

Eliza 
  
MacHack was actually the second of two historic software births David Rodman 
witnessed during his apprenticeship at MAC. Joseph Weizenbaum showed up at MIT in 
1963, and when he created ELIZA between 1964 and 1966, he changed the way 
everybody thought about what computers can't do -- and that included changing his own 
mind about where the whole computer-AI enterprise was heading. ELIZA was a clever 
way of mimicking human interaction through a computer-mediated dialogue; 
what the inventor hadn't anticipated was people's willingness to be taken in by 
the mimicry -- even people who should have known better. By the time Weizenbaum 
recovered from the shock of seeing the way people reacted to his program, he was 
convinced that something very dangerous lurked in the much-heralded computer 
revolution. 

The reaction to ELIZA eventually led Weizenbaum to question the ultimate value of the 
changes that computers were introducing to the general population -- changes he felt we 
might all later regret. He also declared that we would soon be faced with important 
decisions about what computers ought and ought not to do. He specifically cited the 
hackers as a symptom of a sickness in the heart of computerdom. Weizenbaum's assault 
on some of the most fundamental premises of the computer culture with the 1976 
publication of Computer Power and Human Reason set off a continuing, oft-heated 
public debate between Weizenbaum and the AI community. 

The Dreyfus-AI debate had been largely a technical argument, which helped make 
MacHack's technical victory so sweet. Weizenbaum's was a moral argument, and it 
carried a passionate force far different in effect from that of Hubert Dreyfus, flying in 
from California with his phenomenology. This was Joseph Weizenbaum, honored 
professor of computer science at MIT, saying that AI might not be a crock, but we better 
be a lot more careful with computers, and watch out for the hackers in the process. 

Remember when those funny-looking "computer letters" started appearing on the bottom 
of checks, in the early 1960s? That was part of Joseph Weizenbaum's work in the days 
before he came to MIT. As a software expert for General Electric, he was centrally 
involved in Bank of America's ERMA project, a milestone in the computerization of the 
world's banking system. When Weizenbaum later spoke about the morality of using 
computers in ways that might change millions of people's lives, he was speaking from 
experience. His creation of a program that gave the illusion of a wise, all-knowing, 
computerized psychiatrist -- and his shock at seeing how willingly even his computer-
sophisticated colleagues were taken in by the illusion -- triggered Weizenbaum's 
dissension. 
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Weizenbaum started out at MIT with what he thought would be an abstract interest in 
programs that used simple programming tricks to answer questions posed in English. He 
put together a working version that the hackers had fun with, and which seemed to be a 
step, albeit a very primitive first step, toward a genuine language-understanding program. 
The hackers enjoyed the pretense that they were "conversing" with a computer, 
even though they knew that the program was parsing very simple sentences 
with no real underlying understanding of their meaning. 

While he was working on a more elaborate question-answering program, with greater 
sentence-parsing capabilities than his first version, Weizenbaum met a psychiatrist from 
Stanford named Kenneth Colby, who was interested in using computers to model mental 
states and mental disorders in order to find clues to more effective forms of 
psychotherapy. Colby helped Weizenbaum create a special-case version of ELIZA, 
known as DOCTOR. In the introduction of his 1976 book, Weizenbaum described how 
this most successful and disturbing version of ELIZA came into being, and conveyed a 
little of the flavor of the "ELIZA effect":  

The work was done in the period 1964-1966, and it was reported in the computer-science literature in 
January 1966 and August 1967. To summarize it briefly, I composed a computer program with which one 
could "converse" in English. The human conversationalist partner would type his portion of the 
conversation on a typewriter connected to a computer, and the computer, under control of my program, 
would analyze the message that had been transmitted to it, compose a response to it in English, and cause 
the response to be typed on the computer's typewriter. 

I chose the name ELIZA for the language analysis program because, like the Eliza of Pygmalion fame, it 
could be taught to "speak" increasingly well. . . . 

For my first experiment, I gave ELIZA a script designed to permit it to play (I really should say parody) the 
role of a Rogerian psychotherapist engaged in an initial interview with a patient. The Rogerian 
psychotherapist is relatively easy to imitate because much of his technique consists of drawing his patient 
out by reflecting the statements back to him. The following conversation betwen a young lady and ELIZA 
playing doctor illustrates both the Rogerian technique of encouraging a patient to keep talking and the 
operation of the computer program ELIZA. The first to "speak" is the young lady. The computer's 
responses are printed entirely in capitals. 

 
Men are all alike. 
 
IN WHAT WAY 
 
They're always bugging us about something or other. 
 
CAN YOU THINK OF A SPECIFIC EXAMPLE 
 
Well, my boyfriend made me come here. 
 
YOUR BOYFRIEND MADE YOU COME HERE 
 
He says I'm depressed much of the time. 
 
I'M SORRY TO HEAR YOU ARE DEPRESSED 
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The first thing that alarmed Weizenbaum was the way people who knew enough about 
computers to know better began to get drawn into serious conversations with it about 
their lives! Even his own secretary had fallen into the habit of conversing with it! People 
were asking to be left alone with the machine to spill out their most intimate thoughts! 
Weizenbaum was so horrified that he started rethinking everything he believed. But that 
was just a symptom of how gullible we all might be to what he knew was just a clever 
hack. 

More serious, to Weizenbaum's way of thinking, was the fact that Colby and 
others thought that "computer-therapists" might soon be applied to some form 
of "automatic psychotherapy" -- an idea Weizenbaum considered "obscene." 
Weizenbaum's ethical debate, although it originated in the same laboratory that spawned 
so many important innovations in AI and computer systems design, will not be discussed 
at length here. His books and the ideas expressed by Weizenbaum and his critics deserve 
consideration on their own accord. 

David Rodman was one of those who spent time conversing with ELIZA when it was still 
in its infancy, while he was employed as a research assistant in the same laboratory. 
Some of David's earliest LISP hacks were attempts to emulate ELIZA. And although 
Weizenbaum didn't know it, some of David's early acid trips were spent in "conversation" 
with ELIZA. 

While Minsky was a kind of patron saint of hackdom, and Greenblatt was an unkempt 
hero, and McCarthy had his own brand of AI prodigies, Weizenbaum was not very fond 
of some of the hackers who shared his working quarters, to put it mildly. In his book, he 
mounted a direct assault on the inner circle of hard-core hackers:  

Wherever computer centers have become established, that is to say, in countless places in the United States, 
as well as in virtually all other industrial regions of the world, bright young men of disheveled appearance, 
often with sunken glowing eyes, can be seen sitting at computer consoles, their arms tensed waiting to fire, 
their fingers, already poised to strike at the buttons and keys on which their attention seems to be as riveted 
as a gambler's on the rolling dice. When not so transfixed, they often sit at tables strewn with computer 
printouts over which they pore like possessed students of a cabalistic text. They work until they drop, 
twenty, thirty hours at a time. Their food, if they arrange it, is brought to them: coffee, cokes, sandwiches. 
If possible they sleep on cots near the computer. But only for a few hours -- then back to the console or the 
printouts. Their rumpled clothes, their unwashed and unshaven faces, and their uncombed hair all testify 
that they are oblivious to their bodies and to the world in which they move. They exist, at least when so 
engaged, only through and for computers. These are computer bums, compulsive programmers. They are 
an international phenomenon. 
Weizenbaum attacked those particularly obsessed specimens among the hackers he called 
"compulsive programmers" on several grounds besides their unorthodox appearance and 
dietary habits. But he also took care to note (parenthetically) that "(It has to be said that 
not all hackers are pathologically compulsive programmers. Indeed, were it not for the 
often, in its own terms, highly creative labor of people who proudly claim the title 
'hacker,' few of today's sophisticated time-sharing systems, computer language 
translators, computer graphics systems, etc., would exist.)" 
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The compulsive programmers, according to Weizenbaum's criteria, spend far more time 
playing with their computers than using them to solve the problems they are being paid to 
solve. They are often superb technicians, he admitted, but he also charged that they are 
very often so sloppy when they document the programs they have written that other 
programmers, when they later have to use or modify them, are unable to make sense of 
what they did. 

The obsessed hacker's motivation is not problem-solving, but the raw thrill of interacting 
with the computer, and that, Weizenbaum charged, was a sign, not of prodigy, but of 
pathology. "The compulsive programmer," he insisted, "is merely the proverbial mad 
scientist who has been given a theater, the computer, in which he can, and does, play out 
his fantasies." 

Minsky and others rose to the hackers' defense, pointing out that they should be 
considered with some of the same suspension of normal standards that society reserves 
for artists. And just as it is true that a hollow-eyed dropout is not a particularly pleasant 
sight, and perhaps there is truth to the charge that many of them find it easier to relate to 
the machine than to other people; isn't there also a chance that they are being unfairly 
maligned? 

Hackers would rather be judged by their creations than by their behavior, and nobody 
cares about van Gogh's habits of dressing, or whether Mozart went without sleep for days 
at a time. Minsky deplored public stereotyping and scapegoating of people who happen to 
be passionate about programming instead of violin playing or basketball or making 
money. 

Weizenbaum was undoubtedly right about the temptation to use computers for 
stimulating fantasies of omnipotence over fantastically controllable worlds. The 
value to society of obsessively converting sophisticated computers into toys and games 
has been a matter of extended debate. Nobody would deny that hackers love fantasy. That 
these fantasies can be fascinating to nonhackers as well has been an inside secret for 
years, ever since the hack known as "Dwarf Hall of Mists, XYZZY and the Infamous 
Repository," created by Will Crowther and Don Woods, now more commonly known as 
"Adventure," surfaced at MAC and SAIL. 

After they introduce you to ELIZA, "Adventure" is what hackers show you when you ask 
them why they are addicted to computing. They hit a few keys, sit you down in front of a 
monitor and a keyboard, and come back in a few hours to forcibly unplug you. Even in 
this age of more dazzling computer-generated effects, the sheer temptation to explore the 
computer-stored fantasy remains strong. 

After you are told you can give simple instructions like "drop sword," "go up," "cross 
bridge," the following words, still famous at every computer center, appear on the screen: 
"You are standing at the end of a road before a small brick building. Around you is a 
forest. A small stream flows out of the building and down a gully . . ." 
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Without warning, and without any high-resolution graphics or sound effects, you are 
drawn into Colossal Cave, where a labyrinth of chambers containing treasure, dwarfs, 
magic, strategy and dangers awaits your command. It can take weeks to finish a game. 
More than one commentator has used "Adventure" as a metaphor for hacking: This is a 
complex pathway hidden inside the computer, and it is up to the hacker to use all his or 
her skill, knowledge, and magic to find the treasure and bring it back. 

A high regard for programming skill, a mischievous bent, and a predilection for 
playing games seemed to accompany the spread of the hacker culture, along 
with Spacewar and Adventure. Weizenbaum might have been the first, but he wasn't 
the last computer scientist to voice concern over the possible dangerous side effects of 
this way of thinking. 

One famous debate erupted at Stanford, years after Weizenbaum's original diatribe. 
Stanford has been a West Coast headquarters for hackers since the mid-1960s, although 
significant outposts have long existed at UC Berkeley, Los Angeles, San Diego, and 
Santa Barbara, at Stanford Research Institute, and even at Rand before the Ellsberg affair. 
But LOTS -- Stanford's Low Overhead Time-sharing System -- is where the 
undergraduate hackers hang out. It was here that another, more recent major hacker 
controversy surfaced, in the form of a dialogue on the medium that was known by the 
mid-1970s as "electronic mail." It was the option of everybody on LOTS to post and read 
messages, either to specific individuals or groups, or to anyone who was interested, via 
the "bulletin board" sector of the mail program. People could read and add messages 
whenever they were logged onto the computer. 

Sometimes serious issues were discussed in this manner, and sometimes long 
impassioned graffiti (known as "flames") were launched against a variety of targets 
ranging from the profound to the utterly inconsequential. Sometimes serious issues were 
disguised as flames, and vice versa. Branches and subbranches of such exchanges could 
continue for months, making up a kind of electronically embedded ad hoc literature. That 
was where the "hacker papers" came from. 

This particular counterpoint of flames on the subject of hackers, written by hackers, came 
to the attention of the "real world" because a Stanford professor of psychology named 
Philip Zimbardo discovered the dialogue and published it, with commentary, in 
Psychology Today magazine in 1980, twenty years after Rodman met Greenblatt et al. in 
Building 26. 

The exchange of flames began with a hacker's version of Luther's 95 theses, nailed, 
metaphorically, to the door of the electronic temple. A self-sworn ex-hacker who called 
himself "G. Gandalf" (the tradition is to give oneself a pseudonym on the public mail 
channel, like the "handles" used in the citizen's-band radio subculture) posted a bulletin 
entitled "Essay on Hacking," that said, among other things:  

In the middle of Stanford University there is a large concrete-and-glass building filled with computer 
terminals. When one enters this building through the glass doors, one steps into a different culture. Fifty 
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people stare at terminal screens. Fifty faces connected to fifty bodies connected to 50 sets of fingers that 
pound on 50 keyboards ultimately linked to a computer. . . . These are the members of a subculture so 
foreign to most outsiders that it not only walls itself off but is walled off, in turn, by those who cannot 
understand it. The wall is built from both sides at once. 

These people deserve a description. In very few ways do they seem average. First they are all bright, so 
bright, in fact, that they experienced social problems even before they became interested in computers. 
Second, they are self-contained. Their entire social existence usually centers around one another. . . . Third, 
all aspects of their existence reinforce one another. They go to school in order to learn about computers, 
they work at jobs in programming and computer maintenance, and they lead their social lives with hackers. 
Academically, socially, and in the world of cash, computers are the focus of their existence. 

As might well be expected, this diatribe did not go unanswered. As usual, opinion was 
heatedly divided. Some -- a minority, of course -- agreed wholeheartedly with the heresy. 
Hackers as a group harbor a love for heresy, iconoclasm, and debating whether 
something is or is not heretical, even if -- especially if -- the topic relates to hackers 
themselves. 

Of those who rebutted Gandalf, the one known as "A. Anonymous" offered the West 
Coast version of the "Minsky defense":  

We are dealing with an infinitely malleable tool. People who choose to develop and use that tool, whether 
for work, play, or both, have that choice and cannot be denied it. A person who chooses to be a musician 
must devote hours and hours to gain adequate expertise. But would you consider the computer hacker any 
less creative than such a person? I certainly wouldn't. The computer serves not only as a workhorse, but 
also as an easel for exercising one's creative abilities. Therefore, in my opinion, the hacker has not limited 
myself at all. Rather, he has expanded his intellectual horizon because now he has the infinite tool. 

As for the charge that it disrupts one's social life, I would tend to agree with this to a point. But it depends 
on how controlled the individual is. At any time, he can withdraw to a more normal schedule. Why doesn't 
he? The reason is obvious. The infinite tool that knows few boundaries is accessible to a much higher 
degree, and thus he can devote more time to it. Why is this wrong? I think it is definitely a bonus, since the 
usual restraints of 9-to-5 are eliminated and the person is allowed to expand beyond boundaries to do what 
he wants. 

Now we come to the human versus the machine factor. Gandalf stresses the necessity of human interaction 
and the inherent evil of the machine. Would you stress the evil of instruments in an orchestra, or the 
instruments in a laboratory, or the typewriter of an author? All of these occupations demand extraordinary 
amounts of time for excellence. But I see no greater human interaction in these fields than in computers. I 
feel that people who disparage computers for a seemingly decreased human interaction are not at all 
familiar with the true import of the computer. Not only is it the infinite tool, it is also an extremely fluid 
medium of communication.  

The publication of the controversy set off an avalanche of electronic mail over the 
ARPAnet and at local computer centers. The hacker debates had spread to the amateur 
"bulletin board computers" by 1983, when the movie WarGames and the real-life young 
computer-systems "crackers" who subsequently surfaced brought the word hacker to 
widespread public attention, in this newer, unpleasantly restricted sense. 

One of the oldest rules of the game is "thou shalt not do unto ordinary computer users 
what thou hast done to other hackers." Almost all of the old-time hackers deplore what 
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the young computer trespassers and crashers did -- "dark-side hacking" -- although the 
anarchist minority still insist that the ultimate freedom is the freedom to figure out how 
the communication-computing system works, and declare that the burden of protection 
against trespassing ought to be on the system programmer who has files to protect, not on 
the explorer who might tap in during some midnight jaunt through the network. 

Real computer criminals aside, the concern of the noncomputing public over 
the hacker controversy does seem a bit strange. After all, these people aren't 
accused of mayhem or arson -- just of being very smart when it comes to knowing how to 
operate computers. The capacity for scapegoating is very high in a culture where most 
people have been led to believe that computers are either smarter than they are or too 
complicated for ordinary people to use. James Milojkovic, an associate of Zimbardo's at 
Stanford who was writing his psychology doctoral thesis about the cognitive and 
motivational impact of the microcomputer, came to the hackers' defense. 

In a 1982 interview, Milojkovic said he spent plenty of time around hackers, and saw 
nothing pathological about what they were doing. In regard to all the public concern 
about what threat (noncriminal) hackers might pose, he said "clearly it's nonsense. I think 
what's happening is that there's some sort of fear that maybe what they're doing with the 
machines is aimed against us." Like "A. Anonymous," Milojkovic sees nothing wrong 
with a little compulsiveness in regard to learning: "I can think of nothing more natural 
than to fall in love with knowledge," he said, "and hackers are so deeply in love with 
knowledge of the computers that they're just swept off their feet."  

A case in point: David Rodman. When last we saw him, lurking in the background of the 
MacHack versus Dreyfus match, an acidhead teenage dropout hacker, he was almost 
certainly headed for a sunken-eyed, computer-nut future. In fact, quite the opposite 
turned out to be the case. He was doing quite well for himself, even at sixteen, as a 
freelance programmer. He got some offers to set up computer systems for social service 
bureaucrats, so he moved to D.C. in his early twenties. 

By 1972, David found himself up to his ears in the same problem that plagued Herman 
Hollerith -- handling huge data bases. In fact, designing probes of the U.S. Census 
information, now stored on magnetic tape, was David's specialty. He moved back to 
Cambridge to work for a software think tank, did more than a few jobs for agencies he 
doesn't want to name, and in 1978 he decided it was time to turn what he knew into a 
marketable product. 

David Rodman ended up creating and marketing a tool for managing data bases, a 
program that he designed to be usable by microcomputer owners. Thus he was one of 
many formerly sequestered programmers who joined the software business at the 
beginning of the consumer computing boom, when it was still possible for a programmer-
turned-entrepreneur to go far and fast. A couple of other, older, MIT hackers put out 
VisiCalc in 1978 -- the "electronic spreadsheet" that allows users to ask "what-if" 
questions about numerical data -- and millions of people who had never touched a 
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keyboard before began tackling problems that had formerly been reserved for mainframe 
programmers. 

I first met David Rodman in the early 1980s, because of his strange grin. I knew his name 
because it was stamped onto the plastic card that was pinned to his lapel. His rumpled 
suit and convention badge didn't exactly mark him as a high roller, but his smile 
projected a self-assurance of almost demented intensity. We were standing in the 
magnificent casino that is conveniently located between the Hilton lobby and the indoor 
walkway to the Las Vegas convention center. Upward of fifty thousand people attending 
Comdex, a national convention for the microcomputer industry, trooped through the 
casino every day. The arriving computerists didn't mind spending their money, and they 
were an amiable group. A lot of them seemed downright happy. David Rodman, for 
example, was still smiling after he turned away from the craps table. 

"Why do you look so damn cheerful?" I couldn't help inquiring. 

"I was wrong about the dice," he replied, "but I'm too far ahead to complain." 

"Craps?" 

"Data management systems." 

"Not my game," I said. "What's the product?" 

"About forty pages of zeroes and ones." 

"The market pretty good for zeroes and ones?" 

"The software market, as of today, is nothing less than astounding." 

Considering the fact that he had just dropped a hundred dollars in less than ten seconds, 
he must have been doing very well indeed to be making money at the convention faster 
than he was losing it in the casino. The crooked grin on his face, a variant of the slightly 
demented expression that attracted my attention at the craps table, made it clear that he 
didn't mind talking about his business. 

We got to know each other, and eventually I learned about what he did before he was the 
prime mover and chief asset of a software corporation. There was no sign that he was an 
ex-MAC hacker, ex-acidhead, ex-consultant to unnamed intelligence agencies. He was 
freckled, balding, and what hair he had left was short and neatly combed. He was clean-
shaven, and his attire wouldn't have been out of place on an accountant or a widget 
salesman. But in his heart, he was still a hacker, and an evangelistic one at that. 

By the time we got through the story to the point of talking about his current 
product, it was clear that he had not turned his back on the programming 
priesthood, but was merely interested in expanding it, to his own profit, by 

 125



giving millions of people a direct taste of the same experience that hooked him 
back in Building 26. 

"I remember the way I learned jazz improvisation, and how that affected my 
programming. When I was first learning, I said to myself, 'Here I am in this chord, and 
I've got to get to that chord.' The transition, the way you hop from note to note or pass a 
variable from procedure to procedure -- that's where the individual style of the musician 
or the programmer comes in. Nothing happened, a lot of the time. But when my teacher 
showed me something I hadn't realized before, pointed out that a certain note would work 
in a way I wasn't expecting, for instance, I would get a little shock of understanding, and 
the next time I came to a transition I'd loosen my grip on my conscious effort and try to 
recapture that shock, and there would be the note or the line of code I needed. 

"Now I think of the person sitting in front of his computer with a keyboard. What this 
person needs is a profit and loss statement, or information about sales accounts, or a 
breakdown of stock in inventory. What I need to do is to create an environment for that 
person, structured in such a way that it is natural and easy to translate his or her desire to 
the actual P & L statement, or a sales report or inventory account, and even show them 
how they can improvise along the way. Not only should this tool work better than their 
old pencil and paper and calculator and filing cabinet -- it should also give the user one of 
those pleasurable little shocks. I want my file management system to enable that 
person to become a jazz musician. 

"A really good program designer makes an artist out of the person who uses the 
computer, by creating a world that puts them in the position of 'Here's the 
keyboard, and here's the screen. Now once you learn a few rudimentary 
computer skills, you can be a superstar.' " 

It was an unexpected, but perhaps not inappropriate philosophy to hear from a LISP 
hacker turned software vendor. He has yet to carve out an empire like Bill Gates or Steve 
Wozniak, but David Rodman knows that most of the potential consumers of 
microcomputer software are still in the earliest stages of their progression toward 
obsessive software intoxication. David sees a niche for people like himself as toolmakers 
and trailblazers, leading the way for the emergence of an entire population of 
programming artists. He wants programming to become a performing art. 

But long before hackers started thinking about using their computers for intellectual 
improvisation -- before David Rodman was born, in fact -- a dreamer out in California 
was designing his own kind of mind amplifier.  
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Chapter Nine: 
The Loneliness of a Long-Distance Thinker 
Harry Truman was President and Sputnik was a word that only Russian language experts 
knew when Doug Engelbart first thought about displaying words and images on radar 
screens, storing them in computers, and manipulating them with levers and buttons and 
keyboards. For over thirty years, Engelbart has been trying to hasten what he believes 
will be the biggest step in cultural evolution since the invention of the printing press. To 
hear him tell it today, both the computer establishment and the computer revolutionaries 
still fail to understand that the art and power of using a computer as a mind amplifier are 
not in how the amplifier works but in what the amplified minds are able to accomplish.  

At the end of the summer of 1945, just after the surrender of Japan, Engelbart was a 
twenty-year-old American naval radar technician, waiting for his ship home from the 
Philippines. One muggy day, he wandered into a Red Cross library that was built up on 
stilts, like a native hut. 
 
Vannevar Bush 
  
"It was quiet and cool and airy inside, with lots of polished bamboo and books. That was 
where I ran across that article by Vannevar Bush," Engelbart recalls. More than three 
decades later, he still fondly remembers the room where he first encountered the dream 
that has dominated most of his life. At that time, the news of Hiroshima was still fresh 
and searing. He found himself wondering whether the same inventiveness that produced 
nuclear bombs might be used to prevent such destruction in the future. Engelbart started 
designing computer-based problem-solving systems in 1951. He hasn't stopped yet. 

The earliest and one of the clearest articulations of the idea that information 
processing technology could be used to amplify human memory and thinking 
was the one Doug found that day in 1945, in an article entitled "As We May 
Think," published toward the end of the war in The Atlantic Monthly. The 
author was the highest-ranking scientific administrator in the U.S. war effort, 
Vannevar Bush. 

Bush, the son and grandson of Yankee seafarers, was the same mathematician who had 
constructed analog computers at MIT in the 1930s. He was also in charge of over 6000 
U.S. scientists during World War II, as director of the Office of Research and 
Development. His two most important goals were starting the Manhattan project and 
finding a means to stop German bombing, goals that both directly hastened the invention 
of computing machinery. Ironically, Bush didn't mention the potential of the early 
computers as information-handling devices when he wrote his article. But he did present 
an idea that was to bear fruit many years later -- a description of a science-fiction-like 
general-purpose tool to help us keep track of what we know. 
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Looking toward the postwar world, Bush foresaw that recent breakthroughs in 
science and technology were going to create problems of their own. With all 
these scientists producing all this knowledge at an unprecedented rate, how was 
anyone to keep track of it all? How would this rapidly expanding body of 
knowledge benefit anybody if nobody knew how to get the information they 
needed? 

"The summation of human experience is being expanded at a prodigious rate, 
and the means we use for threading through the consequent maze to the 
momentarily important item is the same as was used in the days of square-
rigged ships," Bush wrote.  

He urged men of science to turn their efforts to making the increasingly unwieldy 
accumulation of human knowledge more accessible to individuals. 

But the future technology that Bush foresaw extended beyond the borders of science to 
the ordinary citizenry. The day was coming when not only scientists but ordinary citizens 
would be required to navigate through ever-more complicated realms of information. In 
the pages of the Atlantic, Bush proposed that a certain device should be developed, a 
device to improve the quality of human thinking. Because one of its functions was to 
extend human memory, Bush called his hypothetical machine a memex. But Bush was 
one of the first to see that rapid access to large amounts of information could serve as 
much more than a simple extension of memory. Although he described it in terms of the 
primitive information technologies of the 1940s, the memex was functionally similar to 
what is now known as the personal computer -- and more. 

Some ideas are like seeds. Or viruses. If they are in the air at the right time, they will 
infect exactly those people who are most susceptible to putting their lives in the idea's 
service. The notion of a knowledge-extending technology was one of those ideas. Fifteen 
years after Bush published his Atlantic article, J. C. R. Licklider published his article 
about making computers into a communication medium. But only five years after Bush's 
article, Doug Engelbart, infected by the idea of creating a mind-extending tool, incubated 
his own ideas about how to use machines to augment human intelligence. 

After the war, with an electrical engineering degree and his experience with radar, 
Engelbart found a job at Ames Laboratory in California, working on contracts for one of 
NASA's ancestors, the National Advisory Committee on Aeronautics. After a couple of 
years at Ames, he asked a woman he met there to marry him. 

"The Monday after we got engaged," Engelbart remembers today, "I was driving to work 
when I was hit with the shocking realization that I no longer had any goals. As a kid 
who had grown up in the depression, I was imbued with three goals -- get an 
education, get a steady job, get married. Now I had achieved them. Nothing 
was left." 
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Doug Engelbart tends to think seriously about things when he finds something worth 
thinking about. And his own life is certainly not exempt from being an object of serious 
thinking. While he drove along a two-lane paved road that is now a freeway, he 
reckoned that he had about five and a half million working minutes remaining 
in his life. What value did he really want from that investment? At the age of 
twenty-five, in December of 1950, he started to think about what new goals he might set 
for himself. 

"I dismissed money as a goal fairly early in the decision process. The way I grew up, if 
you had enough money to get by, that was okay; I never knew anybody who was rich. 
But by 1950, it looked to me like the world was changing so fast, and our problems were 
getting so much bigger, that I decided to look for a goal in life that would have the most 
payoff for mankind." 

For several months after he made the decision to commit himself to an appropriately 
humanitarian enterprise, Doug searched for the right one. He contemplated his situation 
and skills and thought about the various kinds of crusades he might join. With his radar 
training, and what he was beginning to learn about computers, Engelbart was also 
looking for a cause that wouldn't require him to retread his engineering education, or 
move too far away from his new home. He had a challenging job and a pleasant drive to 
work. Santa Clara Valley was still the world's largest prune orchard, and the electronics 
industry had only recently moved out of a couple of garages in Palo Alto. The drive gave 
him time to think. 

Ultimately, the kinds of crusades that appealed to him still didn't satisfy his needs: there 
weren't clear-cut ways of organizing one's thoughts to run a crusade. He was an engineer, 
not a political organizer, and the world was becoming too complicated for anything but 
the most well-organized crusades. Suddenly, Doug recognized that he was running into 
the same fundamental issue over and over again. 

Engelbart realized, as had Vannevar Bush, that humankind was moving into an 
era in which the complexity and urgency of global problems were surpassing 
time-honored tools for dealing with problems. He also began to understand, as did 
Licklider a few years later, that handling the informational by-products of problem-
solving had itself become the key to all the other problems. The most important task 
no longer lay in devising new ways to expand our accumulation of knowledge, 
but in knowing where to look for the answers that were already stored 
somewhere. "If you can improve our capacity to deal with complicated problems, 
you've made a significant impact on helping humankind. That was the kind of payoff I 
wanted, so that's what I set out to do." 

Although many of the details took decades to work out, the main elements of what he 
wanted to achieve came to him all at once: "When I first heard about computers, I 
understood, from my radar experience, that if these machines can show you information 
on punchcards and printouts on paper, they could write or draw that information on a 
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screen. When I saw the connection between a cathode-ray screen, an 
information processor, and a medium for representing symbols to a person, it 
all tumbled together in about half an hour. 

"I started sketching a system in which computers draw symbols on the screen 
for you, and you can steer it through different domains with knobs and levers 
and transducers. I was designing all kinds of things you might want to do if you 
had a system like the one Vannevar Bush had suggested -- how to expand it to a 
theater-like environment, for example, where you could sit with a colleague 
and exchange information. God! Think of how that would let you cut loose in 
solving problems!" 

After thirty often-frustrating years of pursuing a dream that the computer industry has 
long ignored, Doug Engelbart still can't keep the excitement out of his soft voice and the 
faraway look out of his eyes when he talks about the prospects he foresaw at twenty-five, 
and has pursued ever since. But he's not sure whether today's generation of computerists, 
with all their fancy hardware, are getting any closer to the real issues. 

Although history has proved him to be an accurate visionary in many ways, but perhaps a 
less-than-ideal manager of projects and people, and even his friends use the word 
"stubborn" in describing his attitudes about his theories, Doug Engelbart still wields the 
power of a quiet person. The magnetism of his long-envisioned goal is still strong for 
him, so strong that a good deal of it still radiates when he talks about it. In 1971, his 
friend Nilo Lindgren described him in Innovation magazine:  

When he smiles, his face is wistful and boyish, but once the energy of his forward motion is halted and he 
stops to ponder, his pale blue eyes seem to express sadness or loneliness. Doug Engelbart's voice, as he 
greets you, is low and soft, as though muted from having traveled a long distance, as though his words have 
been attenuated by layers of meditation. There is something diffident yet warm about the man, something 
gentle yet stubborn in his nature that wins respect.  

"He reminds me of Moses parting the Red Sea," is the way Alan Kay describes 
Engelbart's gentle charisma. Of course, the original Moses never set foot in the promised 
Land. And he never had the reputation of being an easy man to work with. 

In 1951, Engelbart quit his job at Ames and went to graduate school at the University of 
California at Berkeley, where one of the first von Neumann architecture computers was 
being built. That was when he began to notice that not only didn't people know what he 
was talking about, but some presumably "objective" scientists were overly hostile. He 
started saying the wrong things to people who could affect his career, things that simply 
sounded strange to the other electrical engineers. 

"When we get the computer built," this young engineer kept asking, "would it be okay if I 
use it to teach people? Could I hook it up to a keyboard and get a person to interact with 
the computer? Maybe teach the person typing?" The psychology people thought it was 
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great, but computers were hardly their department. The engineering people said, "There's 
no way that kind of idea is going to fly." 

The interactive stuff was so wild that the people who knew about computers 
didn't want to hear about it. Back then, you didn't interact with a computer, even if 
you were a programmer. You gave it your question, in the form of a box of punched 
cards, and if you had worked very hard at stating the question correctly, you got your 
answer. Computers weren't meant for direct interaction. And this idea of using 
them to help people learn was downright blasphemy. 

After he got his doctorate, Engelbart came to another one of those internally triggered 
decision points in his life that his dream continued to bring his way. Nobody in his 
department wanted to listen to talk about building a better way to solve complex 
problems, and he felt that he would have to construct a whole new academic discipline 
before he could begin the research he really wanted to do. The university, Engelbart 
decided, was a place to get his journeyman's card, but not a place to follow his vision. 

Thus, young Doctor Engelbart went to the commercial world, looking for an opportunity 
to develop electronic systems that would eventually help him do what he wanted in terms 
of augmenting human intellect, and would pay his room and board as he contributed to 
the development of marketable devices as well. Engelbart brought some of his ideas to a 
progressive young company down the road in Palo Alto. For a change, here were some 
people looking to the future. Not too much more than a decade out of electrical 
engineering school themselves, Bill Hewlett, David Packard, and Barney Oliver (their 
head of research and development) were enthusiastic about Doug's proposal. A deal was 
offered. Engelbart drove home, elated. On the way home, in typical Engelbart fashion, 
Doug started thinking about it. 

"I pulled the car over to the first phone booth and called Barney Oliver and said that I just 
wanted to check my assumption that they saw a future in digital technology and 
computers -- which I thought was a natural path for their electronic instrumentation 
company to follow. I had assumed that they knew that the ideas I proposed to them that 
afternoon were only a bridge to digital electronics. And Barney replied that no, they 
didn't have any plans for getting into computers. So I said 'Well, that's a shame, because I 
guess it cools the deal. I have to go the digital route to pursue the rest of what I want to 
do.'" 

"So my deal with Hewlett-Packard was called off," Doug says, wrapping up the 
reminiscence with one of his famous wry smiles, adding: "the last time I looked they 
were number five in the world of computers." 

Doug kept looking for the right institutional base. In October, 1957, the very month of 
Sputnik, he received an offer from an organization in Menlo Park, "across the creek" 
from Palo Alto, then known as the Stanford Research Institute. They were interested in 
conducting research into scientific, military, and commercial applications of computers. 
One of the people who interviewed him for the SRI job had been a year or two ahead of 
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Doug in the Ph.D. program at Berkeley, and Doug told him about his ideas of getting 
computers to interact with people, in order to augment their intellect. 

"How many people have you already told about that?" he asked Doug. 

"None, you're the first one I've told," said Doug. 

"Good. Now don't tell anybody else. It will sound too crazy. It will prejudice people 
against you." 

So Doug kept quiet about it. For about a year and a half, he earned his living and learned 
the ropes in the think-tank business and thought about putting his ideas into a written 
proposal. Then he told his superiors that he was willing to work hard to pay his way at 
the institute but he really had to have a framework to cultivate his idea -- an augmentation 
laboratory where people and machines could experiment with new ways of creating and 
sharing knowledge, or at least a project to describe exactly what an augmentation 
laboratory might be. There was some friction, but eventually he was given the go-ahead. 

The U.S. Air Force Office of Scientific Research, ever vigilant for new knowledge about 
how humans operate machines, provided a small grant. Doug finally got what he wanted -
- the freedom to explore a field in which he still had no colleagues. "It was lonely work, 
not having anybody to bounce the ideas off, but I finally got it written down in a paper I 
finished in 1962 and published in 1963." 

Total silence from the community greeted the announcement of the conceptual 
framework Engelbart had thought about and worked to articulate for over a decade. But 
the few people who happened to be listening happened to be the right people. Bob 
Taylor, a young fellow at NASA who was one of the bright technological vanguard of the 
post-Sputnik era, one of the new breed of research funders who didn't fear innovation as a 
matter of reflex, pushed some of the earliest funding of Doug's project. 

Fortunately, by that time another one of the few people who were able to understand 
Engelbart's vision, J. C. R. Licklider, was moving ahead with his ARPA funding blitz. As 
a result of Licklider's support, time-sharing was coming along rapidly. By the early 
sixties, some of the low-level hardware and software tools to build Doug's dreamed-of 
high-level methodological and conceptual structures were being tested. Licklider and 
Taylor thought Engelbart was just the kind of forward-thing researcher they 
wanted to recruit for the task of finding new and powerful uses for the 
computational tools their research teams were creating. They were particularly 
interested in the same paper of Doug's that the mainstream of computer science had 
chosen to ignore. 

The paper that attracted the attention of ARPA and met such a thundering silence from 
the wider community of computer theorists in 1963 was entitled "A Conceptual 
Framework for the Augmentation of Man's Intellect." In its introduction, Engelbart 
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presented the manifesto by which he meant to launch an entire new field of human 
knowledge:  

By "augmenting man's intellect" we mean increasing the capability of a man to approach a complex 
problem situation, gain comprehension to suit his particular needs, and to derive solutions to problems. 
Increased capability in this respect is taken to mean a mixture of the following: that comprehension can be 
gained more quickly; that better comprehension can be gained; that a useful degree of comprehension can 
be gained where previously the situation was too complex; that solutions can be produced more quickly; 
that better solutions can be produced; that solutions can be found where previously the human could find 
none. And by "complex situations" we include the professional problems of diplomats, executives, social 
scientists, life scientists, attorneys, designers -- whether the problem situation exists for twenty minutes or 
twenty years. We do not speak of isolated clever tricks that help in particular situations. We refer to a way 
of life in an integrated domain where hunches, cut-and-try, intangibles, and the human "feel for a situation" 
usefully coexist with powerful concepts, streamlined technology and notation, sophisticated methods, and 
high-powered electronic aids. 
It was no accident that "hunches, cut-and-try, intangibles," were listed early and "high-
powered electronic aids" was listed last. Although he knew that widespread access to 
digital computers was the only means by which our society could make use of an 
augmented knowledge system, Engelbart also understood that the hardware was a low-
level component of the total system he meant to augment. Human intellect uses tools, but 
the power of the human mind is not itself limited to the tools the human brain 
automatically provides. 

Our culture has given us sophisticated procedures for dealing with problems, procedures 
that augment our innate capacity for learning new things by giving us the benefit of what 
others before us have learned. These ways of doing things are the software that creates 
civilization. A member of a preliterate culture of the remote New Guinea highlands, for 
example, possesses the same innate mental capabilities as a Western city-dweller, but 
something else must be added to the repertoire of what that New Guinea highlander 
knows how to do before he can drive a car, check out a book from a library, or write a 
letter. 

The "something extra" Engelbart emphasized, is not a property of the tool. It isn't the 
nervous system of the individual that separates the "civilized" person from the 
"primitive." To certain cultures that we deem primitive, the most sophisticated urbanite is 
decidedly lacking in the necessary survival skills. If the cultural situation of the previous 
paragraph were reversed, the same ignorance on the part of the displaced person would 
be evident: If you drop a lifelong New Yorker into the New Guinea Highlands, don't 
expect him or her to know how to build a grass shelter or what to do in a tropical storm. 
Somebody who knows what to do in those situations has to teach survival skills to the 
newcomer, thus augmenting his or her innate capacities. It is here that the original 
augmentation of human intellect comes in -- the tools and procedures that 
cultures make available to individuals: 

Our culture has evolved means for us to organize and utilize our basic capabilities so that we can 
comprehend truly complex situations and accomplish the processes of devising and implementing problem 
solutions. The ways in which human capabilities are thus extended are here called augmentation means, 
and we define the four basic classes of them: 
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1. Artifacts -- physical objects designed to provide for human comfort, the manipulation of things or 
materials, and the manipulation of symbols. 

2. Language -- the way in which the individual classifies the picture of his world into the concepts that his 
mind uses to model that world, and the symbols that he attaches to those concepts and uses in consciously 
manipulating the concepts ("thinking"). 

3. Methodology -- the methods, procedures, and strategies with which an individual organizes his goal-
centered (problem-solving) activity. 

4. Training -- the conditioning needed by the individual to bring his skills in using augmentation means 1, 
2, and 3 to the point where they are operationally effective. 

The system we wish to improve can thus be visualized as comprising a trained human being together with 
his artifacts, language, and methodology. The explicit new system we contemplate will involve as artifacts 
computers and computer-controlled information-storage, information-handling, and information-display 
devices. The aspects of the conceptual framework that are discussed here are primarily those relating to 
those relating to the individual's ability to make significant use of such equipment in an integrated system.  

The biggest difference between the citizen of preliterate culture and the 
industrial-world dweller who can perform long division or dial a telephone is 
not in the brain's "hardware" -- the nervous system of the highlander or the 
urbanite -- but in the thinking tools given by the culture. Reading, writing, 
surviving in a jungle or a city, are examples of culturally transmitted human 
software. The hypothetical transplanted native, Engelbart points out, can move 
step by step through an organized program by which he or she may learn to 
drive a car or check out a book from a library. 

How do we adapt to new ways of thinking? Engelbart used the metaphor of a toolkit, and 
proposed that we organize our intellectual problem-solving tools in a hierarchy:  

It is likely that each individual develops a certain repertory of process capabilities from which he selects 
and adapts those that will compose the processes that he executes. This repertory is like a toolkit. Just as the 
mechanic must know what his tools can do and how to use them, so the intellectual worker must know the 
capabilities of his tools and have suitable methods, strategies, and rules of thumb for making use of them. 
All of the process capabilities in the individual's repertory rest ultimately on basic capabilities within him 
or his artifacts, and the entire repertory represents an integrated, hierarchical structure (which we often call 
the repertory hierarchy).  

As an example, Engelbart offered the process of issuing a memorandum -- a task that 
involves putting specific information in a formal package and distributing it to other 
people. The reason for writing the memo, the memowriter's role in the organization, the 
intended audience, the importance of the subject matter of the memo to the organization's 
goals -- these are the higher level components of the hierarchy. 

At an intermediate level are the skills of marshaling facts, soliciting opinions, thinking, 
formulating ideas, weighing alternatives, forecasting, making judgments, that go into 
framing the memo, and all the communication skills that go into putting the memo into 
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form. Toward the bottom of the hierarchy are the artifacts used to prepare the memo and 
the medium by which it is communicated -- typewriter, pencil, paper, interoffice mail. 

Engelbart proposed a hypothetical method for boosting the effectiveness of the 
whole system by introducing an innovative technology into a relatively low 
level of the hierarchy. "Suppose you had a new writing machine," he wrote, "a 
high-speed electric typewriter with some very special features." In a few words, 
he proceeded to describe what is known today as a "word processor." 

What might be the effect of such a machine on the memo-writing process? Engelbart's 
1963 speculations sound like advertising copy for word processing systems of the 1980s -
- and more: 

This hypothetical writing machine permits you to use a new process for composing text. For instance, trial 
drafts can rapidly be composed from rearranged excerpts of old drafts, together with new words or passages 
which you insert by hand typing. Your first draft may represent a free outpouring of thoughts in any order, 
with the inspection of foregoing thoughts continuously stimulating new considerations and ideas to be 
entered. If the tangle of thoughts represented by the draft becomes too complex, you can compile a 
reordered draft quickly. It would be practical for you to accommodate more complexity in the trails of 
thought you might build in search of the path that suits your needs. 

You can integrate new ideas more easily, and thus harness your creativity more continuously, if you can 
quickly and flexibly change your working record. If it is easier to update any part of your working record to 
accommodate new developments in thought or circumstance, you will find it easier to incorporate more 
complex procedures in your way of doing things. . . .  

The important thing to appreciate here is that a direct new innovation in one particular capability can have 
far-reaching effects throughout the rest of your capability hierarchy. A change can propagate up through 
capability hierarchy, higher-order capabilities can now reorganize to take special advantage of this change 
and of the intermediate higher-capability changes. A change can propagate down through the hierarchy as a 
result of new capabilities at the high level and modification possibilities latent in lower levels. These latent 
capabilities may have been previously unusable in the hierarchy and become usable because of the new 
capability at the higher level.  

While Engelbart was, in fact, suggesting that computers could be used to automate a low-
level task like typewriting, the point he wanted to make had to do with changes in the 
overall system -- the capabilities such an artifact would open up for thinking in a more 
effective, wider-ranging, more articulate, quicker, better-formatted manner. That is why 
he distinguished his proposed new category of computer applications by using the term 
augmentation rather than the more widespread word automation. 

From Engelbart's point of view, the fact that it took over fifteen more years for word 
processing to catch on was not as important as the fact that people continue to myopically 
concentrate on the low-level automation and ignore the more important leverage it makes 
possible at higher levels. The hypothesis he presented in the 1963 framework was 
that computers represent a new stage in the evolution of human intellectual 
capabilities. The concept manipulation stage was the earliest, based in biological 
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capabilities of the brain, followed by the stage of symbol manipulation based on speech 
and writing, and the stage of manual external symbol manipulation, based on printing. 

The computer-based typewriter was an example of the coming fourth stage of automated 
external symbol manipulation, to be brought about by, but not limited to, the application 
of computers to the process of thinking and communicating:  

In this stage, the symbols with which the human represents the concepts he is manipulating can be arranged 
before his eyes, moved, stored, recalled, operated upon according to extremely complex rules -- all in very 
rapid response to a minimum amount of information supplied by the human, by means of cooperative 
technological devices. In the limit of what we might now imagine, this could be a computer, with which 
individuals could communicate rapidly and easily, coupled to a three-dimensional color display within 
which extremely sophisticated images could be constructed, the computer being able to execute a wide 
variety of processes on parts or all of these images in response to human direction. The displays and 
processes could provide helpful services and could involve concepts not hitherto imagined (e.g., the 
pregraphic thinker would have been unable to predict the bar graph, the process of long division, or card 
file systems). 

. . . we might imagine some relatively straightforward means of increasing our external symbol-
manipulation capability and try to picture the consequent changes that could evolve in our language and 
methods of thinking. For instance, imagine that our budding technology of a few generations ago had 
developed an artifact that was essentially a high-speed, semiautomatic table-lookup device, cheap enough 
for almost everyone to afford and small enough to be carried on the person. Assume that the individual 
cartridges sold by manufacturers (publishers) contained the lookup information, that one cartridge could 
hold the equivalent of an unabridged dictionary, and that a one-paragraph definition could always be 
located by the average practices individual in less than three seconds. What changes in language and 
methodology might not result? If it were so easy to look things up, how would our 
vocabulary develop, how would our habits of exploring the intellectual 
domains of others shift, how might the sophistication of practical organization 
mature (if each person could so quickly and easily look up applicable rules), 
how would our education system take advantage of this new external symbol-
manipulation capability of students and teachers and administrators?  

At the end of the 1963 paper, Engelbart proposed that the hypothesis should be 
tested by constructing an augmentation laboratory in which humans could use 
new information processing artifacts to explore the new languages, methods, 
and training made possible by the computer systems then coming into existence 
in Cambridge, Lexington, Berkeley, and Santa Monica. Since the ultimate product 
was to be for everyone, not just computer experts, people who were involved in editing, 
designing, and other knowledge-related fields would have to be recruited to join the 
electrical engineers and programmers. Because the goal was to enhance the power of the 
human mind, and to learn how to introduce such enhancements to human organizations, a 
psychologist would also be needed. 

The laboratory itself would have to be a consciously designed bootstrapping tool, because 
the very tools this team would be constructing first were the tools needed to do their own 
jobs better. Before they could hope to augment other people's tasks, they had to augment 
their own jobs. Bootstrapping -- building the tools to build better tools, and 
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testing them on yourself as you go along, was a central component of 
Engelbart's strategy, intended to match the pace of anticipated developments in 
computer technology. SRI management had few illusions about obtaining the funding 
necessary to implement such a scheme. 

In 1964, Bob Taylor, who by that time had moved from NASA to ARPA, told Engelbart 
and SRI that the Information Processing Techniques Office was prepared to contribute a 
million dollars initially to provide one of the new time-sharing computer systems, and 
about a half a million dollars a year to support the augmentation research. It came as a 
surprise to Engelbart's superiors, who were eager to procure government contracts for 
developing new computer technologies, but who didn't exactly regard his grandiose plans 
for a mind-extending laboratory as their most promising candidate for large-scale 
funding. One can imagine the SRI brass pulling out the organization chart after the 
ARPA funders left, to find out who and where Doug Engelbart happened to be. 

Here was the support Engelbart had been seeking for years, coming right at the point 
where the conceptual framework for the system had already been worked out and the 
technology he needed was becoming available. The next step was to assemble the team 
who would build the first prototype. 

Perhaps the Augmentation Research Center's greatest effect on computer 
culture for generations to come was in the succession of remarkable people 
who passed through that laboratory and on to other notable research projects. 
Dozens of gifted individuals over the span of a decade dedicated themselves to 
putting into action the system Engelbart and Licklider had dreamed about in 
previous years. Many of those former Engelbart protégés are now leaders of 
their own research teams at universities or the R & D divisions of commercial 
computer manufacturers. 

The Augmentation Research Center (ARC) consisted of the "engine room," where the 
new time-sharing computers were located, a hardware shop where the constantly 
upgraded computer systems and experimental input-output devices were built and 
maintained, and a model "intellectual workshop" that consisted of an amphitheater-like 
space in which a dozen people sat in front of large display terminals, creating the 
system's software, communicating with each other, and navigating through dimensions of 
information by means of what was known as NLS (for oNLine System). 

NLS was an exotic and intoxicating new brew of ARPA-provided gadgetry, 
homebrewed software wizardry, and altogether new intellectual skills that were 
partially designed in advance and partially thrown together as the designer-subjects of the 
experiment went along. After four years of stumbling, backtracking, leaping forward, 
then more confidently exploring this new territory, after hardware crises and software 
crises and endless argumentation about how to go about doing what they all agreed ought 
to be done, NLS was beginning to fulfill the hopes its builders had for it. It was time to 
gamble. 
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Whenever he consulted the feeling in his stomach, Doug Engelbart had no doubt that it 
was a gamble. Sitting all alone on that stage in San Francisco, watching his support team 
scramble around the hastily woven nest of cables and cameras surrounding the base of the 
platform, facing an audience of several thousand computer experts, it was all too evident 
to Doug that any number of possible accidents -- a thunderstorm, a faulty cable, a 
concatenation of software glitches -- could effectively kill their future chances of 
obtaining research funds. 

But he had begun to lose his patience, waiting for decades for the rest of the world to 
catch on to something as important as augmentation. And his colleagues shrared 
Engelbart's confidence in the delicate coalition of people, electronic devices, software, 
and ideas they called the NLS system. 

Doug's painstakingly thought-out conceptual framework, the prototype hardware, 
systems he and Bill English developed, and his bootstrapping laboratory of systems 
programmers, computer engineers, psychologists, and media specialists were only 
corroborating what Doug had known for years -- computers can help intellectual workers 
think better. By the late 1960s, the problem lay in getting his ideas and the meaning of his 
team's accomplishments across to people in the wider computer world. 

The augmentation center, as planned, had grown to seventeen people by 1968. They were 
on their third upgraded computer system, and the software was evolving from the first 
crude experimental versions to a real working toolkit for information specialists. In a 
matter of months, the SRI Augmentation Research Center was due to become 
the Network Information Center for ARPA's experiment in long-distance 
linking of computers -- the fabled ARPAnet. 

In the fall of 1968, when a major gathering of the computer clans known as the 
Fall Joint Computer conference was scheduled in nearby San Francisco, Doug 
decided to stake the reputation of his long-sought augmentation laboratory in 
Menlo Park -- literally his life's work by that time -- on a demonstration so 
daring and direct that finally, after all these years, computer scientists would 
understand and embrace that vital clue that had eluded them for so long. 

Those who were in the audience at Civic Auditorium that afternoon remember how 
Doug's quiet voice managed to gently but irresistibly seize the attention of several 
thousand high-level hackers for nearly two hours, after which the audience did something 
rare in that particularly competitive and critical subculture -- they gave Doug and his 
colleagues a standing ovation. 

The audience, in the same room where the first "computer faire" for microcomputer 
homebrew hobbyists was held some years later, witnessed a kind of media 
presentation that nobody in the computer milieu had ever experienced before. 
State-of-the-art audiovisual equipment was gathered from around the world at the behest 
of a presentation team that included Stewart Brand, whose experience in mind-altering 
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multimedia shows was derived from his production of get-togethers a few years before 
this, held not too far from this same auditorium, known as "Acid Tests." 

Doug's control panel and screen were linked to the host computer and the rest of the team 
back at SRI via a temporary microwave antenna they had set up in the hills above Menlo 
Park. While Doug was up there alone in the cockpit, a dozen people under the direction 
of Bill English worked frantically behind the scenes to keep their delicately transplanted 
system together just long enough for this crucial test flight. For once, fate was on their 
side. Like a perfect space launch, all the minor random accidents canceled each other. For 
two hours, seventeen years ago, Doug Engelbart finally got his chance to take his 
peers -- augmentation pioneers and number crunchers as well -- on a flight 
through information space. 

Fortunately for the historical record, a film of the event was made. Those who were at the 
original event say that the sixteen-millimeter film is a poor shadow of the original show. 
During the original presentation, an advanced electronic projection system provided a 
sharply focused image, twenty times life sized, on a large screen. Doug was alone on the 
stage, the screen looming above and behind him as he sat in front of his CRT display, 
wearing the kind of earphone-microphone headsets that radar operators and jet pilots use, 
his hands resting on an unusual-looking control console connected to his chair. 

The specially designed input console swiveled so he could pull it onto his lap. A standard 
typewriter keyboard was in the center, and two small platforms projected about six inches 
on either side. On the platform to his left was a five-key device he used for entering 
commands, and on the platform to the right was the famous "mouse" that is only 
now beginning to penetrate the personal computing market -- a device the size of a pack 
of cigarettes, with buttons on the top, attached to the console with a wire. Doug moved it 
around with his right hand. 

In front of him was the display screen. The large screen behind him could alternate, or 
share, multiple views of Doug's hands, his face, the information on the display screen, 
and images of his colleagues and their display screens at Menlo Park. The screen could 
be divided into a number of "windows," each of which could display either text or 
image. The changing information displayed on the large screen, activated by his fingertip 
commands on the five-key device and his motions of the mouse, began to animate under 
Doug's control. Everyone in the room had attended hundreds of slide presentations before 
this, but from the moment Doug first imparted movement to the views on the screen, it 
became evident that this was like no audiovisual presentation anyone had attempted 
before. 

Engelbart was the very image of a test pilot for a new kind of vehicle that 
doesn't fly over geographical territory but through what was heretofore an 
abstraction that computer scientists call "information space." He not only looked 
the part, but acted it: The Chuck Yeager of the computer cosmos, calmly putting the new 
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system through its paces and reporting back to his astonished earthbound audience in a 
calm, quiet voice. 

Imagine that you are in a new kind of vehicle with virtually unlimited range in both space 
and time. In this vehicle is a magic window that enables you to choose from a very large 
range of possible views and to rapidly filter a vast field of possibilities -- from the 
microscopic to the galactic, from a certain word in a certain book in a certain library, to a 
summary of the entire field of knowledge. 

The territory you see through the augmented window in your new vehicle is not the 
normal landscape of plains and trees and oceans, but an informationscape in which the 
features are words, numbers, graphs, images, concepts, paragraphs, arguments, 
relationships, formulas, diagrams, proofs, bodies of literature and schools of criticism. 
The effect is dizzying at first. In Doug's words, all of our old habits of organizing 
information are "blasted open" by exposure to a system modeled, not on pencils 
and printing presses, but on the way the human mind processes information. 

When the new vehicle for thought known as Arabic numbers was introduced to the West, 
and mathematicians found that they didn't have to fumble with Roman numerals in their 
calculations anymore, the mental freedom must have been dizzying at first. But not 
nearly as dizzying as this. There is a dynamism of the informationscape that needs no 
explanation, that needs only to be experienced to be understood. In that sense, Doug 
knew he had no choice but to take the risk of putting it up on the big screen and letting 
his audience judge for themselves. 

Even the chewing-gum-and-bailing-wire version Doug was attempting to get off the 
ground in 1968 had the ability to impose new structures on what you could see through 
its windows. The symbolic domain, from minutiae to the grandest features, could be 
arranged at will by the informationaut, who watched through his window while he 
navigated his vehicle and the audience witnessed it all on the big screen. Informational 
features were reordered, juxtaposed, deleted, nested, linked, chained, subdivided, 
inserted, revised, referenced, expanded, summarized -- all with fingertip commands, A 
document could be called up in its entirety, or the view could be restricted to only the 
first line or first word of each paragraph, or the first paragraph of each page. 

One of the example tasks he demonstrated involved the creation of the presentation he 
was giving at the moment, from the outline of the talk to the logistics of moving their 
setup to the Civic Auditorium. The content of the information displayed on the screen 
referred to the lecture he was giving at the moment, and the lecture referred to the 
information on the screen -- an example of the kind of self-referential procedure that 
programmers call "recursion." 

Doug moved his audience's attention through the outline by the way he manipulated their 
"views" of the information. His manipulations maneuvered the screen display and the 
audience's consciousness through categories of information, zoomed down to 
subcategories, broke them into their atomic components, rearranged them, then zoomed 
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back up the hierarchy to meet the vocal narration at a key point in the story, when the 
words on the screen and the words coming from the narrator merged before branching off 
again. It was an appropriately dramatic presentation of a then-novel use of computers. 
While it appeared to be a radically sudden innovation to many of those in the audience, it 
was the culmination of careful experimentation at ARC that had already spanned most of 
a decade. 

It is almost shocking to realize that in 1968 it was a novel experience to see 
someone use a computer to put words on a screen, and in this era of widespread 
word processing, it is hard to imagine today that very few people were able to 
see in Doug's demonstration the vanguard of an industry. When time-sharing 
systems first allowed programmers to interact directly with computers, in the early 1960s, 
the programmers developed tools known as "text editors" to help them write 
programming code. (The first one at MIT had a hand-lettered sign that dubbed it 
"expensive typewriter.") But "word processing" for non-programmers was still far in the 
future, despite Engelbart's demonstration of its potential. 

The quality of video display technology in 1968 was also amazingly primitive by today's 
standards. The letters and numbers on Doug's screen looked as if they were handwritten -
- closer to crude swaths "painted" onto a radar screen than the crisp pixels we are 
accustomed to seeing today on video display terminals. 

In seeking a domain where a small success would mean a large boost in effectiveness, 
and where success would attract a large-scale research and development effort, Doug 
chose to augment the "humdrum but practical and important sorts of tasks" that 
occupy an increasing proportion of the people in our society: preparing, editing, 
and publishing documents. This area of document preparation and communication 
was but a small slice from the grand range of applications he envisioned, but it was one 
tool that the augmentation team itself needed immediately, and one that every laboratory 
and office in the world would want -- as soon as people understood that computers 
weren't just calculators. 

The seventeen members of the Augmentation Research Center, Engelbart explained 
during their 1968 show, were attempting to create a medium that would be useful to the 
other ARPA computer researchers and eventually to anyone who works with information. 
At the same time, this was a behavioral science experiment as well as a 
computer systems experiment, because the project team would be the subjects 
as well as the architects of the research. Making computers do what they 
wanted was only the beginning. The really difficult work was adjusting 
themselves to new ways of working and thinking. 

Consequently, one of the first projects was to create a system to make it easy for the 
members of the research team -- and eventually for other intellectual workers -- to 
compose, store and retrieve, edit, and communicate words, numbers, and graphics. "Text 
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editing" had to become more amenable to non-programmers and more suited for the 
expression of thoughts and composition of prose. 

They needed to invent display devices and adapt the computer and write the programs; 
then they had to use what they had invented to compose a description of the system. The 
hardware and software specialists worked on representing symbols on screens and storing 
them in the computer's memory. Then the communications specialists used the text 
editors to write the manuals to instruct future members of the growing project in the use 
of new tools. 

The text-editing system was the first stage of Doug's long-term plan. The actual use of 
the system to design and describe the next generation was the second stage. Both stages 
were accomplished by 1968. Even as early as 1968, NLS was not limited to what we now 
call a word processing system. The third-stage goal was to build an entire toolkit for 
intellectual tasks, and develop the procedures and methods by which those tools could be 
used, individually and collectively, to boost the performance of people who did 
information-related work. The toolkit would then be used to develop new modes of 
computer-aided human collaboration. 

Software was created to connect the text-editing system with a special kind of electronic 
filing arrangement that would serve as a unifying memory, record, and medium for their 
individual efforts. The software journal through which individuals and groups 
could have access to a shared thinking and communicating space had been in 
development since 1965-1966; it enabled individuals to insert comments into the group 
record of the augmentation experiments (or browse through them), and enabled 
programmers to trace the way system features had evolved. The journal, along with 
shared screen telephoning to enhance real-time, one-to-one communications, was part of 
the overall dialogue support system designed to help increase effectiveness of group 
communication and decision making. 

The idea of the journal predated the development of computer networks and 
teleconferencing, originating as it did with a dozen terminals connected to a single 
multiaccess computer. It was an important first try at "reaching through" the toolkit to 
engage in communication with another human user of the system. It was a theoretical 
precursor to the "electronic mail" medium that was to evolve when the ARPA 
network became operational in the early 1970s. When ARPAnet came along, connecting 
many computers in different locations into a shared computational "space," it wasn't such 
a shocking new medium to those few ARC pioneers who had been working on a smaller, 
localized version for years. 

The journal was designed to bring order to a stream of dialogues, notes, and publications 
generated in the process of building the system and finding out how to work it. Besides 
serving as an electronic logbook that would be useful to human factors specialists and 
systems programmers, the journal was meant to be a medium for a formal dialogue 
among users that would serve the same purpose as today's traditional libraries and 
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professional journals -- but would do so in such an amplified manner that it would 
become a uniquely powerful method of transmitting knowledge. 

For example, scientific journals in every field follow a form in which a paper describing 
research results is refereed, then published, after which subsequent papers can cite the 
previous paper. The record in any field of scientific knowledge -- and the forum in which 
the significance of findings is debated -- consists of a growing list of journal citations and 
accompanying text. It takes time for new innovation and comments to circulate, and it 
takes a relatively long time for individuals to thread their way through a branching 
history of citations. In the NLS version, it is very easy to jump directly and quickly from 
any article to the text of cited articles and back -- reducing to seconds or minutes 
procedures that would take hours or months in even the most efficient library/journal 
system. 

Publication and distribution are radically changed by a computerized system, since it is so 
easy to automatically notify everybody on a certain kind of reading list material matching 
their interest profile is now available. Distribution lists can be members of distribution 
lists -- you can designate a list to be the recipient of an announcement, and every member 
of the designated list will receive your message. Messages and articles can contain lists of 
citations, and catalogs and indices can be message forms of their own. Ideas and 
hypotheses could be conveyed by telling interested members of the community to read a 
certain list of cited articles in a particular order. 

This more formal and highly structured kind of intellectual discourse is essential to 
science, but is not the usual mode of communication used in the day-to-day affairs of 
ordinary citizens. As Licklider and Taylor, Doug's long-time colleagues and 
principal funders, pointed out in 1968, the new interactive computers and new 
intercomputer networks would make it possible to use tools like NLS to 
construct a computer-aided community in which not only intellect but 
communication could be augmented. 

At the most fundamental level, communication begins when two or more people need to 
share information, transact business, make decisions, resolve differences, reach 
agreements, solve problems, communicate plans. One of the early creations in the NLS 
collection of software levers and pulleys and skyhooks brought the other capabilities of 
the system to bear on communications. ARC developed a "mode of teleconferencing" 
whereby:  

. . . two or more people, positioned at separated display consoles, can link their displays so that all see the 
same image, and at option any can exercise control. When simultaneously talking on the telephone the 
resulting dialogue can be uniquely effective -- corresponding to an in-person conference around a collective 
assemblage of their scratch pads, working records, and individual support facilities. . . . 

But consider the great potential already existing when some of the participants -- or even a single 
participant -- can effectively use computer tools to work with the relevant materials and processes. There 
is a great value in merely conducting themselves as though they were 
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congregated at a magic blackboard -- each easily able to pull forth materials 
from his notes or familiar reference sources, copy across into his private 
workplace any material offered from what the other brings forth. 

In 1969, ARC became one of the original nodes of the ARPAnet system that connected 
defense-related research computers around the country into a network. The network, Bob 
Taylor's brainchild, used common-carrier communication lines to interconnect computers 
in different parts of the country. While the separate time-sharing communities were busy 
exchanging data, programs, and messages, the ARC people saw their participation in the 
network as an opportunity to put their knowledge to good use, and to extend their 
experiment beyond their SRI laboratory to include everyone around the country who was 
connected to the network. 

As the network grew, ARC branched out from its primary activity of continually 
redesigning itself. It began serving as the Network Information Center, offering 
referencing and organizing services for the distributed community of ARPAnet users. No 
longer languishing in a half-forgotten Quonset somewhere on the huge SRI 
grounds, the augmentation laboratory, equipped with the latest time-sharing 
hardware, was by 1970 the proud subject of VIP tours. 

After so many years of solitary envisioning, Engelbart had become even more optimistic 
about the ultimate significance of their enterprise than he had been when he started. In the 
spring of 1970 he told his colleagues at the Interdisciplinary conference on multi-access 
Computer Networks:  

. . . It has been my business to struggle with these concepts for two decades now, and the signs that I read at 
least tell me that the changes in our ways of thinking and working will be more pervasive and extreme than 
ANY OF US appreciates -- a revolution like the development of writing and the printing press lumped 
together. . . . 

It will take explorers of this domain decades even to map its currently visible dimensions. The real rush 
hasn't begun: this Conference is a meeting of suppliers looking for the prospector trade; we haven't really 
been giving attention to the developments that will follow the prospecting. 

My research group is now moving into a next stage of work that we call "team augmentation." 
Here, instead of just the individual facilitating his private domain searching, 
studying, thinking and formulating, as his office place provides for him, we are 
exploring what can be done for a team of "augmented individuals" who have in 
common a number of terminals, a set of computer tools, working files, etc. (as 
we do), to facilitate their team collaborations.  

The problem-solving assistance Engelbart had dreamed about alone in the 1950s became 
the "integrated working environment" he proposed in 1963, which in turn grew into the 
toolbuilders' toolkit that he and his small group of colleagues used to build an 
"intellectual workshop" throughout the remaining seven years of the decade. By the early 
1970s, the wider community of ARPA-funded computer researchers and representatives 
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of the business world were joining the bootstrapping process. Paradoxically, just when 
their leader decided that "team augmentation" would be their goal, his own team began to 
react negatively to growing pressures -- technological, psychological, and social. 

Doug had always warned that "the larger augmentation system is much more complex 
than the technological 'subsystem' upon which it depends," and the 1970s were the era 
when ARC began to practice what Engelbart had preached. During the first decade of the 
laboratory's existence, computer technology had progressed at an astonishing pace, and 
the SRI crew were doing their utmost to use the innovations as quickly as they came 
along. 

The "rule of two" (that computer power would double every two years) and the 
Engelbart-induced zeal of the augmentation team kept them fueled for an effort to 
bootstrap and continually adjust themselves to the capabilities of their upgraded tools -- 
an effort that required extraordinary intensity. The bootstrapping and readjusting 
continued with unabated enthusiasm, at least until the early 1970s, when the idea of 
building a system that was meant to "transcend itself every six to eight months" to keep 
pace with hardware and software advances turned out to be more pleasant to contemplate 
than to carry out. It had been a challenging and exhilarating to build this new system for 
augmenting thought -- but it wasn't as much fun having one's work habits augmented at a 
forced-march pace. 

When both the old-timers and newcomers to the growing project faced the task 
of learning new roles, changing old attitudes, adopting different methods, on 
regular basis, just because the system enabled them to do so, the great 
adventure became more arduous than any of the ARC pioneers/experimental 
subjects had anticipated. So a psychologist was brought in to consult about those parts 
of the system that weren't found in the circuitry or software, but in the thoughts and 
relationships of the people who were building and using the system. 

Dr. James Fadiman joined ARC as an observer-catalyst-therapist. Fadiman was 
particularly interested in the ways human consciousness and behavior change in new 
situations, and it didn't take him long to realize that the process of "being augmented" 
was in fact a new, nonchemical form of altered consciousness. 

Several of the things Fadiman learned about the "augmentation experience" have taken 
more than a decade to filter out to people who design computers for nonexperts. One 
thing he learned almost immediately was that most people resist change, especially in the 
workplace, and resistance works both ways -- people who are resistant to learning an 
augmentation system are equally resistant to giving it up once they have adopted it. The 
initial resistance is partially grounded in a general fear of the unknown. 

Doug Engelbart, of course, saw these things on his own scale, and through the eyes of an 
engineer. There would be rough spots, software and interpersonal bugs, arguments and 
conflicts, to be sure -- but the master plan was progressing nicely, considering all those 
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years he had worked alone. The toolkit had become a workshop, and they knew the 
workshop indeed worked because they had been their own guinea pigs for a decade. 

In the same 1970 address in which he referred to the multiaccess computing community 
as a "meeting of suppliers looking at the prospector trade," Engelbart also predicted 
that the future would see "a steadily increasing number of people who spend a 
significant amount of their professional time at terminals," and speculated that 
the future of dispersed personal augmentation systems linked together into 
network communities would create new kinds of societal institutions: "In 
particular, there will emerge a new 'marketplace,' representing fantastic wealth 
in commodities of knowledge, service, information, processing, storage, etc."  

In his usual forge-ahead manner, Engelbart was already bringing members of the 
business community into the ARC experiment. Business managers and management 
scientists had been working at ARC, experimenting with using NLS tools to manage the 
steadily growing ARC project. In proper bootstrapping style, they looked at their attempts 
to apply the system to their own research management as yet another experiment. Richard 
Watson and James C. Norton worked closely with ARC to develop their experimental 
discoveries into a system that would be usable by people who were not computer experts 
but whose occupations involved the manipulation of information. 

Sometime in the early 1970s, Engelbart was inspired by a book, just as he had been 
enthused by magazine articles by Bush and Licklider in years past. This time, it was the 
theory proposed by business management expert Peter Drucker in the late 1960s. 
Knowledge, by Drucker's definition, is the systematic organization of information; a 
knowledge worker is a person who creates and applies knowledge to productive 
ends. The rapid emergence of an economy based primarily on knowledge, 
Drucker predicted, would be the most significant social transformation of the 
last quarter of the twentieth century. 

Drucker noted something about the future of knowledge in the American economy that 
seemed to converge, from an unexpected but not unpredictable direction, with the course 
Engelbart had plotted for the augmentation project at the beginning of its second decade. 
Drucker was one of the first of a growing number of social scientists who have claimed 
that an examination of labor statistics reveals a great deal about the role of knowledge 
work in everybody's future. 

In 1973, ten years after his solo "Framework . . . ," Engelbart, Watson, and Norton 
presented a paper on "The Augmented Knowledge Workshop" to the National Computer 
Conference. Acknowledging their debt to Drucker's ideas, the authors pointed out that the 
special computer systems that had been evolving at ARC were designed to alleviate the 
problems associated with "the accelerating rate at which knowledge and knowledge work 
are coming to dominate the working activity of our society': 
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In 1900 the majority and the largest single group of Americans obtained their livelihood from the farm. By 
1940 the largest single group was industrial workers, especially semiskilled machine operators. By 1960, 
the largest single group was professional, managerial, and technical -- that is, knowledge workers. By 
1975-80 this group will embrace the majority of Americans. The productivity of knowledge has already 
become the key to national productivity, competitive strength, and economic achievement, according to 
Drucker. It is knowledge, not land, raw materials, or capital, that has become the central factor in 
production.  

Noting Drucker's use of terms such as "knowledge organizations" and "knowledge 
technologies," Engelbart, Watson, and Norton specified an augmented knowledge 
workshop that was nothing less than a totally redesigned working environment for 
everybody in the "knowledge sector." The authors acknowledged that ordinary 
knowledge workshops -- offices, boardrooms, libraries, universities, studios -- 
have existed for centuries. Augmented knowledge workshops, however, existed 
only as prototypes, and would not come into widespread usage until the 
technologies pioneered at ARC (and by then, at a new place across the creek, 
called PARC) grew economical enough to sell as office equipment. This was the 
origin of an idea that was later adapted by others in a truncated version known as "The 
Office of the Future." 

The authors described the technology they had built and used for augmenting their own 
knowledge as individuals and in groups, but emphasized that the tools were only the first 
part of a total transformation of the system -- including changes in methods, attitudes, 
roles, lifestyles, and working habits. They knew from their own experience that the 
psychological and social adjustments would be the most intense and volatile changes set 
off by the introduction of these systems into existing organizations. 

In 1975, after twelve years of continuous support, ARPA dropped ARC. The staff quickly 
shrank from a high of thirty-five to a dozen, then down to a few, and finally down to 
Doug Engelbart and a large amount of software. A decade of useful work is an unheard 
of length of time in the hyperaccelerated world of software technology, but bootstrapping 
had kept NLS continually evolving as it expanded its usefulness, as it moved up to 
machines with larger memories and faster processors, and as the community thought of 
new things to do with it. 

Even before ARPA drastically reduced its funding, ARC had started a subscription 
service to several corporations who wanted to experiment with using the services of the 
augmentation system. The way Engelbart saw it, it was time to bring the system out of 
the research world, after its extended gestation, to test it on a community of real-world 
users. The way SRI saw it was that the whole project was obviously finished as a magnet 
for research funds, and they might as well sell it. In 1977, SRI sold the entire 
augmentation system to Tymshare Corporation, and Engelbart went with it. The system, 
renamed "Augment," is now marketed by Tymshare as one of their office automation 
services. 

Nobody disputes that Engelbart's vision was the single factor that stayed stable through 
twenty of the most turbulent years of computer science, and those few colleagues who 
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know of his importance to the evolution of computing are loathe to speak unkindly of 
him, yet the tacit consensus is that Doug Engelbart the visionary allowed 
himself to remain fascinated by an obsolescent vision. NLS was powerful but 
very complex, and the notion of a kind of knowledge elite who learned 
complex and difficult languages to operate information vehicles is not as 
fashionable in the world of less sophisticated but more egalitarian personal 
computers created by Engelbart's students. 

The twelve years of ARC's heyday at SRI, from 1963 to 1975, were technologically wild 
years. That period was one of enormous historical, social, and cultural upheavals, as well. 
Mistakes, conflicts, blind alleys, and other pitfalls were unavoidable during the course of 
a project that began in the Kennedy administration and continued throughout the years of 
the Vietnam war, campus revolts, assassinations, the emergence of the counterculture, the 
advent of women's liberation, Watergate, and ended during the Carter administration. 

As individuals, and as a group, ARC wasn't immune to the conflicts that affected the rest 
of the culture, although it was privy to its own mutated forms of it. Before the 
counterculture made its media splash and thousands of affluent American offspring 
started acting weird and growing their hair long, places where powerful computers 
were to be found had already spawned their own brand of weirdo -- the hacker. 
The advent of this new subculture within the computer subculture was not the 
direct cause of ARC's downfall, but it was symptomatic of the problems 
Engelbart faced in the 1970s. 

Engelbart found himself caught between the conservatism of his employers and the 
radicalism of his best students. ARC had seemed a bit strange to the old-line data-
processing types at SRI, and these new people hanging out at Doug's lab added cultural 
as well as technological differences to an already strained relationship. To say that SRI is 
conservative is an understatement. Although some of the subjects their researchers pursue 
can be unorthodox, their clients are such straitlaced institutions as the Defense 
Department, the intelligence community, and the top one hundred corporations. 

Hackers were barely tolerated in the long, clean, high-security halls of SRI. But when the 
counterculture started to infiltrate, and the rumors started about some of the hackers 
augmenting their consciousness in more ways than one, SRI brass became extremely 
uncomfortable. 

There was trouble from within, as well as from above. Some of the experiments in "new-
age" social organization, encouraged by Engelbart himself, threatened to split the ARC 
group into two camps -- those who were still techies at heart, concerned only with the 
advancement of the state of computing art, and those who saw augmentation as an 
integral part of the wider countercultural revolution that was going on around them. And 
there were those who felt that even Doug's technological ideas, although they might have 
once been radical and futuristic, were becoming outmoded. The idea of augmentation 
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teams and high-level time-shared systems began to seem a bit old-hat to the younger 
folks who were exploring the possibility of personal computers. 

In the early 1970s, some of Engelbart's first and most important recruits, who had helped 
him create the first NLS system, left SRI for PARC, the new research center Xerox was 
putting together. The new Xerox facility was a hotbed of augmentation-oriented thought, 
but with a major difference -- the advent of large-scale integrated circuitry made it 
possible to dream of, and even design, high-powered computers that could fit on an 
individual's desk. This emphasis on one person, one computer made for important 
philosophical and technical differences with Engelbart's approach. 

For a while, Engelbart at SRI and his former students at Xerox were engaged in 
collaboration, but eventually PARC and ARC drifted apart. Doug still dreamed of 
creating augmentation centers in universities and industries, providing a service for any 
team of people who worked with information. The former ARC members were looking 
forward to an even wider potential computer-using population. The idea at Xerox was to 
use the new integrated circuit technology to create computers more powerful than the 
previous generations of minicomputers -- and to devote an entire computer to each 
person, instead of sharing it among thirty or forty users. 

PARC, as we shall see, went on to become the new mecca for those who saw the 
computer as a tool for augmenting the human intellect. ARC never seemed to make it to 
the promised land, and the former point-man for radical technology seemed to be more 
and more isolated in an interesting but less than influential backwater. As more and more 
of Engelbart's earlier dreams became realities in other institutions, this judgment seemed 
to be less than fair. It is impossible to tell if there would have been a PARC if there hadn't 
been an ARC, and while the miniaturization revolution made personal computers 
inevitable in a technical sense, there is good reason to question whether the kind of 
personal computing that exists today would ever have been developed if it had not been 
for the pathfinding work accomplished by Engelbart and his colleagues. 

Doug Engelbart and the people who helped him build ARC did not succeed in building a 
knowledge workers' utopia. Some hackers do seem to be pathologically attached to 
computers. These facts might have very little to do with the way other people will use the 
descendants of the tools they created. In fact, if you think about it, some of the wildest 
and woolliest of the MAC and ARC hackers were following in a long tradition of people 
who weren't exactly run-of-the-mill citizens -- from Babbage and Lovelace to Turing and 
von Neumann. 

It must be remembered that MAC and ARC were only part of a larger effort to raise 
computing to a whole new level, and hackers weren't the only scientist-artisans involved 
in that effort. Whatever future historians decide about the personalities of the people 
involved in carrying out this unprecedented exercise in planned breakthrough, they will 
have to consider the role of the hackers who created time-sharing, computer 
networks, and personal computers in the 1960s and early 1970s, not out of sick 
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obsession or in-group frivolity, but out of a serious desire to construct a new 
medium for human communication. 

For the time being, Doug Engelbart still works away at his original goals, adapting the 
core of NLS to the new kind of computers that have come to use in the 1980s. To 
Tymshare Corporation's customers, the Augment system seems less science-fiction-like 
and more practical in this age of office automation. People in the business world are 
beginning to pay attention to what Doug is saying, for the first time since he 
started saying it, decades ago. 

Still, Doug is neither rich nor famous nor powerful -- not that these were ever his goals. 
All he seems to hunger for is all he ever hungered for -- a world that is prepared 
for the kind of help he wants to give. Ironically, his office at Tymshare in 
Cupertino, California, is merely blocks away from the headquarters of Apple 
Corporation, where icons and mice and windows and bit-mapped screens and 
other Engelbart-originated ideas are now part of a billion-dollar enterprise.  
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Chapter Ten: 
The New Old Boys from the ARPAnet 
Bob Taylor's office window at Xerox Corporation's Palo Alto Research Center (PARC) 
overlooked the red-tiled towers of Stanford and the flat roofs of research parks stretched 
out to the horizon. The electronic window next to his desk overlooked another kind of 
world. While he started talking to me, he was also interacting with colleagues in his 
building and elsewhere in the global information community. 

In 1983, it was not unusual to see an executive, especially a manager in a 
computer research organization, using a personal computer in his office. The 
unique thing about this personal computer was that it was an Alto -- the first 
personal computer. Taylor and his group had been using it since 1974. A small 
cable connected the Alto to the Ethernet -- a medium that linked the researchers 
at PARC with each other and with colleagues around the world.  

The screen was taller than most computer displays, and it looked different from other 
computer screens, even when seen from across the room. Instead of a single screen-
sized frame filled with numbers or letters or graphs, there were a number of 
squares of various sized, known in Xerox parlance as windows, that looked like 
overlapping pieces of paper on a desk. The symbols and images were also distinctly 
sharper than what I was accustomed to seeing on a computer screen. 

The mouse, an update of Engelbart's innovation, was connected to the Alto 
with a thin wire. As Taylor slid the mouse around the desk surface next to the 
screen, a small dark pointer shaped like an arrow moved around the screen. 
When he clicked one of the buttons on top of the mouse or moved the pointer into a 
margin, the pointer changed shape and things happened on the screen. In 1984, Apple 
corporation's Macintosh computer introduced a mass market to this way of handling an 
electronic desktop. To Taylor, it wasn't particularly futuristic. Altos and Ethernets had 
been in operation since 1974 around here. 

By 1983, Bob Taylor was only half-satisfied with his progress toward what he and a few 
others set out to achieve twenty years ago, because he believed that the new technology 
was only halfway built. Despite the fact that the office he was sitting in, the electronic 
workstation at his fingertips, and the research organization around him were functioning 
examples of what the augmentation community dreamed about decades ago, Taylor 
thought that it might take another ten or twenty years of hard work before the 
interactive informational communities foretold by Bush and Licklider would 
truly affect the wider population. 

In 1965, at the age of thirty-three, Robert Taylor worked out of his office in the Pentagon, 
as deputy director, then as director, of the ARPA Information Processing Techniques 
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Office. His job was to find and fund research projects involving time-sharing, artificial 
intelligence, programming languages, graphic displays, operating systems, and other 
crucial areas of computer science. "Our rule of thumb," he remembers, "was to fund 
people who had a good chance of advancing the state of information processing by an 
order of magnitude." 

Bob Taylor was also responsible for initiating the creation of the ARPAnet -- the 
prototype network community of computers (and minds) created by the Department of 
Defense, an effort that began in 1966 and became an informal rite of passage for the 
nucleus of people who are still advancing the state of the computing art. Larry Roberts, 
who was responsible for getting the network up and running, succeeded Taylor when 
Taylor left ARPA in 1969. After a year at the University of Utah, Taylor joined the 
research effort Xerox Corporation was assembling near Stanford. 

In 1970, a combination of growing opposition to the Vietnam war, and the 
militarization of all ARPA research, meant that an extraordinary collection of 
talent in the new fields of computer networks and interactive computing were 
looking for greener pastures at a time when one corporation decided to provide 
the greenest pastures imaginable. 

In 1969, Peter McColough, CEO of Xerox Corporation, announced his 
intention to make Xerox "the architect of information" for the future. To that 
end, a research organization was assembled in Palo Alto, in the early 1970s. McColough 
put a man named George Pake in charge. One of the first things Pake did was hire the 
best long-term computer visionary, research organizer, and people-collector he could find 
-- Bob Taylor. At first, the newly recruited engineers, hackers, and visionaries worked in 
temporary quarters located in the Palo Alto flatlands, near the Stanford University 
campus. In the mid 1970s construction began on a prime piece of ground above Hewlett-
Packard, next to Syntex, in that fertile enclave known as "The Stanford Industrial Park." 

If there was ever a model environment for the technological cutting edge of the 
"knowledge sector," PARC was it. From the physicists in the laser laboratories and 
the engineer-artisans in the custom microchip shops to the computer language designers, 
artificial intelligence programmers, cognitive physiologists, video jockeys, sound 
engineers, machinists, librarians, secretaries, cooks, janitors, and security guards, you got 
a nice, model-utopian feeling from everybody you encountered. 

The physical plant itself is an inescapable exercise in innovation. It took me a 
while to stop thinking of the place as being upside down. Since the terraced glass-
and-concrete structure was built halfway embedded in Coyote Hill, Zuni Pueblo style, the 
main entrance is on the top floor. To get to the second floor from the ground floor, you go 
down. The linked quadrangles of offices, laboratories, and meeting rooms wind around 
atriums and gardens. The cafeteria overlooks Palo Alto; you can take your tray out to the 
terrace and look down on the bay from the vantage of this twenty-first-century cliff 
dwelling. 
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Off the corridors that wind around the quadrangles are office cubicles, many with their 
doors open. Inside the open cubicles, various people talk on telephones or stare at their 
distinctively oblong Alto screens. Some cubicles have plants, posters, bean-bag chairs 
(advertisement), stereos, bicycles. They all have bookshelves with rows of books and the 
bright blue and white binders used on the reports PARC publishes for the outside world. 
Many of the cubicle dwellers are young. A larger proportion of them than you might 
expect are women. It has always been a multinational-looking crowd. 

I had no problem distinguishing Taylor from the assorted scientists, engineers, professors, 
hackers, longhairs, and boy and girl geniuses around him. The few differences in style 
were subtle but visible, nevertheless. While many of his colleagues opt for sandals, down 
jackets, techno-hippie ponytails, blue jeans, and rumpled cords with or without bicycle 
clips, Taylor is likely to be found in a pressed tweed jacket and unrumpled slacks. His 
blond hair is casual but neat. When he's trying to see if you are following his line of 
thought, he tilts his forehead in your direction and targets you with pale blue eyes over 
what would pass for granny glasses if his shirt were denim instead of oxford cotton. He 
smiles often, sometimes as a form of punctuation. A trace of Texas drifts into his voice at 
times. 

It is Taylor's belief that the idea of personal computing was a direct outgrowth of what 
Licklider started in the early 1960s with time-sharing research. Time-sharing, like the 
first high-level languages, was a watershed for computer science and for the 
augmentation approach. It also created a new subcommunity within the 
computation world, a community of interests that cut across the boundaries of 
military, scientific, academic, and business computing. It was a relatively small 
subculture within the larger community of computer scientists and computer systems 
builders. They were bonded by a common desire for a certain kind of computer they 
wanted for their own use, and by a decade of common experiences as a part of the ARPA 
research effort to build the kind of computers they were then using. Many of the time-
sharing veterans who started out as undergraduate hackers at project MAC or as ARPA-
funded engineers in Berkeley and Santa Monica were to meet later, in the research 
sanctums of Bell, SRI, Rand, and (mostly) at PARC. 

Time sharing was an early and effective application of the philosophy that the 
existing means of using computers should be tailored to the way people 
function, rather than forcing people who want to use them to conform to 
mechanical constraints. Without the development of multiaccess computing in 
the early sixties, the idea of personal computing would never have been more 
than a dream. 

In the early 1960s, data processing was what one was expected to do with a computer, 
and one hardly ever did it directly. First, a program and its raw data had to be converted 
to a shoebox full of punched cards. The cards were delivered to a data processing center, 
where a system administrator decided how and when they were to be fed into the main 
computer. (These fellows were, and still are, a rich source of anecdotes in support of the 
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"programming priesthood" mythology.) You came back an hour or a day or a week later 
and retrieved a thick printout and a hefty bill. The keypunch-submit-wait-retrieve ritual 
was called "batch processing." 

By 1966, groups in California and Massachusetts were well on the way toward raising the 
art of computer programming to a high enough level to do some truly interesting things 
with computers. Licklider and a few others suspected that if they could make the power 
of computers more directly accessible to people writing and running programs, 
programmers might be able to construct new and better kinds of software at far greater 
speed than heretofore possible. 

Among the capabilities that came with the increasingly sophisticated electronic hardware 
and software were powers to model, represent, and search through large collections of 
information. With sufficient speed and memory capacity, computers were gaining the 
power to assist the creative aspects of communication. But serious obstacles had to be 
overcome to bring that power out where people could use it. 

It is hardly possible to interact dynamically with your program when you have to dump 
boxes of punchcards into readers, then decipher boxes of printout. Since a large part of 
the process of building a program is a matter of tracking down subtle errors in complex 
lists of instructions, the batch processing ritual put an effective limit on how much 
programmers could do, how fast they could do it, and the quality of the programs they 
could produce. 

Batch processing created two problems: The computers could handle only one 
program (and one programmer) at a time, and programmers weren't able to interact 
directly with the computer while their programs were running. Time-sharing was made 
possible because of the enormous gap between the speed of computer operations and the 
rate of information transfer needed to communicate with a human. Even the fastest typist, 
for example, can enter only a single keystroke in the length of time it would take the 
computer to perform millions of operations. Time-sharing gives each of the 20, 50, or 
100 or more people who are using the computer the illusion that he or she has the 
computer's exclusive "attention" at all times, when in reality the computer is switching 
from one user's task to another's every few millionths of a second. 

When the first programmers gained interactive access to the computer, they also gained a 
new freedom to create ever more powerful programs and see the results more quickly 
than ever before. Programmers of the first multiaccess computers of the sixties were able 
to submit programs a piece at a time and receive responses a piece at a time, instead of 
trying to make the whole programming job work, for better or worse, in a single batch. 
By eliminating the "wait and see" aspect of batch-processing, time-sharing 
made it possible for programmers to treat their craft as a performing art. 

"When I became director of the ARPA Information Processing Techniques Office, the 
time-sharing programs were already running," Taylor recalls, "but they weren't complete, 
so the work continued while I was director. It was clear, though, that this was an 
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important breakthrough in information processing technology, so I became involved in 
the technology transfer between the different experimental systems, and eventually to 
military and civilian computer applications. 

"We came up against some rigid attitudes when we talked to many people in the industry. 
IBM ignored the ARPA stuff at first. They simply didn't take it seriously. Then GE 
agreed to cooperate with MIT and Bell Laboratories to develop and market a large time-
sharing system. IBM said, 'Whoops, something's happening here,' and they went off with 
a crash project to retrofit one of their 360 systems to time-sharing. They took orders for a 
few and the system bombed. They couldn't make the software work because hadn't been 
down the same roads that the ARPA funded groups had been down years before." 

Time-sharing research caused a kind of schism in the corporate research field. 
The first-generation priesthood seemed to be missing out on the inside action, for a 
change. Companies that paid attention to the time-sharing experience gained in the long 
run. It made Digital Equipment the "second name" in the industry. DEC paid attention to 
the ARPA-funded work and hired people when they got out of school, and profited from 
time-sharing. 

The first thing Taylor went after, once the time-sharing project was on its way to 
completion, was a way of interconnecting the time-sharing communities. He had a 
privileged overview of the then-fragmented computer research world, since a good deal 
of his time was spent traveling to universities and think tanks, finding and funding 
researchers. Progress in the separate subfields of computer research was accelerating 
through the early 1960s. By 1966, the time was approaching when the pieces of the 
puzzle would be ready for assembly, and the separated teams would have to be in close 
communication. 

"Within each one of the time-sharing communities people were doing a variety of 
different kinds of computer research," says Taylor, "so the overall project of making the 
time-sharing system itself work was much more global than any one of the individual 
research fields that were being explored by different members of the time-sharing 
community -- AI research, computer hardware architecture, programming languages, 
graphics, and so forth. 

"We were surprised time and time again by applications of the time-sharing 
system that nobody planned but somebody invented anyway. The ability to have 
files and resources within a time-sharing system was one difficult problem to be solved. 
On the way to solving it, people discovered a new way of communicating with each other 
-- something that was unexpected and became a unique medium in the research 
community." Fifteen years since computer jockeys started having fun with it, that 
medium has become the commercial version known as "electronic mail." 

Taylor saw the necessity of connecting to one another those isolated research 
communities that Licklider had seeded and Sutherland had nurtured. Many of the people 
in related fields but different institutions knew of each other, and many more did not. By 
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1956-1966, ARPA was supporting most of the nonindustrial systems research in the 
country, and thus Bob Taylor and his colleagues had a more up-to-date and 
comprehensive picture of the state of computer research than any individual researchers. 

The people Taylor funded then undertook the planning and creation of a 
network of computers, located in different parts of the country, linked by 
common-carrier communication lines, capable of sharing resources and 
interacting remotely with the growing community of computer researchers. The 
people who were to build and ultimately make use of the system began to get together in 
person to talk about the technology needed to link resources in the manner they 
envisioned. Instead of working in isolation, a small group of leaders from the time-
sharing research effort began to work in concert to design the first on-line, interactive 
communities. 

A truly interoperating community capable of freely sharing resources across the 
boundaries of individual machines or geographical locations was more difficult to bring 
into existence than is suggested by the simplified general idea of plugging computers 
together via telephone lines. Very serious hardware and software problems had to be 
solved, and the "user interface" where the person meets the machine had to be further 
humanized. 

Every year, starting in 1966, following a tradition established by Licklider and 
Sutherland, Taylor called a meeting of all the principal investigators of all his projects. It 
would be held in a dramatic place far removed from the usual locales of Cambridge, 
Berkeley, or Palo Alto. With all these meetings, Taylor, who was neither an engineer 
nor a programmer (he was, in fact, a philosophy major and an experimental 
psychologist by training), began the all-important mixing and sifting of ideas he knew 
would be necessary to the cohesion of such a large, dispersed, and ambitious project. 

"I constructed the meetings so they all had to get to know one another and 
argue with one another technically in my presence," Taylor recalls. "I would 
ask questions that would force people to take sides on technical issues. Lasting 
friendships were built from the give and take. I asked them difficult questions. 
Then, after they went back to their laboratories and campuses, their 
communications increased in both quality and quantity, because they knew 
each other." 

Taylor also initiated annual conferences of graduate students. The best graduate students 
of the old ARPA researchers had meetings of their own, away from the "older" folks like 
Taylor, who was, after all, in his midthirties. Like the bands of roving builders who 
planned the Gothic cathedrals of Europe, many of the computer-system builders who 
participated in the ARPA grad students' meetings were to meet again later at SAIL 
(Stanford Artificial Intelligence Laboratory) and PARC, and later still at Apple and 
Microsoft. 
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Taylor's idea of connecting the researchers by connecting their computers was inspired 
by a phrase he read in one of Licklider's 1966 papers, in which he proposed the idea of a 
very large-scale time-sharing system that he called "an intergalactic network." Taylor 
took it a step farther: If you could build a communication network, why not a computer 
network? 

Instead of building larger numbers of longer-range communication lines between 
terminals and their time-sharing systems, Taylor saw potentially greater benefits in 
creating technology for different time-sharing systems to communicate with each other 
over long distances. Taylor sold ARPA on he idea, then hired a young Lincoln Lab 
researcher named Larry Roberts as project manager. The meetings and separate research 
projects continued for three years, before the first bits were sent over the ARPAnet in 
1969. By this time, Taylor's opposition to the Vietnam war was growing, and he was 
reasonably certain that the project he had initiated was nearing completion, so he left 
ARPA. 

While the number crunchers, batch processors, and electronic bookkeepers continued to 
hold sway over the computer industry, the core members of the interactive computing 
community were beginning to experiment with their computers-and with themselves -- 
through this unique new prototype of an interconnected computer community. It quickly 
turned out, to the delight of all participants and to nobody's surprise, that the 
experimental network was evolving into a stimulating environment for 
communicating and sharing research information and even for transporting and 
borrowing computer programs. 

The implications for human communication that were beginning to emerge from the 
experience of this computer-connected research community were discussed in an article 
published in April, 1968, titled "The Computer as a Communication device." The 
principal authors were none other than J.C.R. Licklider and R. Taylor. 

Although the Department of Defense had an obvious interest in fostering the 
development of the technology they created in the first place, and the interconnection of 
computers had certainly become a necessity in conducting advanced weapons research, 
Licklider and Taylor were not applying the network idea to the Strategic Air 
Command or nuclear weapons research, but to the everyday communications of 
civilians. 

The authors emphasized that the melding of communication and computation 
technologies could raise the nature of human communication to a new level. They 
proposed that the ability to share information among the members of a 
community and the presence of significant computational power in the hands of 
individuals were equal components of a new communicating and thinking 
environment they envisioned for the intermediate future. The implications were 
profound, they felt, and not entirely foreseeable: "when minds interact, new ideas 
emerge," they wrote. 
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The authors did not begin the article by talking about the capabilities of computers; 
instead, they examined the human function they wished to amplify, specifically 
the function of group decision-making and problem-solving. They urged that the 
tool to accomplish such amplification should be built according to the special 
requirements of that human function. In order to use computers as communication 
amplifiers for groups of people, a new communication medium was needed: "Creative, 
interactive communication requires a plastic or moldable medium that can be modeled, a 
dynamic medium in which premises will flow into consequences, and above all a 
common medium that can be contributed to and experimented with by all." 

The need for a plastic, dynamic medium, and the requirement that it be accessible to all, 
grew out of the authors' belief that the construction and comparison of informational 
models are central to human communication. "By far the most numerous, most 
sophisticated, and most important models," in Licklider's and Taylor's opinion, "are those 
that reside in men's minds." 

Collections of facts, memories, perceptions, images, associations, predictions, and 
prejudices are the ingredients in our mental models, and in that sense, mental models are 
as individual as the people who formulate them. The essential privacy and variability of 
the models we construct in our heads create the need to make external versions that can 
be perceived and agreed upon by others. Because society, a collective entity, distrusts the 
modeling done by only one mind, it insists that people agree about models before the 
models can be accepted as fact. 

The process of communication, therefore, is a process of externalizing mental 
models. Spoken language, the written word, numbers, and the medium of printing were 
all significant advances in the human ability to externalize and agree upon models. Each 
of those developments, in their turn, transformed human culture and increased collective 
control over our environment. In this century, the telephone system added a potent new 
modeling medium to the human communication toolkit. Licklider and Taylor 
declared that the combination of computer and communication technologies, if 
it could be made accessible to individuals, had the potential to become the most 
powerful modeling tool ever invented. 

As an example of how a prototype computer communication system could be used to 
boost the process of decision-making, Licklider and Taylor described an actual meeting 
that had taken place on just such a system. It was a project meeting involving the 
members of a computer-science research team. Although all the participants in the 
meeting were in the same room, they spent their time looking at their display screens 
while they talked. A variety of diagrams, blocks of text, numbers, and graphs passed 
before their eyes via those screens. 

The facility was, in fact, Doug Engelbart's Augmentation Research Center. The machine 
in another room that made the meeting possible was the latest kind of multiaccess 
computer that the time-sharing research of the last few years had produced.  
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Using the project meeting as a model, Licklider and Taylor showed how computers could 
handle the informational housekeeping activities involved with a group process. More 
importantly, they demonstrated how this subtle kind of communication augmentation 
could enhance the creative informational activity that took place. The ability to switch 
from microscopic details to astronomical perspectives, to assemble and reassemble 
models, to find and replace files, to cut and paste and shuffle, to view some information 
publicly and make private notes at the same time, to thumb through the speaker's files or 
check his references while he is talking, made it possible for people to communicate with 
each other through the computer system in a way not possible in a nonaugmented 
meeting. 

"In a few years," the authors predicted, in the very first words of their article, 
"men will be able to communicate more effectively through a machine than 
face to face." Referring to their model technical meeting at SRI, Licklider and Taylor 
estimated that "In two days, the group accomplished with the aid of a computer what 
normally might have taken a week." 

This small group -- the people together with the hardware and software of a multiaccess 
computer -- constituted what Licklider and Taylor identified as one node of a larger, 
geographically distributed computer network. The key idea, Taylor and Licklider now 
recall, had been proposed by Wesley Clark in a cab ride to Dulles Airport, after a 
1966 meeting about the network Taylor was trying to put together. The problem lay in 
deciding which levels of the existing computer and communication systems had to be 
changed to couple incompatible machines and software. 

Many of the planners believed that a huge "host" computer in the center of the 
country would have to be specially designed and programmed to act as a 
translator. Clark suggested that a small, general-purpose computer at each node 
could be turned into a "message processor." Through long distance common-carrier 
communications, these "interface message processors" (known eventually as "imps") and 
their local multiaccess computer communities could be integrated into a kind of 
supercommunity. 

The imps would take care of all the behind-the-scenes traffic controlling and error-
checking functions needed to ensure accurate transmission of data -- a significant task in 
itself -- so the individual users wouldn't have to worry about whether the files they want 
to read or the programs they need to use are a thousand miles away or down the hall. 

The resulting communication system became part of a new kind of computing system 
that was not confined to any single computer. Teams of ARPA-supported scientists found 
that they could invoke the use of a program residing in a computer located in Berkeley, 
California, feed the program with data stored in Los Angeles, then display the result in 
Cambridge, Massachusetts. The network was suddenly more important than the 
individual computers, as the computers became "nodes" in a geographically 
distributed supercomputer. 
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It began to be possible to think of a computer network that was not centrally controlled 
from any one place, in which the traffic control and data communication and behind-the-
scenes number crunching required were invested in the software instead of the hardware. 
Instead of a huge host computer in the center of it all that received a stream of 
information from one computer, translated the stream into a form that could be decoded 
by another computer, and relayed the translated information to the receiving computer, 
the smaller imps at each node would accept and pass along information packets that had 
been translated into a common format by the imp connected to the originating computer. 

The controlling agent in a "packet switched" network like the ARPAnet was not 
connected to a central computer somewhere, nor even the "message processors" that 
mediated between the computers, but the packets of information, the messages 
themselves. Like the addresses on letters, the code by which information was packaged 
for transmission put into each packet all the information necessary for getting the 
message from origin to destination, and for translating between different kinds of 
computers and computer languages. 

While the networking technology was evolving rapidly the number of computer terminals 
proliferated and the accepted way of using computers was beginning to change. By 1968, 
the punchcards and printouts of 1960 were being replaced by ever-more interactive 
means of communicating with the computer: a keyboard and teletype printer and, in some 
exotic quarters, a graphic display screen were becoming standard input and output 
devices for programmers. 

To old-liners who were used to submitting punched cards and receiving machine code 
printouts on huge fanfolds from line printers, the ability to type a command on a 
keyboard and see the computer's immediate response on their own printer was nothing 
short of miraculous. Through the rapidly spreading use of time-sharing, many people 
were able to use individual terminals to directly interact with large computers. To these 
who knew about the plans to connect their time-sharing communities into a 
supercommunity, 1968 was a time of exciting and rapid change in a field that was still 
virtually unknown to the outside world. 

The idea of a community that could be brought into existence by the 
construction of a new kind of computer system was perhaps the most radical 
proposal in the 1968 paper. The ARPAnet was not on-line until 1969, but at that point 
the time-sharing groups had constructed enough of the superstructure for the outlines of 
the new network to be known and visible. 

Taylor and Licklider were more concerned about the further development of this test-bed 
for advanced communications and thought amplification than they were dedicated to the 
use of the network as an operational entity for conducting weapons research. Writing 
with the knowledge that ARPAnet was to begin operation within a year, and would 
probably be unknown outside defense or computer science circles, Licklider and Taylor 
pointed out: 
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. . . Although more interactive multiaccess computer systems are being delivered now, and although more 
groups plan to be using these systems within the next year, there are at present perhaps only as few as half a 
dozen interactive multiaccess computer communities. 

These communities are socio-techno pioneers, in several ways out ahead of the rest of the computer world: 
What makes them so? First, some of their members are computer scientists and engineers who understand 
the concept of man-computer interaction and the technology of interactive multiaccess systems. Second, 
others of their members are creative people in other fields and disciplines who recognize the usefulness and 
who sense the impact of interactive multiaccess computing upon their work. Third, the communities have 
large multiaccess computers and have learned to use them. and fourth, their efforts are regenerative. 

The authors were looking beyond the networks of their day, and the computer systems 
that were commercially available, to the technology they knew would be possible and 
affordable on a large scale within decades. Convinced that the technology they and their 
colleagues had created, and the community of users that had grown up around that 
technology, were the forerunners to far more powerful and more widely usable systems, 
they called for the development of a version of certain time-sharing systems into a tool 
that could be used to amplify human communications: 
. . . These new computer systems we are describing differ from other computer systems advertised with the 
same labels: interactive, time-sharing, multiaccess. They differ by having a greater degree of open-
endedness, by rendering more services, and above all by providing facilities that foster a working sense of 
community among their users. The commercially available time-sharing services do not yet offer the power 
and flexibility of software resources -- the "general purposeness" -- of interactive multiaccess systems of 
the System Development Corporation in Santa Monica, the University of California at Berkeley, 
Massachusetts Institute of Technology in Cambridge and Lexington, Mass. -- which have been collectively 
serving abut a thousand people for several years. 

The thousand people include many of the leaders of the ongoing revolution in the computer world. For over 
a year they have been preparing for the transition to a radically new organization of hardware and software, 
designed to support many more simultaneous users than the current systems, and to offer them -- through 
new languages, new file-handling systems, and new graphic displays -- the fast, smooth interaction required 
for truly effective man-computer partnership.  

Time-sharing, tremendously exciting as it was to programmers, was seen as only a means 
to an end by those who were aiming to build communication amplifiers. To those who 
were gung-ho about the future of multiaccess computing, Taylor and Licklider talked 
about the ultimate goal of the various projects they had initiated: the creation of 
tools to enhance the thinking of individuals and augment communications 
among groups of people. 

Engelbart's group at SRI, Ivan Sutherland's computer graphics work at MIT and Harvard, 
David Evans and his students at the University of Utah, the Project MAC hackers at MIT, 
and other groups scattered around the country were constructing pieces of a whole new 
technology. Foreseeing the day when such systems would be practical on a large scale, 
Licklider and Taylor reminded their colleagues that the new information processing 
technology could revolutionize not only research centers and universities, but offices, 
factories, and ultimately schools and homes. 

Looking toward what was then the long-term future, Licklider and Taylor projected a 
positive attitude about the possible impact of supercommunities that might include not 
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only computer scientists and programmers but housewives, schoolkids, office workers 
and artists: 

But let us be optimistic. What will on-line interactive communities be like? In most fields 
they will consist of geographically separated members, sometimes grouped in small clusters and sometimes 
working individually. They will be communities not of common location but of 
common interest. In each field, the overall community of interest will be large enough to support a 
comprehensive system of field-oriented programs and data. 

In each geographical sector, the total number of users -- summed over all the fields of interest -- will be 
large enough to support extensive general-purpose information processing and storage facilities. All of 
these will be interconnected by telecommunications channels. The whole will constitute a labile 
network of networks -- ever changing in both content and configuration. 

The authors envisioned the creation of an interconnected system of software-based tools 
that would provide "investment guidance, tax counseling, selective dissemination of 
information in your field of specialization, announcements of cultural, sport, and 
entertainment events that fit your interests, etc. In the later group will be dictionaries, 
encyclopedias, indexes, catalogues, editing programs, teaching programs, testing 
programs, programming systems, data bases, and -- most important -- communication, 
display, and modeling programs." They could have been describing from life the facilities 
that were available at PARC, ten years later. 

Licklider and Taylor were most emphatic that the impact would be great, on both 
individuals and organizations, when all the elements, which they could only speculate 
about in 1968, were perfected sometime in the future: 

First, life will be happier for the on-line individual because the people with 
whom one interacts most strongly will be selected more by commonality of 
interests and goals than by accidents of proximity. Second, communication will 
be more effective, and therefore more enjoyable. Third, much communication will be with 
programs and programmed models, which will be (a) highly responsive, (b) supplementary to one's own 
capabilities, rather than competitive, and (c) capable of representing progressively more complex ideas 
without necessarily displaying all the levels of the structure at the same time -- and which will therefore be 
both challenging and rewarding. And fourth, there will be plenty of opportunity for 
everyone (who can afford a console) to find his calling, for the whole world of 
information, with all its fields and disciplines, will be open to him -- with programs ready to guide him 
or to help him explore. 

For the society, the impact will be good or bad, depending mainly on one 
question: Will "to be on-line" be a privilege or a right? If only a favored 
segment of the population gets a chance to enjoy the advantage of "intelligence 
amplification," the network may exaggerate the discontinuity in the spectrum of 
intellectual opportunity. 
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On the other hand, if the network idea should prove to do for education what a 
few have envisioned in hope, if not in concrete detailed plan, and if all minds 
should prove to be responsive, surely the boon to humankind would be beyond 
measure. 

Strangely lyrical and surprisingly romantic prose coming from two computer-research 
organizers in the Pentagon. But by 1971, when Taylor recruited fifty or sixty of the best 
people in the field for the Computer Science Laboratory at PARC, the cream of the 
interactive computer designers had enough engineering and software research behind 
them from the time-sharing and ARPAnet projects to make them confident that such a 
utopian scenario might be possible -- especially if a corporation with the resources of 
Xerox was willing to take the high-stakes gamble. 

The people who built the first interactive, multiaccess computers, the first intellectual 
augmentation systems, and the first packet-switching computer networks were gathering 
under the same roof for the first time, in order to turn those dreams into prototypes as 
soon as possible. Butler Lampson, Chuck Thacker, Jim Mitchell, Ed McCreight, Bob 
Sproull, Jim Morris, Chuck Geschke, Alan Kay, Bob Metcalfe, Peter Deutsch, Bill 
English -- to those who knew anything about the esoteric world of computer design, the 
PARC computer science founders constituted an unprecedented collection of talents. 

It wasn't the kind of shop where old-style hierarchies and pecking orders would do any 
good. You don't run an outfit like that as much as you mediate it -- which is where 
Bob Taylor came in. The kind of thing they were building, and the kind of people it took 
to build it, required a balance between vision and pragmatism, the kind of balance that 
couldn't be enforced by artificially imposed authority. 

What they all agreed upon was what they wanted to get their hands on, in the way of a 
first-rate research facility. The potential of computers as tools to be used by individuals, 
and the communications possibilities opened by linking computers, were what motivated 
the PARC team. It was time to demonstrate that the theories about using personal 
computers to manage personal communications could work in an office like theirs. If they 
could demonstrate that such devices could speed their own work, they would be on the 
way to selling the rest of the world on the vision they held form the time-sharing days. 

The first thing they needed in order to retool the world of information work was a 
computer designed for one person to use, something that went far beyond previous 
attempts. Because they knew that vision was the human sense capable of the most 
sophisticated informational input, the PARC computerists knew they wanted a 
sophisticated graphic screen to bring the computer's power to the user. Complex, 
dynamic, visual models required a large amount of computer power, so the decision to 
emphasize the visual display meant that the hardware would have a great deal 
more memory and speed than anyone else in the computer world had heretofore 
put at any one individual's command. 
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"We wanted hardware as capable as we could afford to build," Taylor recalls, "because 
we needed capable computing tools to design an entire software architecture that nobody 
in the world yet knew how to make. We wanted for our own use what we thought other 
information workers would eventually want. We needed the computing power and the 
research environment to build something expensive but very flexible and growable that 
would someday be much less expensive but even more capable. We all understood when 
we planned the Alto that the main memory of what we wanted might cost $7000 by the 
time it was produced, in 1974, but would drop to about $35 ten years later." 

The hardware shop at PARC was only set up to produce small batches for the PARC 
software designers, but eventually 1500 Altos were built for Xerox executives and 
researchers, for associates at SAIL and SRI, as well as for the U.S. Senate, House of 
Representatives, certain other government agencies, and even the White House Staff. It 
was the first machine designed to put significant computing power on a person's desk. 

The job the Alto designers did was all the more remarkable when compared with the first 
"personal computers" the outside world was to learn about years later. The 1975 Altair, 
the granddaddy of the homebrew computers, had all of 1/4K main memory (also known 
as RAM, this represents the amount of storage space the computer devotes to "working 
memory," and thus indicates the rough limit of how much work it can do with reasonable 
speed). The first Apple models sold, in 1977, had 8K. When IBM introduced its personal 
computer, in 1981, the standard model had 16K. The Alto, in 1974, started with 64K and 
was soon upgraded to 256K. The distinctive bit-mapped screen and the mouse pointing 
device weren't to be seen on a non-Xerox product until 1983, when Apple produced Lisa. 

The hardware, of course, was just a part of the story. These devices were built for the 
people whose job it was to create equally spectacular software innovations. And the 
personal computers themselves weren't enough for those who longed for the kind of 
community they had known with the ARPAnet. 

"We didn't start talking about the hardware and software until we talked about what we 
wanted to do personally with such a system," Taylor remembers. "We knew there were 
technical problems to solve, and we would challenge them in due time. First we had to 
consider the human functions we wanted to amplify. For example, people use their 
eyes a great deal to assimilate information, so we wanted a particularly powerful kind of 
display screen. Then all the time-sharing veterans insisted they wanted a computer that 
didn't run faster at night." 

What Taylor meant was that the time-sharing programmers had all been accustomed in 
the mid 1960s to doing their serious computing in the middle of the night, when the 
amount of traffic on the central computer was light enough to perform truly large 
information processing tasks without delay. The first radical idea they agreed upon was 
that each Alto had to have as much main memory as one of the central computers from 
the time-sharing systems of only a few years back. And it had to be fast. 
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"People can give commands to a computer much more rapidly and easily by seeing and 
pointing than by remembering and typing, so we adopted and then adapted the mouse," 
added Taylor. "It is hard for people to learn artificial languages and even harder for 
machines to learn natural languages. The existing computer languages didn't give first-
time users and experimental programmers equal power to interact with the computer, so 
we created new kinds of languages." 

"Most importantly, people often need to do things in groups. There are times when we 
want to use the Alto as a personal tool, and times when we want to use it as a 
communication medium, and times when we want to do both. Our purpose in bringing 
all that computing power to individuals was not to allow them to isolate 
themselves. We wanted to provide the gateway to a new communication space, 
and ways to fly around in it, and a medium for community creativity, all at the same 
time." 

When time-sharing first got going, and hackers began to proliferate late at night in the 
corners of university computer departments, the subcult of computerists found that while 
they could all communicate with the central computer at the same time, they couldn't all 
necessarily communicate with each other, or share each other's programs or files. It took 
some effort, but the time-sharing systems programmers eventually solved the problem. 

The solution to the difficult problem of sharing resources among different users of a 
multiaccess computer became no less difficult when it had to be translated to the problem 
of sharing resources between many equally powerful, geographically separated, often 
incompatible computers (as with ARPAnet). The carefully designed connectivity of time-
sharing could not be patched onto the new system. 

The PARC network had to be built from the ground up, along with the personal 
workstations and shared servers for filing, printing, and mail. The server notion meant 
that certain otherwise stock-model Altos would be programmed for the tasks of 
controlling these network services, instead of building separate devices to perform these 
tasks. The concept of the resulting Ethernet, as it was called, stemmed from the 
determination to make the network itself a tool at the command of the individual user. 

The PARC folks were hungry for personal computing power, but they didn't want to give 
up that hard-won and effort-amplifying community they were just beginning to know on 
the ARPAnet. Dan Swinehart, an SRI alumnus who joined PARC early in the game, 
remembers that "From the day the Alto was proposed, Butler Lampson and Bob Metcalfe 
pointed out that if we were going to give everybody at PARC a self-contained computer 
instead of hooking them all into a central time-sharing system, we'd need a connecting 
network with enough communicating and resource-sharing capability that the people at 
the personal work stations wouldn't be isolated from each other." 

Thus, the companion to the ALTO was the Ethernet, the first of the "local area networks." 
With the advent of network technology, the hardware became less important and the 
software became more important, because such a network consists of a relatively simple 
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hardware level, where a small box plugs the individual computer into the network, and a 
series of more sophisticated software levels known as protocols that enable the different 
devices to interoperate via a communication channel. 

With common-carrier networks -- the kind where teenage hackers use their telephones to 
gain access to Defense Department computers -- the small box is known as a modem and 
works by translating computer bits into a pattern of tones that the public telephone system 
uses to communicate information. A local area network uses a different kind of small box 
that converts computer data into electrical impulses that travel from computer to 
computer via a short cable, rather than the audio tones that are sent over common-carrier 
communication lines. 

Local area networks are meant for environments like PARC -- any campus or laboratory 
or group of offices where many machines are distributed over a small geographical area. 
Several local networks can also be linked over long distances via "message processors" 
known as gateways to the common-carrier-linked internetwork. This scheme embeds 
local networks in more global supernetworks. 

Today's network technologies use the packet-switching techniques originally developed 
during the creation of the ARPAnet -- exactly the kind of coding of information that 
Shannon predicted in 1948. Information is transported and processed in packets of 
information -- bursts of coded on-off pulses -- that carry, in addition to the core data of 
the message, information on how the message is to be transmitted and received. If your 
computer uses the right kind of hardware and software translators, your data will find its 
own way through the network according to the control and routing information embedded 
in the packets. 

The technical details of packet switching won't matter to the vast majority of the people 
who will end up using network systems in the future, but the notion of "distributed 
computing" signals an important change to a new phase in the evolution of computation. 
Distributed systems, in which a number of people, each with their own significantly 
powerful personal computers, join together into even more powerful computational 
communities, are altogether different from the centrally controlled and highly restricted 
computers of the early days. 

Where we will all choose to go, or be forced to go by human nature or historical 
circumstances, once we are given access to such a system, is a wide-open question, once 
you get beyond the revolutionary but relatively simple applications to office work. 
Almost all the augmentation pioneers now use the analogy of the early days of 
automobiles to describe the present state of the system. Engelbart and Taylor agree 
that the personal computers millions of enthusiasts are using today are not even at the 
stage the automobile industry reached with the model T. More important, there is not 
yet a widespread transportation support structure for the messages between 
individuals. 
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There are no standard ways to build or drive the informational vehicles that have been 
devised only recently. The existing highways for large-scale, high-bandwidth information 
transportation don't even cover a fraction of the countryside. There are no service stations 
or road maps. The tire industry and the petroleum industry of the knowledge age don't 
exist yet. There may be prototypes of mind-extending technologies at places like PARC, 
but there is not yet an infrastructure to support their use in wider society. 

The researchers at PARC were wildly successful in their efforts to build powerful 
personal computers, years before the business and consumer communities were prepared 
to accept them, but Xerox marketing management failed to take advantage of the head 
start achieved by their research and development teams by quickly turning the prototypes 
into products. The failure of Xerox to exploit the research at PARC was partially a result 
of the lack of the kind of infrastructure described by the automobile analogy. Technology 
transfer in such a fast-moving field as microelectronic devices is a tough enough gamble. 
The problem gets more complicated when those devices are intended to affect the way 
people think. Building a system from scratch and showing that it works is still a 
long way from convincing most of the people in the work force to change the 
way they've always done things.  

By the mid 1970s, the nation's smartest computer researchers realized that the Alto, 
Ethernet, and Smalltalk (an equally advanced computer language) prototypes created at 
PARC had advanced the state of interactive computing far beyond the level achieved by 
the ARPA-sponsored time-sharing projects that had revolutionized computers a decade 
previously. By the late 1970s, Xerox management was ready to think about turning 
PARC's successes into a product. 

While the PARC whiz kids raced ahead on advanced research into dozens of information-
related sciences and technologies, the Star and the Ethernet were readied for market. Star 
was designed to be much more than a production-model Alto: The main memory was 
512K, twice as much as the enhanced Alto, and the Star's processor was built to run three 
times as fast as the Alto. The Star's software included a language named Mesa (created in 
Taylor's lab), along with a whole toolkit of application programs for editing, filing, 
calculating, computing, creating graphics, distributing electronic mail. 

One of the clichÈs of the computer industry in the early 1980s was that "if Xerox had 
marketed the Star when it was technically ready to go, they would have stolen an industry 
out from under IBM and Apple." As it happened, April, 1981, when the Star 8010 
Information System was announced, was still too early for the larger segments of office 
professionals to realize that they were information workers. Xerox marketing 
management insisted that the workstation was not only a breakthrough in providing tools 
for individuals, but a part of an integrated office system of interconnected components 
that shared mail, printing, and filing services. But nobody outside a few privileged 
test sites knew what that meant. 

Until word processing came out of nowhere (as far as the people in offices were 
concerned) to replace most of the typing pools in the early 1980s, it wasn't clear to the 
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people who bought office equipment for corporations that computers and office workers 
were bound to get acquainted rapidly. To the first knowledge workers at aerospace firms, 
it was very clear that there was a major difference between these machines and the 
devices they had formerly known as computers. 

The place where the mind meets the machine, the long-neglected frontier of computer 
development, was advanced to a new high level by those at ARC and PARC who created 
the partially psychological, partially computational engineering of the user 
interface. The dreams of the augmentation pioneers were finally materialized in the 
products of their students, who took the first steps with the Star to engineer the machine 
to the minds of the potential users. The Star designers reiterated the connection between 
sophisticated visual representation and the ability to amplify thought: 

During conscious thought, the brain utilizes several levels of memory, the most important being the "short-
term memory." Many studies have analyzed the short-term memory and its role in thinking. Two 
conclusions stand out. (1) conscious thought deals with concepts in the short-term memory . . . and (2) the 
capacity of short-term memory is limited. . . . When everything being dealt 
with in a computer system is visible, the display screen relieves the load on the 
short-term memory by acting as a sort of "visual cache." Thinking becomes 
easier and more productive. A well designed computer system can actually 
improve the quality of your thinking. . . . 

A subtle thing happens when everything is visible: the display becomes the reality. The user model 
becomes identical with that which is on the screen. Objects can be understood purely in terms of their 
visible characteristics. 

The idea that the right kind of computer systems could affect the way people think -- the 
seed planted by Vannevar Bush and nurtured by Licklider and Engelbart -- was not lost 
on the Xerox interface builders. In regard to the principle that they called "consistency," 
the Star team noted: 
One way to get consistency into a system is to adhere to paradigms for operations. By applying a 
successful way of working in one area to other areas, a system acquires a unity that is both apparent and 
real. . . . 

These paradigms change the very way you think. They lead to new habits and models of behavior that are 
more powerful and productive. They can lead to a human-machine synergism. 

After ten years, PARC had achieved its technological goals, and more. The Mesa and 
Smalltalk languages were both significant advancements of the software art. If bold and 
imaginative research were all that the success of a company depended on, Xerox would 
have been in a position to challenge even the dominating force of the information 
industry. But Peter McCollough was no longer the CEO, and Xerox top management 
failed to comprehend the ten-year technological lead their research division had handed 
them. 

Some of the most important members of the starting team left PARC in the early 1980s to 
join other companies or to start their own firms. Such job changes at the higher levels of 
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the electronics and computer industries were far from unknown in Silicon Valley; in fact 
PARC was distinguished from similar institutions for many years because of the unusual 
lengths of time put in by its principal scientists. But when Xerox failed to become the 
first name in the industry, and the hobbyist side of personal computing had grown to the 
point where some of the original hobbyists were recruiting PARC scientists and building 
their own personal computer empires, the first high-level PARC defectors began to 
seed the rest of the industry with the user interface concepts embodied in the 
Star. 

Bob Metcalfe, the man responsible for the creation of the Ethernet, left to start 3-Com, a 
company specializing in local area network technology. Alan Kay, whose Smalltalk team 
made impressive contributions to the Star interface, left to become the chief scientist at 
Atari. John Ellenby, who helped reengineer the Alto 2, became the chairman of Grid. In 
the fall of 1983, Bob Taylor resigned, after thirteen years leading the laboratory team he 
had built. 

Several of the PARC alumni became associated with those industry newcomers who had 
emerged from the homebrew computer days. Some of the former whiz kids from PARC 
were making alliances with the next generation of whiz kids. Charles Simonyi, by then in 
his early thirties, who was in charge of producing the word processing software for the 
Alto, left PARC to join Bill Gates, the twenty-seven-year-old chairman of Microsoft, a 
company that started out as a software supplier to the computer hobbyists in the Altair 
days of 1975, and is now the second-largest microcomputer software company in the 
world. 

Steve Jobs, chairman of Apple, then in his late twenties, visited PARC in 1979. He was 
given a demonstration of the Alto. Larry Tesler, the member of the PARC team that gave 
Jobs that demonstration, left PARC in 1980 and joined Apple's new secret project that 
Jobs promised would redefine the state of the art in personal computers. In 1983 Apple 
unveiled Lisa -- a machine that used a mouse, a bit-mapped screen, windows, and other 
features based on the Star-Alto-Smalltalk interface. The price for the system was around 
$10,000. This was $6000 less than the more powerful Star, but still hardly in the range of 
the consumer market. In 1984, Apple brought out a scaled-down, cheaper version of Lisa, 
the Macintosh, with the same user interface, and revolutionized the personal computer 
market. 

If time-sharing research had been the unofficial initiation ceremony and the ARPAnet 
was the rite of passage, the PARC era was the end of the apprenticeship era for 
the augmentation community. New generations of researchers and entrepreneurs were 
entering the software fray through the infant computer industry. By the early 1980s, it 
didn't take a computer prophet to see that big changes were going to continue to happen 
as the mass market began to awaken to the potential of personal computing. Although the 
hardware and the software of the first tens of millions of personal computers fell far short 
of what the PARC veterans were working toward, the stakes of the game had 
changed with the emergence of a mass market. 
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The beginnings of a much wider computer-using community also meant the end of arcane 
jargon and software designs that required complex interactions with the computer. The 
design principles demonstrated by the Star and the Lisa pointed the way for the future 
computer designers. At PARC, they were already onto the Dorado, the Dolphin, and 
other post-Star computers. Now that truly capable computing machinery was becoming 
available, it was becoming more widely known that the commercially successful 
programs of the future would be those that succeeded in bringing the power of the 
computer out to the person who needs to use it. 

The "rule of two" is, incredibly, still in effect, promising even more powerful and less 
expensive computer hardware in the late 1980s. In 1984, Bob Taylor, now with Digital 
Equipment Corporation, started doing what he does best -- assembling a computer 
systems research team for a final assault on the objective. Some of the key members of 
his team were graduate students when ARPA funded time-sharing, and had been involved 
in the ARC and PARC eras. The latest arena for their ongoing effort to bootstrap 
interactive computation technology to the threshold of truly powerful personal computing 
was named "Systems Research Center" -- or SRC, pronounced "circ" ("as in circus"). 

"Come to my office in five years," Taylor challenged me, at the beginning of this gun-lap 
in the augmentation quest, "and I'll show you a desktop machine twice as fast as the 
biggest, most expensive supercomputer made today. Then it will become possible to 
create the software that can take advantage of the capabilities we've known about for a 
long time." 

Taylor now believes that three factors will lead to the most astonishing plateau 
in information processing we've seen yet: first, a new level of systems software will 
be able to take advantage of computer designs that make each personal 
workstation into a kind of miniature distributed network, with multiple parallel 
processors inside working in coordination; second, large scale integration processors will 
be small and cheap enough to put fast, vast memory into desktop machines; third, 
and most important, the people who built time-sharing, graphics, networks, personal 
computers, intelligent user interfaces, and distributed computing are now at the height of 
their powers, and they have put hundreds of thousands of person-hours into learning how 
to build new levels of computer technology. 

Advances in network technologies, graphics, programming languages, user interfaces, 
and cheap, large-scale information storage media mean that the basic capabilities 
dreamed of by the designers of the first personal computers are likely to become widely 
available before the turn of the century. One hopes that we will be ready to use them 
wisely. It would be a sad irony if we were to end up creating a world too complicated for 
us to manage alone, and fail to recognize that some of our own inventions could help us 
deal with our own complexity.  
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Chapter Eleven: 
The Birth of the Fantasy Amplifier 
When millions of portable, affordable, imagination amplifiers fall into the hands of eight-
year-old children, look for Alan Kay somewhere in the plot. He has always been too 
impatient to wait for someone else to bring him what he wanted. And he's always found 
ways to create what he wanted if it didn't exist. For the past fifteen years, his sights have 
been set on handheld, full-color, stereophonic, artificially intelligent, information 
representation toys. And he wants them by the tens of millions. They don't exist yet, so 
he's enlisted some formidable allies to help him create them.  

Fame, fortune, or even the more esoteric career ambitions of top-notch software 
professionals do not seem to motivate Dr. Kay, now a "research fellow" for Apple, 
formerly "chief scientist" at Atari Corporation. Becoming another Silicon Valley 
millionaire or accepting the offer of an endowed chair at MIT have not 
interested him as much as the prospect of putting the power to imagine into the 
hands of every bright kid who got thrown out of a classroom. 

Ever since he learned to read at the age of two and a half, Alan Kay has been accustomed 
to doing things his own way and letting the rest of the world catch up later. At the same 
time he was close to flunking out of the eighth grade, primarily for insubordination, he 
was one of television's original "Quiz Kids." Ten years before he coined the term 
"personal computer," before Atari or PARC existed, and before another pair of bright 
insubordinates named Wozniak and Jobs created a new meaning for that good old 
American word "Apple," Alan Kay was demonstrating FLEX, a personal computer in all 
but name, to the ARPA graduate students' conference. 

Alan is now in his early forties, and is acknowledged by his peers, if not yet the general 
public, as one of the contemporary prophets of the personal computer revolution. 
Now his goal is to build a "fantasy amplifier," a "dynamic tool for creative 
thought" that is powerful enough, small enough, easy enough to use, and 
inexpensive enough for every schoolkid in the world to have one. He has the 
resources and the track record to make you believe he'll do it. 

Alan Kay doesn't fit the popular image of the arrogant, antisocial hacker, the fast-lane 
nouveau micromillionaire, or the ivory tower computer scientist. He wears running shoes 
and corduroys. He has a small, meticulous moustache and short, slightly tousled dark 
hair. He's so imageless you could pass him in the halls of the places he works 
and not notice him, even though he's the boss. Which isn't to say that he's 
egoless or even modest. He loves to quote himself, and often prefaces his 
homilies with phrases like "Kay's number one law states . . . ."  
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When I first encountered him, between his stint as director of the legendary "Learning 
Research Group" at Xerox PARC, and his present position as a kind of "visionary at 
large" for Apple, Dr. Kay and his handpicked team at Atari were working under tight 
secrecy, with a budget that was rumored to be somewhere between $50 million and $100 
million, to produce something that nobody in the corporation ever described to anybody 
outside the corporation. But anybody who has ever talked to him, or read something he 
has written about his dreams, can guess the general thrust of Kay's Atari project, and the 
probable direction of his current work at Apple. He has been moving toward realizing his 
dream, project by project, prototype by prototype, innovation by innovation, ever since he 
was a graduate student. 

Being the kind of person he is didn't make it easy for Alan to get an education. At the 
beginning, he knew more than all of his classmates and most of his teachers, and he didn't 
mind demonstrating it aloud -- a trait that got him thrown out of classrooms and beaten 
up on playgrounds. 

Fortunately for him and for all of us who may benefit from his creations in the future, 
Alan was already well armored in his mind and imagination, where it really counted, by 
the time his teachers and classmates got ahold of him. For Alan, being ahead of 
everybody else started out as a pleasure and quickly turned into a survival trait -- which 
meant he didn't do too well in school, or anyplace else, until the summer of his fifteenth 
year, when "a music camp in Oneonta, New York, changed my entire life." 

Music became the center of his life. In many ways, it still is. He commutes to Silicon 
Valley from his home in Brentwood, 300 miles away, mostly because he 
doesn't want to be away from his homemade pipe organ for too long. And he still 
goes to music camp every summer. He never understood why his two favorite toys -- 
books and musical instruments -- could not be combined into a single medium capable of 
dealing with both sounds and symbols. He worked as a professional jazz and rock 
guitarist for ten years. When it looked like he was about to be drafted, Kay joined the 
U.S. Air Force as a navigational cadet. In the Air Force, he "wore out a pair of shoes 
doing insubordination duty," but he also learned that he had a knack for computer 
programming. 

After he finished his Air Force duty, the National Center for Atmospheric Research was 
eager to use Kay's programming talent to pay his way through the University of 
Colorado. He earned a degree in biology, but his college grades were as mixed as they 
had always been, because of his habit of concentrating intently on only those things that 
interested him. Through what Alan now calls "sheer luck," he came to the attention of 
somebody smart enough to actually teach something to a smartass like Alan 
Kay -- and bold enough to admit a student with an undergraduate record that 
read more like a rap sheet than a transcript. 

The man who gambled on Kay's checkered history in academia was David Evans, the 
chairman of the computer science department at the University of Utah, a place that was 
to become one of the centers of the augmentation community by the mid-1960s. Like so 
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many others who assumed positions of leadership in the field of interactive computer 
systems design, Evans had been involved in early commercial computer research and 
with the ARPA-funded groups that created time-sharing. 

"Those career pathways of ARPA project leaders and their graduate students repeatedly 
intertwined," Kay recalls. "An enormous amount of work was done by a few people who 
kept reappearing in different places over the years. People frequently migrated back and 
forth from one ARPA project or another. ARPA funded people rather than projects, and 
they didn't meddle for an extended period. Part of the genius of Licklider and Bob 
Sproull was the way this moving around contributed to the growth of a community." 

One of the people Evans managed to recruit for the Utah department who had an impact, 
not only on Alan Kay but on the entire course of personal computing was Ivan 
Sutherland, the graduate student and protégé of Claude Shannon and J. C. R. Licklider 
who single-handedly created the field of computer graphics as a part of his MIT 
Ph.D. thesis -- the now legendary program known as "Sketchpad." 

People like Alan Kay still get excited when they talk about Sketchpad: "Sketchpad had 
wonderful aspects, besides the fact that it was the first real computer graphics program. It 
was not just a tool to draw things. It was a program that obeyed laws that you wanted to 
be held true. So to draw a square in Sketchpad, you drew a line with a lightpen and said: 
'Copy-copy-copy, attach-attach-attach. That angle is 90 degrees, and these four things are 
to be equal.' Sketchpad would go zap! and you'd have a square." 

Another computer prophet who saw the implications of Sketchpad and other heretofore 
esoteric wonders of personal computing was an irreverent, unorthodox, counterculture 
fellow by the name of Ted Nelson, who has long been in the habit of self-publishing 
quirky, cranky, amazingly accurate commentaries on the future of computing. In The 
Home Computer Revolution Nelson had this to say about Sutherland's pioneering 
program, in a chapter entitled "The most important computer Program Ever Written":  

You could draw a picture on the screen with the lightpen -- and then file the picture away in the computer's 
memory. You could, indeed, save numerous pictures in this way. 

For example, you could make a picture of a rabbit and a picture of a rocket, and then put little rabbits all 
over a large rocket. Or, little rockets all over a large rabbit. 

The screen on which the picture appeared did not necessarily show all the details; the important thing was 
that the details were in the computer; when you magnified a picture sufficiently, they would come into 
view. 

You could magnify and shrink a picture to a spectacular degree. You could fill a rocket picture with rabbit 
pictures, then shrink that until all that was visible was a tiny rocket; then you could make copies of that, 
and dot them all over a large copy of the rabbit picture. So that when you expanded the big rabbit till only a 
small part showed (so it would be the size of a house, if the screen were large enough), then the foot-long 
rockets on the screen would each have rabbits the size of a dime. 
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Finally, if you changed the master picture -- say, by putting a third ear on the big rabbit -- all the copies 
would change correspondingly. 

Thus Sketchpad let you try things out before deciding. Instead of making you position a line in one specific 
way, it was set up to allow you to a number of different positions and arrangements, with the ease of 
moving cut-outs around on a table. 

It allowed room for human vagueness and judgment. Instead of forcing the user to divide things into sharp 
categories, or requiring the data to be precise from the beginning -- all those stiff restrictions people say 
"the computer requires" -- it let you slide things around to your heart's content. You could rearrange till you 
got what you wanted, no matter for what reason you wanted it. 

There had been lightpens and graphical computer screens before, used in the military, but Sketchpad was 
historic in its simplicity -- a simplicity, it must be added, that had been deliberately crafted by a cunning 
intellect -- and its lack of involvement with any particular field. Indeed, it lacked any complications 
normally tangled with what people actually do. It was, in short, an innocent program, 
showing how easy human work could be if a computer were set up to be really 
helpful. 

As described here, this may not seem very useful, and that has been part of the problem. Sketchpad was a 
very imaginative, novel program, in which Sutherland invented a lot of new techniques; and it takes 
imaginative people to see its meaning. 

Admittedly the rabbits and rockets are a frivolous example, suited only to a science-fiction convention at 
Easter. But many other applications are obvious: this would do so much for blueprints, or electronic 
diagrams, or other areas where large and precise drafting is needed. Not that drawings of rabbits, or even 
drawings of transistors, mean the millennium; but that a new way of working and seeing was possible. 

The techniques of the computer screen are general and applicable to everything -- but only if you can adapt 
your mind to thinking in terms of computer screens. 

Sutherland was Twenty-six when he succeeded Licklider as director of ARPA's 
Information Processing Techniques Office. Then he was succeeded by Bob Taylor when 
he left for Harvard in the mid-1960s, to work on 3-D head-mounted displays (like 
miniature televisions in eyeglass frames) and other exotic graphics systems. When David 
Evans tried to lure him to Utah, Sutherland said he would do it if Evans agreed to become 
a business partner -- and thus the pioneering computerized flight simulation and image 
generation company of Evans & Sutherland was born. 

Kay showed up at Utah in November of 1966. His first task was to read a pile of 
manuscript Evans gave him -- Ivan Sutherland's thesis. The way Evans ran the graduate 
program, you weren't supposed to be around campus very long or very much. You were 
supposed to be a professional and move on to high-level consulting jobs in industry. The 
job he found for Alan Kay was with a hardware genius named Ed Cheadle. Ed had an 
idea about doing a tabletop computer. Kay worked on FLEX -- his first personal 
computer software design -- from 1967 to 1969. While some of the founders of today's 
personal computer industry were still in high school, Kay was learning how to design 
personal computers. 
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Technically, Cheadle and Kay were not the first to attempt to build a personal computer. 
Wes Clark, from Whirlwind and Lincoln Lab's TX-2 and "imps," had constructed a desk-
size machine a few years before, known as "LINC." FLEX was an attempt to use the 
more advanced electronic components that had recently become available to bring more 
of the computer's power out where the individual user could interact with it. FLEX was a 
significant innovation technically, but it was complicated and delicate, and in Kay's 
words, "users found it repellent to learn." The problem wasn't in the machinery as 
much as it was in the special language the user had to master in order to 
command the power of the machine to accomplish useful tasks. That was when 
Kay first vowed to make sure his personal computer would come at least part of the way 
toward the person who was to use it, and when he realized that software design would be 
the area in which this desire could be fulfilled. 

Although he didn't fully realize it yet, Alan Kay was beginning to think about 
designing a new programming language. The kind of language he began to 
yearn for would be a tool for using the computer as a kind of universal 
simulator. The problem was that programming languages were demonically esoteric. 
"There are two ways to think about building an instrument," Kay asserts. "You 
can build something like a violin that only a few talented artists can play. Or 
you can make something like a pencil that can be used quickly and easily for 
anything from learning the alphabet to drawing to writing a computer 
program." He was convinced that 99 percent of the problem to be solved in making a 
truly usable personal computer program were software problems: "By 1966, everyone 
knew where the silicon was going." 

Besides FLEX, Kay's other project at Utah was to make some software work. He got a 
pile of tape canisters on his desk, along with a note that the tapes were supposed to 
contain a scientific programming language known as Algol 60, but they didn't work. It 
was a maddening software puzzle that was still far from solved when Kay figured out that 
it wasn't Algol 60 but a language from Norway, of all places, called Simula. In a 1984 
interview, Kay described what happened when he finally printed out on paper the 
program listings stored in those mysterious canisters and figured out what was on those 
tapes: 

We couldn't understand any of the papers, they were sort of transliterated from the Norwegian. . . . We 
spread out the program listings and actually went through the machine code to try to figure out what was 
happening -- and I suddenly realized that Simula was a programming language to do what Sketchpad did. I 
had never really understood what Sketchpad was. I get shivers now thinking of it. It rotated my point of 
view through a different dimension and nothing has been the same since. I suddenly understood the purpose 
of higher level languages. 
Alan was one of the enthralled audience at Engelbart's 1968 media show. He was excited 
by it because it demonstrated what you could really do with a computer augmented 
representation system. It also made it clear to Alan what he didn't want to do. "The 
Engelbart crew were all ace pilots of their NLS system," Kay remembers. They had 
almost instant response -- like a very good video game. You could pilot your way through 
immense fields of information. It was, unfortunately for my purposes, something elegant 
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and elaborate that these experts had learned how to play. It was too complex for my 
tastes, and I wasn't interested in the whole notion of literacy as a kind of fluency. 
 

Logo 
  
In the course of preparing his Ph.D. thesis, Alan began to explore the world of artificial 
intelligence research, which brought him into closer contact with two more computer 
scientists who were to heavily influence his own research -- Marvin Minsky and Seymour 
Papert, who were then codirectors of MIT's pioneering artificial intelligence research 
project. In the late 1960s, Papert in particular was doing something that irrevocable 
influenced Alan's goals. Papert was creating a new computer language. For 
children. 

Papert, a mathematician and one of the early heroes of the myth-shrouded Project Mac, 
had spent five years in Switzerland, working with the developmental psychologist Jean 
Piaget. Piaget had triggered his own revolution in learning theory by spending time -- 
years and decades -- watching children learn. He concluded that learning is not simply 
something adults impose upon their offspring through teachers and classrooms, but is a 
deep part of the way children are innately equipped to react to the world, and that 
children construct their notions of how the world works, from the material available to 
them, in definite stages. 

Piaget was especially interested in how different kinds of knowledge are acquired by 
children, and concluded that children are scientists -- they perform experiments, 
formulate theories, and test their theories with more experiments. To the rest of us, this 
process is known as "playing," but to children it is a vital form of research. 

Papert recognized that the responsiveness and representational capacity of 
computers might allow children to conduct their research on a scale never 
possible in a sandbox or on a blackboard. LOGO, the computer language developed 
by Papert, his colleague Wallace Fuerzing, and others at MIT and at the consulting firm 
of Bolt, Bernack & Newman, was created for a purpose that was shockingly different 
from the purposes that had motivated the creation of previous computer languages. 
FORTRAN made it easier for scientists to program computers. COBOL made it easier for 
accountants to program computers. LISP, some might say, made it easier for computers 
to program computers. LOGO, however, was an effort to make it easier for children to 
program computers. 

Although its creators knew that the LOGO experiment could have profound implications 
in artificial intelligence and computer science as well as in education, the project was 
primarily intended to create a tool for teaching thinking and problem-solving skills to 
children. The intention was to empower rather than to suppress children's natural desire 
to solve problems in ways they find fun and rewarding. "The object is not for the 
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computer to program the student, but for the student to program the computer," 
was the way the LOGO group put it. 

Beginning in 1968, children between the ages of eight and twelve were introduced to 
programming through the use of attractive graphics and a new approach that put the 
power to learn in the hands of the people who were doing the learning. By learning how 
to use LOGO to have fun with computers, students were automatically practicing skills 
that would generalize to other parts of their lives. 

Papert had observed from both his computer science and developmental psychology 
experience that certain of these skills are "powerful ideas" that can be used at any age, in 
any subject area, because they have to do with knowing how to learn . This is the key 
element that separated LOGO from the "computer assisted instruction" projects that had 
preceded it. Instead of treating education as a task of transferring knowledge from the 
teacher to the student, the LOGO approach was to help students strengthen their ability to 
discover knowledge on their own. 

One of the most important of these skills, for example, is the idea of "bugs" -- the word 
that programmers use to describe the small mistakes that inevitably crop up in computer 
programs, and which must be tracked down before the program will work. Instead of 
launching students on an ego-bruising search for the "right" answer, the task of 
learning LOGO was meant to encourage children to solve problems by daring 
to try new procedures, then debugging the procedures until they work. 

The first revolutionary learning instrument introduced in LOGO was the "turtle," a device 
that is part machine and part metaphor. The original LOGO turtle was a small robot, 
controlled by the computer and programmed by the child, that could be instructed to 
move around, pulling a pen as it moved, drawing intriguing patterns on paper in the 
process. Alan Kay was one of several software designers who realized that this process 
was more than just practice at drawing pictures, for the ability to manipulate symbols -- 
whether the symbols are turtle drawings, words, or mathematical equations -- is central to 
every medium used to augment human thinking. 

The abstract turtle of today's more advanced display technology is a triangular graphic 
figure that leaves a video trail behind it on a display screen. Whether it is made of metal 
and draws on paper, or made of electrons and draws on a video screen, the turtle is what 
educational psychologists call a transitional object -- and what Papert calls an "object-to-
think-with." 

Instead of "programming the computer" to draw a pattern, children are encouraged to 
"teach the turtle" how to draw it. They start by "pretending to be the turtle" and trying to 
guess what the turtle would do in order to trace a square, a triangle, a circle, or a spiral. 
Then they give the turtle a series of English-like commands, typed in through a keyboard, 
to "teach the turtle a new word." 
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If the procedure followed by the turtle in response to the typed commands doesn't achieve 
the desired graphic effect, the next step is to systematically track down the "bug" that is 
preventing success. The fear of being wrong is replaced in this process by the immediate 
feedback of discovering powerful ideas on one's own. 

After decades of research, Papert summarized the results of his LOGO work for a general 
audience in Mindstorms: Children, computers, and powerful ideas. In this manifesto of 
what has grown into an international movement in both the educational and computing 
communities, Papert reiterated something important that is easy to lose in the 
complexities of the underlying technology -- that the purpose of any tool ought to be 
to help human beings become more human:  

In my vision the computer acts as a transitional object to mediate relationships that are ultimately between 
person and person. . . . 

I am talking about a revolution in ideas that is no more reducible to technologies than physics and 
molecular biology are reducible to the technological tools used in laboratories or poetry to the printing 
press. In my vision, technology has two roles. One is heuristic: The computer presence has catalyzed the 
emergence of ideas. The other is instrumental: The computer will carry ideas into a world larger than the 
research centers where they have incubated up to now. 

When he came across the LOGO work, during the time he was meditating 
about the fact that he had put two years into the FLEX machine only to find 
that it wasn't amenable to humans who tried to use it, Alan Kay recalls that "it 
was like a light going on in my head. I knew I would never design another 
program that was not set up for children." 

One of the first things he understood was that a program or a programming language that 
can be learned by children doesn't have to be a "toy." The toy can also serve as a tool. But 
that transformation doesn't happen naturally -- it comes about through a great deal of 
work by the person who designs the language. Kay already knew that the most important 
tools for creating personal computing were to be found in the software, but now it 
dawned on him that the power those tools would amplify would be the power to learn -- 
whether the user is a child, a computer systems designer, or an artificial intelligence 
program. 

Although he knew he had a monstrous software task ahead of him if he was to create a 
means by which even children could use computers as a simulation tool, his FLEX 
experience and his exposure to LOGO convinced Kay that there was far more to it than 
just building an easy-to-operate computer and creating a new kind of computer language. 
It was something akin to the problem of building a tool that a child could use to 
build a sandcastle, but would be equally useful to architects who wanted to 
erect skyscrapers. What he had in mind was an altogether new kind of artifact: If he 
ended up with something an eight-year-old could carry in one hand and use to 
communicate music, words, pictures, and to consult museums and libraries, would the 
device be perceived as a tool or as a toy? 
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Kay began to understand that what he wanted to create was an entirely new 
medium -- a medium that would be fundamentally different from all the previous static 
media of history. This was going to be the first dynamic medium -- a means of 
representing, communicating, and animating thoughts, dreams, and fantasies as well as 
words, images, and sounds. He recognized the power of Engelbart's system as a toolkit 
for knowledge workers like editors and architects, scientists, stockbrokers, attorneys, 
designers, engineers, and legislators. Information experts desperately needed tools like 
NLS. But Kay was after a more universal, perhaps more profound power. 

One of the concepts that played a big part in Papert's LOGO project, and thus influenced 
Alan Kay and others, was derived from the thinking of John Dewey, whose work 
encouraged generations of progressive educators. Dewey developed a theory that Piaget 
later elaborated -- that the imaginative play often mistakenly judged by adults to 
be "aimless" is actually a potent tool for learning about the world. Kay wanted to 
link the natural desire to explore fantasies with the innate ability to learn from 
experimentation, and he knew that the computer's power to simulate anything that could 
be clearly described was one key to making that connection. 

Alan wanted to create a medium that was a fantasy amplifier as well as an 
intellectual augmentor. First he had to devise a language more suited for his purposes 
than LOGO, a "new kind of programming system that would attempt to combine 
simplicity and ease of access with a qualitative improvement in expert-level adult 
programming." With the right kind of programming language, used in conjunction with 
the high-powered computer hardware he foresaw for the near future, Kay thought that an 
entirely new kind of computer -- a personal computer -- might be possible. 

Such a software advance as the kind Kay envisioned could only be accomplished by 
using hardware that didn't exist yet in 1969, since the computing power required for each 
individual unit would have to be several hundred times that of the most sophisticated 
time-sharing computers of the 1960s. But at the end of the 1960s, such previously 
undreamed-of computing power seemed to be possible, if not imminent. The year 1969 
was pivotal in the evolution of personal computing, as well as in Alan Kay's career. It 
was the year that the ARPAnet time-sharing communities began to discover that they 
were all plugged into a new kind of social-informational entity, and enthusiastically 
began to use their new medium to design the next generations of hardware and software. 

After he finished his thesis on FLEX, Kay began to pursue his goal of designing a new 
computer language in one of the few places that had had the hardware, the software, and 
the critical mass of brain power to support his future plans -- the Stanford Artificial 
Intelligence Laboratory. He had a lot to think about. There were many great 
programmers, but very few great creators of programming languages. 

The programming language for the eventual successor to FLEX was his primary interest, 
not only because he knew that the hardware would be catching up to him, but 
because he knew that programming languages influence the minds of the 
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people who use computers. In 1977, after the task of creating his new programming 
language, Smalltalk, was accomplished, Kay described the importance of this connection 
between a programming language and the thinking of the person who uses it: 

The particular structure of a symbolic language is important because it provides a context in which some 
concepts are easier to think about than others. For example, mathematical notation first arose to abbreviate 
concepts that could be expressed only as ungainly circumlocutions in natural language. Gradually it was 
realized that the form of an expression and manipulation could be of a great help in the conception and 
manipulation of the meaning for which the expression stood. . . .  

The computer created new needs for language by inverting the traditional 
process of scientific investigation. It made new universes available that could 
be shaped by theories to produce simulated phenomena.  

The "inverting" of "the traditional process of scientific investigation" noted by Kay was 
the source of the computer's power of simulation. And the ability to simulate ideas in 
visible form was exactly what a new programming language needed to include in order to 
use a computer as an imagination amplifier. If Piaget was correct and children are both 
scientists and epistemologists, a tool for simulating scientific investigation could have 
great impact on how much and how fast young children and adult computer programmers 
are able to learn. 

According to the rules of scientific induction, first set down by Francis Bacon three 
hundred years ago, scientific knowledge and the power granted by that knowledge are 
created by first observing nature, noting patterns and relationships that emerge from those 
direct observations, then creating a theory to explain the observations. With the 
creation of a machine that "obeyed laws you wanted to be held true," it became 
possible to specify the laws governing a world that doesn't exist, then observe 
the representation created by the computer on the basis of those laws. 

Papert called these simulated universes "microworlds," and used LOGO-created 
microworlds to teach logic, geometry, calculus, and problem-solving to ten-year-olds. 
Part of the fascination of a good video game lies in the visual impact of its microworld 
representation and the amount of power given to the player to react to it and thus learn 
how to control it. In Smalltalk, every object was meant to be a microworld. 

Computer scientists talk about computational metaphors in computer languages -- 
alternative frameworks for thinking about what programming really does. The most 
widespread and oldest metaphor is that of a recipe, the kind of recipe you create for 
a very stupid but obedient servant -- a list of definite, step-by-step instructions that could 
provide a desired result when carried out by a mindless instruction-following mechanism. 
The sequence of instructions is an accurate but limiting metaphor for how a computer 
operates. It is a reflection of the fact that early computers were built to do just one thing 
at a time, but to do it very fast and get on to the next instruction. 
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This model, however, is not well suited to computers of the future, which will 
perform many processes at the same time (in the kind of computation that is called 
parallel processing). Languages based on the dominant metaphors of numerical, serial 
procedures are much better suited for linear processes like arithmetic and less well suited 
for exactly those tasks that computers need to perform if they are to serve as 
representational media. Parallel processing is also a better model of the way 
human brains handle information.  

Starting from concepts set forth in LOGO and in Simula, Kay began to devise a new 
metaphor in which the string of one-at-a-time instructions is replaced by a 
multidimensional environment occupied by objects that communicate by sending one 
another messages. In effect, he started out to build a computer language that 
would enable the programmer to look at the host computer not as a serial 
instruction follower, but as thousands of independent computers, each one able 
to command the power of the whole machine. 

In 1969 and 1970, the growing impact of the Vietnam war and the pressure by 
congressional critics of what they interpreted as "frivolous research" contributed to the 
death of the "ARPA spirit" that had led to the creation of time-sharing and computer 
networks. The "Mansfield Amendment" in 1970 required ARPA to fund only projects 
with immediately obvious defense applications. Taylor was gone. The AI laboratories 
and the computer systems designers found funding from other agencies, but the central 
community that had grown up in the sixties began to fragment. 

The momentum of the interactive approach to computing had built up such intensity in its 
small following by the late 1960s that everybody knew this fragmentation could only be a 
temporary situation. But nobody was sure where, or how, the regrouping would take 
place. Around 1971, Alan began to notice that the very best minds among his old friends 
from ARPA projects were showing up at a new institution a little more than a mile away 
from his office at the Stanford AI laboratory. 

By the beginning of 1971, Alan Kay was a Xerox consultant, then a full-time member of 
the founding team at the Palo Alto Research Center. By this time, the hardware 
revolution had achieved another level of miniaturization, with the advent of integrated 
circuitry and the invention of the microprocessor. Xerox had the facilities to design and 
produce small quantities of state-of-the-art microelectronic hardware, which allowed the 
computer designers unheard-of power to get their designs up and running quickly. It was 
precisely the kind of environment in which a true personal computer might 
move from dream to design stage. Alan Kay was already thinking about a 
special kind of very powerful and portable personal computer that he later came 
to call "the Dynabook."  

Everybody, from the programmers in the "software factory" who designed the software 
operating system and programming tools, to the hardware engineers of the Alto prototype 
machines, to the Ethernet local-area-network team who worked to link the units, was 
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motivated by the burning desire to get a working personal computer in their own 
hands as soon as possible. In 1971, Alan wrote and thought about something that 
wasn't yet called a Dynabook but looked very much like it. Kay's Learning Research 
Group, including Adele Goldberg, Dan Ingalls, and others, began to create Smalltalk, the 
programming "environment" that would breathe computational life into the hardware, 
once the hardware wizards downstairs cooked up a small network of prototype personal 
computers. 

One of the most important features of the anticipated hardware was the visual resolution 
of the display screen. One of the things Alan had noticed when watching children 
learn LOGO was that kids are very demanding computer users, especially in 
terms of having a high-resolution, colorful, dynamic display. They were accustomed to 
cartoons on television and 70-mm wide-screen movies, not the fuzzy images then to be 
found on computer displays. Kay and his colleagues knew that hardware breakthroughs 
of the near future would make it possible to combine the interactive properties of a 
graphical language like Sketchpad with very high-resolution images. 

The amount of image resolution possible on a video display screen depends on how many 
picture elements are represented on the screen. Kay felt that the threshold number of 
picture elements needed to most strongly attract and hold the attention of a large 
population of computer users, and give the users significant power to control the 
computer, would be around one million dots. (The resolution of a standard snapshot is the 
equivalent to about four million dots.) The Alto computer being constructed for PARC 
researchers -- which the Learning Research Group called "an interim Dynabook" -- 
would have around half a million dots. 

The technique by which the Alto would achieve its high-resolution screen was 
called "bit-mapping," a term that meant that each picture element, each dot of light on 
the display screen, was connected to one bit of information in a specific place in the 
computer's memory, thus creating a kind of two-way informational map of the screen. If, 
for example, a specific bit in the computer's "memory map" was turned off, there would 
not be a dot of light at the location on the screen. Conversely, an "on" bit at a coordinate 
in the memory map would produce a dot of light at the designated screen location. By 
turning on and off parts of the bit map through software commands, recognizable graphic 
images can be created (and changed) on the screen. 

Bit-mapping was a major step toward creating a computer that an individual could use 
comfortably, whether the user is an expert programmer or a beginner. The importance 
of a visual display that is connected directly to the computer's memory is 
related to the human talent for recognizing very subtle visual patterns in large 
fields of information -- undoubtedly a survival trait that evolved way back 
when our ancestors climbed trees and prowled savannas. 

Human information processors have a very small short term memory, however, 
which means that all computers and no humans can extract the square roots of 
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thousand-digit numbers in less than a second, no computers and all humans can 
recognize a familiar face in a crowd. By connecting part of the computer's 
internal processes to a visible symbolic representation, bit-mapping puts the 
most sophisticated part of the human information processor in closer contact 
with the most sophisticated part of the mechanical information processor. 

Bit-mapping created more than a passive window on the computer's internal processes. 
Just as the computer could tell the human who used it certain facts about whatever it had 
in its memory, the user was also given the power to change the computer by manipulating 
the display. If users change the form of the visual representations on bit-mapped screens, 
using keyboard commands, lightpens (á la Sketchpad), or pointing devices like mice (á la 
Engelbart), they can also change the computer's memory. The screen is a representation, 
but it is also a control panel -- a drawing on a bit-mapped screen can be nothing more 
than a drawing, but it can also be a kind of command, even a program, to control the 
computer's operations. 

If, for example, you were to use a mouse to move a video pointer on the screen to touch a 
visual representation of a file folder or an out basket, and you could call the folder, for 
example, from the computer's memory and display a document from it on your screen 
simply by pointing to it, or send the contents of the computer-stored out basket to 
somebody else's in basket, then a person would be able to accomplish the kind of work 
done in offices, even if that person knew nothing about computer programming. Which, 
after all, was the potential future market that motivated Xerox management to create 
PARC and cut their whiz kids loose in the first place. 

Creating new kinds of computer input and output devices to help human pattern 
recognition mesh with mechanical symbol manipulation is known as "designing 
the human interface," an art and science that had to be created in the 1970s in the kind 
of human-computer partnership envisioned by Licklider and Engelbart in the 1960s, 
which could start to happen by the 1980s. Alan Kay's Smalltalk project played a key role 
in the evolution of the Alto interface, and as such was integral to the eventual company 
goals in the office automation market. But even at the beginning, Kay started 
bringing children into the project. 

Part of the Smalltalk project's effect on the early days at PARC was inspirational. It 
wasn't long before the rest of the team understood Alan's desire to bring children into the 
process of designing the same instrument that he and all the other computer scientists 
wanted to use themselves. Another aspect of Kay's contribution was more concrete: the 
absolute conviction that they were designing something meant for people to use. That 
might not sound too revolutionary today, but even as late as 1971, most of the top-flight 
computer scientists who believed that this tool was going to be more than just a gadget 
for computer programmers were at PARC. 

PARC in the early 1970s was a collection of the worlds best computer scientists, 
hardware engineers, physicists, programmers . . . which meant that it was also a 
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collection of people with strong personalities and definite opinions. Bob Taylor, Alan 
Kay, Butler Lampson, Bob Metcalfe, and their colleagues each had his own 
unique approach to creating personal computing, but they agreed on one 
fundamental assumption -- that their ultimate product should be as generally 
useful as a hammer, or pulley, or book. Secretaries and business executives would 
one day be able to use the same tool to help them perform the work. Architects and 
designers would have the power of modeling, forecasting, and simulation at their 
fingertips. A true personal computer, the diverse PARC groups agreed, ought to 
be usable by legislators and librarians, teachers and children. And a computer 
that could be commanded by looking at images on a screen and pointing to 
them by means of a mouse was certainly a lot more widely usable than a 
computer that required arcane keyboard-entered commands in order to 
function. 

The first Alto personal computer prototypes were distributed to PARC researchers in 
1974. As they had predicted, the creation of an environment in which every researcher 
had, for the first time in history, personal access to a powerful computer, and the means 
to communicate with all of his or her colleagues' computers, had a profound effect on 
their ability to do their job of designing even more powerful computer systems. 

By the late 1970s, yet another generation of even more advanced hardware and software 
had been created by a network of nearly a thousand researchers at PARC equipped with 
Altos, communicating via Ethernet networks. But the outside world, and many people in 
the computer world, were still unaware of the potential of personal computers. The 
problem, as PARC alumnus Charles Simonyi was to point out in 1983, an eventful 
decade later, was that Xerox management couldn't be faulted for not realizing in 1973 
that PARC was more than ten years ahead of an industry that wouldn't even exist until 
1975. 

Another small cloud on the horizon in the mid-1970s -- the "home-brew" computer 
hobbyists who were building their own low-power microcomputers -- became a gathering 
storm of popular interest in personal computing by the end of the 1970s. The 
microcomputer hobbyists, who assembled the new microprocessor chips into operational 
computers, were for the most part unaware of the far more powerful devices that were in 
use in Palo Alto years before a tiny company in New Mexico, the now-legendary MITS, 
produced the first affordable, do-it-yourself computer -- the Altair. 

In March, 1977, Alan Kay and Adele Goldberg condensed a PARC technical report into 
an article, the title of which described both the dream and the reality of the Smalltalk 
branch of the PARC project: "Personal Dynamic Media" was published in a magazine 
named Computer, during a time when computer magazines were for specialists. Like 
Bush, Licklider, Taylor and Engelbart before them, Kay and Goldberg did not talk of 
circuits or programs, but of media, knowledge, and creative human thought: 
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For most of recorded history, the interactions of humans with their media have been primarily 
nonconversational in the sense that marks on paper, paint on walls, even "motion" pictures and television 
do not change in response to the viewer's wished. A mathematical formulation -- which may symbolize the 
essence of an entire universe -- once put down on paper, remains static and requires the reader to expand on 
its possibilities. 

Every message is, in one sense or another, a simulation of some idea. It may be representational or abstract. 
The essence of a medium is very much dependent on the way messages are embedded, changed, and 
viewed. Although digital computers were originally designed to do arithmetic computation, the ability to 
simulate the details of any descriptive model means that the computer, viewed as a medium in itself, can be 
all other media if the embedding and viewing methods are sufficiently well provided. Moreover, this new 
"metamedium" is active -- it can respond to queries and experiments -- so that the messages may involve 
the learner in a two-way conversation. This property has never been available before except through the 
medium of an individual teacher. We think the implications are vast and compelling. 

A dynamic medium for creative thought: the Dynabook. Imagine having your own self-contained 
knowledge navigator in a portable package the size and shape of an ordinary notebook. Suppose it had 
enough power to outrace your senses of sight and hearing, enough capacity to store for later retrieval 
thousands of page-equivalents of reference materials, poems, letters, recipes, records, drawings, 
animations, musical scores, waveforms, dynamic simulations, and anything else you would like to 
remember and change. 

The Learning Research Group introduced students from the nearby Jordan Middle School 
in Palo Alto to what they called "interim Dynabooks." Nearly a decade before 
keyboards and display screens became familiar appliances, these children were 
introduced to a device no child and only a few computer scientists had seen 
before -- an Alto computer set up to run Smalltalk. By using the mouse and the 
graphics capabilities provided by the hardware and software, these students were able use 
Smalltalk to command the computer in much the same way that Papert's students in 
Cambridge, years before, had learned to program in LOGO by "teaching the turtle new 
words." 

The screen was either a "very crisp high-resolution black-and-white CRT or a lower 
resolution high quality color display." High-fidelity speakers and sound synthesizers, 
five-key keyboards like Engelbart's, and piano-like keyboards were also available. The 
system could store the equivalent of 1500 pages of text and graphics, and the processor 
was capable of creating, editing, storing, and retrieving documents that consisted of 
words, graphic images, sounds, numbers, or combinations of all four symbol forms. 

The mouse could be used to draw as well as to point, and an "iconic editor" (another 
Smalltalk innovation) used symbols that children who were too young to read 
could use to edit graphics; e.g., instead of typing in a command to invoke a graphics 
cursor, a child could point to a paintbrush icon. 

The interim Dynabook could be used to read or write an old-fashioned book, complete 
with illustrations, but it could also do much more: "It need not be treated as a simulated 
paper book since this is a new medium with new properties. A dynamic search may be 
made for a particular context. The non-sequential nature of the file medium and the use of 
dynamic manipulation allows a story to have many accessible points of view; Durrell's 
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Alexandria Quartet, for instance, could be one book in which the reader may pursue 
many paths through the narrative," wrote Kay and Goldberg. 

The dynamic nature of the medium was made clear to the users as they became 
acquainted with the toolkit for drawing, editing, viewing, and communicating. Smalltalk 
was not just a language, and the Alto system was not just a one-person computer. 
Together, the hardware, the software, and the tools for the users to learn the 
software, constituted an environment -- a small symbolic spaceship that the first-time 
user learned to control and steer through a personal universe. 

The ability of the users to personalize their representation and use of information became 
clear as the children from Jordan Middle School experimented with changing typefonts 
for displaying letterforms, and with changing the bit-maps of the computer to create and 
animate cartoon images in mosaics, lines, and halftones. The users not only had the 
capability to create and edit in a new way, but once they learned how to use the medium 
they gained the ability to make their own choices about how to view the universe of 
information at their fingertips. 

The editing capabilities of the Dynabook made it possible to display and change every 
object in the Smalltalk microworld. Text and graphics could be manipulated by pointing 
at icons and lists of choices -- "menus" in software jargon -- and multiple "windows" on 
the display screen made it possible to view a document or group of documents in several 
different ways at the same time. The filing capabilities made it possible to store and 
retrieve dynamic documents that could consist of any collection of objects that could be 
displayed and have something to do with each other. Drawing tools and painting 
programs made it possible to input information freehand as well as through the keyboard. 

The structure of the Smalltalk language, the tools used by the first-time user to learn how 
to get around in the Dynabook, and the visual or auditory displays were deliberately 
designed to be mutable and movable in the same way: "Animation, music, and 
programming," wrote Kay and Goldberg, "can be thought of as different sensory views of 
dynamic processes. The structural similarities among them are apparent in Smalltalk, 
which provides a common framework for expressing those ideas." A "musical score 
capture system" called OPUS and a graphic animation tool called SHAZAM were part of 
the Smalltalk-Dynabook toolkit. 

In 1977, Scientific American's annual theme edition was dedicated to the subject of 
"Microelectronics." Alan Kay's contribution to the issue, "Microlectronics and the 
Personal Computer," was the only article that directly talked about the meaning of this 
new technology for people. The magazine's editors summed up the piece in a two-
sentence subtitle: "Rates of progress in microlectronics suggest that in about a decade 
many people will possess a notebook-sized computer with the capacity of a large 
computer of today. What might such a system do for them?" 

One of the first things Kay pointed out was the connection between the use of interactive 
graphic tools and the exercise of a new cognitive skill -- a skill at selecting new ways to 
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view the world. The metamedium which Kay still saw to be a decade in the future would 
only achieve its full power when people use it enough to see what it is about. The power 
that the 1977 prototypes granted to the human who used such devices was the 
power to create many new points of view. 

This freedom to change one's view of a microworld, Kay believed, was one of the most 
important powers of the new kinds of representational tools that were being designed and 
tested in the late 1970s. In describing the way children learned to use the Smalltalk 
system, Kay also described something of the nature of the experience: 

Initially the children interact with our computer by "painting" pictures and drawing straight lines on the 
display screen with the pencillike pointer. The children then discover that programs can create structures 
more complex than any they can create by hand. They learn that a picture has several representations, of 
which only the most obvious -- the image -- appears on the screen. The most important representation is the 
symbolic model of the picture stored in the memory of the computer. . . . 

One of the best ways to teach nonexperts to communicate with computers is to have them explore the levels 
of abstraction at which images can be manipulated.  

Kay noted that when he gave the same tool that the children used as both an amusement 
and an entrance into Smalltalk programming to an adult artist, the artist started out 
creating various designs similar to those he was accustomed to making on paper. 
Eventually the artist discovered that the properties of the new medium, and his increasing 
facility for commanding those properties, made it possible for him to explore graphic 
universes that he could never have created with his old media: "From the use of the 
computer for the impoverished simulation of an already existing medium," Kay wrote, 
"he had progressed to the discovery of the computer's unique properties for human 
expression." 

This freedom of viewpoint was only meant to be explored and demonstrated in a 
preliminary way in Smalltalk: It was Kay's hope that many new metaphors and languages 
would evolve as time went on, into what he called "observer languages": 

In an observer language, activities are replaced by "viewpoints" that become attached to one another to 
form concepts. For example, a dog can be viewed abstractly (as an animal), analytically (as being 
composed of organs, cells, and molecules), pragmatically (as a vehicle by a child), allegorically (as a 
human being in a fairy tale) and contextually (as a bone's way to fertilize a lawn). Observer languages are 
just now being formulated. They and their successors will be the communication vehicles of the 1980s.  

Kay set forth his theories about personal computers as the components of a new 
medium for human expression , and compares the recent and future emergence of 
personal computers with the slower development cycles of past media. He also 
predicted that the changes in the human social order that were likely to 
accompany a new computerized literacy would be much more sweeping than 
the effects of previous media revolutions. The creation of a literate population 
would be the first reason for such a change. Out of that literate population, perhaps a few 
creative individuals would show the rest of us what could be achieved. He declined to 
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predict the specific shape of these social changes, noting the failure of previous attempts 
at such forecasting: 

We may expect that the changes resulting from computer literacy will be as far reaching as those that came 
from literacy in reading and writing, but for most people the changes will be subtle and not necessarily in 
the direction of their idealized expectations. For example, we should not predict or expect that the personal 
computer will foster a new revolution in education just because it could. Every new communication 
medium in this century -- the telephone, the motion picture, radio and television -- has elicited similar 
predictions that did not come to pass. Millions of uneducated people in the world have ready access to the 
accumulated culture of the centuries in public libraries, but they do not avail themselves of it. Once an 
individual or a society decides that education is essential, however, the book, 
and now the personal computer, can become among the society's main vehicles 
for the transmission of knowledge.  

The difference between a Dynabook of the future and all the libraries of the past, 
however, would depend upon the dynamic nature of this medium. A library is a passive 
repository of cultural treasures. You have to go in and dig out your own meanings. A 
Dynabook would combine the addictive allure of a good video game with the 
cultural resources of a library and a museum, with the expressive power of an 
animated fingerpaint set and a synthesized orchestra. Most importantly, it would 
actively find the knowledge appropriate for the task of the moment, communicated in the 
form and language best suited to each individual who used it. 

The intelligence of such devices -- the reason that software breakthroughs in artificial 
intelligence research would someday have to intersect with the evolution of personal 
computers -- would influence their ability to bring resources to the person who needs 
them. When the machines grow smart enough to communicate with eight-year-
olds, then the question will shift from how to build a computer that people can 
easily use to what we all do with that kind of power. 

What if libraries were able to find out what most interests you and what you 
most need to know, and showed you how to find what you wanted? What if you 
could say to the library: "I wonder what it would be like to live in the Baghdad of the 
Caliphate?" or "I wonder how it feels to be a whale?" and expect the library to show you? 
Do you like Van Gogh? How about a simulation of the fields outside his house? Would 
you care to sit in with Louis Armstrong or Wolfgang Mozart? What would it do to the 
world if we could all see how everybody else lived and share in their cultures? 

If the first effect of the coming metamedium was likely to be the creation of a literate 
population who shared a new freedom to use symbols and to choose how to view 
information, then the second effect lay in the power that would be unique to this medium 
-- the power of simulation. Simulation is the power to see what you imagine, to create 
worlds that obey your command. The computer can build instant sensory representations. 
The user/programmer explores a universe that reacts, in which the degree of the user's 
power depends upon and grows with one's understanding of the way the worlds work. 
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The power of simulation to empower the imagination and give form to whatever can be 
clearly discerned in the mind's eye is what makes this kind of device a "fantasy 
amplifier." Although there are several homilies that are entitled to be called "Kay's First 
Law," the statement that he most often calls "Kay's Second Law" is: "Any time you 
build a fantasy amplifier, you have a winner." His reasoning is that game 
playing and fantasizing are metaphors for the kind of skill people need to get 
around in the world. 

"We live in a hallucination of our own devising," Kay is fond of saying. But our illusion 
is so complex, so much of the world we experience appears to be beyond our control, and 
the operating manual is so difficult to find, that we all tend to get locked into the way our 
families, societies, and cultures see the world. "We can't exist without fantasy, Kay 
asserts, "because it is part of being a human. A fantasy is a simpler, more controllable 
world." 

And by practicing how we would control a simpler version of the world, we often figure 
out how to operate the world outside the fantasy. A game is both controllable and 
challenging. It is entered vicariously, purposefully, and with an open mind about the 
outcome. Sports and science and art all involve vicarious, purposeful fantasies in that 
sense. That's why he feels that video games were not a fad but a precursor to something 
with much more profound power. And that is the most likely reason why he joined Atari 
Corporation.  

The power of simulation is not necessarily or exclusively a beneficial one, as the legends 
of today's system-crashers, obsesses programmers, and dark-side hackers attest, and as 
Kay warned in his Scientific American paper: 

The social impact of simulation -- the central part of any computing -- must also be considered. First, as 
with language, the computer user has a strong motivation to emphasize the 
similarity between simulation and experience and to ignore the great 
differences that symbols interpose between models and the real world. Feelings of 
power and a narcissistic fascination with the image reflected back from the machine are common. 
Additional tendencies are to employ the computer trivially (simulating what paper, paints, and a file cabinet 
can do), as a crutch (using the computer to remember things that we can perfectly well remember 
ourselves) or as an excuse (blaming the computer for human failings). More serious is the human 
propensity to place faith in and assign higher powers to an agency that is not 
completely understood. The fact that many organizations actually base their 
decisions on -- worse, take their decisions from -- computer models is 
profoundly disturbing given the current state of computer art . . . .  

The fact of simulation is so seductive to human perception, and so potentially useful in 
"real world" applications, that its widespread use is inevitable, once personal computers 
grow sophisticated and inexpensive enough. The ethics of how and for what purposes 
simulations should and should not be used are only beginning to be formulated. The 
historical events, debates in PTAs and legislatures, and growth in public concern that will 
accompany the introduction of this medium will help determine the shape of the future 
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ethics of simulation. The best place to look for expert guidance, Kay suggests, might be 
to those of us who are the least prejudiced by precomputer ways of thinking: 

Children's Computer Ethic 
  
Children who have not yet lost much of their sense of wonder and fun have 
helped us to find an ethic about computing: Do not automate the work you are engaged in, 
only the materials. If you like to draw, do not automate drawing; rather, program your personal computer to 
give you a new set of paints. If you like to play music, do not build a "player piano"; instead program 
yourself a new kind of instrument.  

The way we think about computers -- as machines, as systems that mimic human 
capabilities, as tools, as toys, as competitors, or as partners -- will play a large part in 
determining their future role in society. In the conclusion of his article, Kay cautions 
against the presumptions of present-day minds about what the minds of future 
generations may or may not choose to do with the instruments past generations worked to 
create: 

A popular misconception about computers is that they are logical. Forthright is a better term. Since 
computers can contain arbitrary descriptions, any conceivable collection of rules, consistent or not, can be 
carried out. Moreover, computers' use of symbols, like the use of symbols in language and mathematics, is 
sufficiently disconnected from the real world to enable them to create splendid nonsense. Although the 
hardware of the computer is subject to natural laws (electrons can move through circuits only in certain 
physically defined ways), the range of simulations the computer can perform is bounded only by the limits 
of human imagination. In a computer, spacecraft can be made to travel faster than the speed of light, to time 
travel in reverse. 

It may seem almost sinful to discuss the simulation of nonsense, but only if we want to believe that what 
we know is correct and complete. History has not been kind to those who subscribe to this view. It is just 
this realm of apparent nonsense that must be kept open for the developing 
minds of the future. Although the personal computer can be guided in any 
direction we choose, the real sin would be to make it act like a machine!  

Because he started out young in a field that was young itself, Kay was one of the first of 
the generation of infonauts, the ones who grew up with the tools created by the pioneers, 
and who have been using them to create a medium for the rest of us. One of the things he 
learned at ARPA and Utah, Sail and PARC, Atari and Apple, was that putting together a 
group of talents and leaving them alone might be the most important ingredient in 
invoking the breakthroughs he'll need to complete his dream. 

People are beginning to wonder what Kay, now at Apple, intends to do next. "I would 
imagine that he feels more than a little frustrated," said Bob Taylor, in 1984, referring to 
the fact that Alan Kay hadn't produced anything as tangible as Smalltalk in a number of 
years. A hotshot programmer at Apple put it differently: "He deserves to be called a 
visionary, because he is. And I love to hang around him because he knows so much about 
so many things. But it gets a little tiring the third time you hear him say, 'We already did 
that back in '74.' " 
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Atari was the first institution where Alan Kay played a significant role but didn't make 
any breakthroughs. Because of what happened -- or didn't happen -- with the Atari team, 
he probably learned that being a member of a team, albeit an inspirational, even visionary 
member, doesn't necessarily mean that he is cut out to be a good leader. Before we 
explore the end of the dream at Atari, however, another infonaut by the name of Brenda 
will give us a glimpse at part of what Kay and his cohorts attempted to accomplish.  
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Chapter Twelve: 
Brenda and the Future Squad 
To those of us who don't live and work in futurist sanctums like ARC, PARC, Atari, or 
Apple, such activities as flying through information space or having first-person 
interactions with a computer are hard to imagine in terms of what one would like to do on 
a Friday night. There simply aren't any analogous images available in our cultural 
metaphor-bank: Is it like watching television? Playing a video game? Searching through 
an infinite encyclopedia? Acting in a play? Browsing through a book? Fooling with 
fingerpaints? Flying a plane? Swimming? 

My initial encounter with Alan Kay led me to several of the people who worked for him 
at the time, and I eventually ended up spending more time with Brenda Laurel and 
Colleagues than I did with Alan. Brenda and her friends were interested in the 
same questions that puzzled me: what would it feel like to operate tomorrow's 
mind-augmenting information-vehicles? My first experience with their work took 
place in a guarded, well-equipped room in Sunnyvale, California, home of Atari Systems 
Research Group. The following brief scenario is taken from my notes of that first 
observation: 

The world was grey and silent before Brenda spoke.  
"Give me an April morning on a Meadow," she said, and the gray was replaced by 
morning sunshine. Patches of cerulean sky were visible between the redwood branches. 
Birds chirped. Brooks babbled.  
"Uhhmm . . . scratch the redwood forest," Brenda continued: "Put the meadow atop a cliff 
overlooking a small emerald bay. Greener. Whitecaps."  
Brenda was reclining in the middle of the media room. "The background sounds nice," 
she added: "Where did you get it?"  
"The birds are indigenous to the northern California coast," replied a well-modulated but 
disembodied female voice: "The babbling brook is from the acoustic library. It's digitally 
identical to a rill in Scotland."  
"There's a wooded island in the bay," continued Brenda, looking down upon the island 
that instantly appeared below her where only green water had been a moment before. She 
surveyed the new island from her meadow atop the cliff above the bay, then spoke again: 
"Monterey pine, a small hill, a white beach. Zoom into the beach. Let's walk up that path. 
There's a well under that banyan tree. I want to dive in and emerge bone-dry in the 
Library of Alexandria, the day before it burned." 

A few groups on the leading edge of cognitive technology have been trying to find 
images to help them in their effort to materialize a mass-marketable version of Bush's 
Memex, Engelbart's Augmentation Workshop, and Kay's Dynabook. Those people who 
are attempting to design these devices share an assumption that such machines will 
evolve from today's computer technology into something that will probably not resemble 
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the computers we see today. Ideally, we won't see these hypothetical computers of 
tomorrow, because they will be invisible, built into the environment itself. 

Try to imagine a computer that is nowhere to be seen, and is set up to attend to 
your every wish, informationally speaking. You enter a room (or put a helmet 
over your head), and the room (or the helmet) provides multisensory 
representations of anything, real or imaginary, you can think of to ask it to 
represent. Science fiction writers of the past decades have done their share of 
speculating on what one might do in such a representationally capable environment. You 
could, for example, go skiing in the Alps with wraparound full-color three-
dimensional visual display, authentic panphonic soundtrack, biting cold air, ultraviolet-
rich high-altitude sunshine, spray of powder snow on your cheeks, the feeling of skis 
beneath your feet, of being impelled down a slope. 

But you shouldn't have to limit your use of such a universal information 
medium to a real terrestrial experience. You could explore a black hole in a 
neighboring galaxy, navigate through tour nervous system, become a 
Connecticut Yankee in King Arthur's court. If you want to extend your senses into 
the real world in real time, you can look at quasars with x-ray radiotelescope vision, CAT 
scan everything you see, hover above the earth in a weather satellite, zoom down to take 
an electron microscopic look at the microbes on a dust mote on a license plate in Kenya. 

If you want to communicate with one person or an entire on-line network, you have all 
the media at your disposal, along with additional "dialogue support tools" to augment the 
interaction. Or the interaction might be private, limited to you and the informationscape -
- for reasons of work or play. 

Perhaps you want to know something about blue whales. Everything written in 
every magazine, library, or research data base is available to you, and an 
invisible librarian is there you help you, if you wish; just focus your eyes on a 
reference file and it fills the screen. Ask the librarian questions about what you 
want to know, or allow it to ask you questions. But you don't have to just read 
about whales. You can listen to them, watch them, visit them. Just ask, and 
you'll be underwater, swimming among them, or in a helicopter, watching them 
while you hover above the crystalline Baja waters. 

The experience won't be strictly passive. You can act out the role of a whale or 
Louis XIV (or Genghis Khan, if that is your taste) in a simulated video encounter 
and make decisions about the outcome of that encounter. Paint palettes, text editors, 
music and sound synthesizers, automatic programming programs, and animation tools 
will give you the power to create your own blue whale or ancient Mongolian microworlds 
and romp around in them. 
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Since MIT, Lucasfilm, and Evans & Sutherland were in the bidding for Kay's services 
when he left Xerox, one can safely assume that Atari must have offered him something 
more. Although his obvious desire was to run an advanced software shop, Kay knew that 
his next software dream would require very advanced hardware. "You want hardware 
designers? We'll get you hardware designers," you can imagine them saying. Atari got 
him nothing but the best -- including Ted Hoff, the legendary Intel scientist who was the 
leader of the team that invented the microprocessor chip. Kay assembled his own 
software research team. 

Brenda Laurel joined Atari Systems Research Group after a stint in their educational 
marketing division. When I first met her, she was involved in a research project 
that she insisted defied verbal description. She invited me to watch a special kind of 
brainstorming session they were just beginning to explore. 

The Atari research building was in a typical Sunnyvale flatland industrial park, with the 
usual high-tech high-security trappings -- twenty-four-hour guards, laminated color-
coded nametags, uniformed escorts. It was here that I joined Brenda and several of her 
colleagues in a group-imagination exercise connected with what they called a media-
room project. 

Brenda signed me in, walked me through the gray-walled, gray-carpeted corridors, and 
brought me to a large room, bare except for a few industrial-modern couches and chairs, 
a videotape setup, and two whiteboards. Inside the room were Eric Hulteen, the project 
leader; Susan, a red-haired, soft-spoken young woman; Scott, a quiet, spaced-out preppie 
type; Don and Ron Dixon, the Robotic experts; Craig, a somewhat skeptical, bearded 
hacker; Jeff, Tom, Brenda, and Rachel, who was videotaping the event. 

Rachel was short, had a crewcut, wore a tank-top tee shirt, purple blousy harem pants, 
and no shoes. Don and Ron were twins. A few in the group could be as young as twenty-
three or twenty-four, the oldest was no older than thirty-five. Jeans and sandals were 
the dominant costume. Nobody wore a tie. Nobody had acne or a speech 
impediment. Nobody wore a plastic penholder. 

As it was explained to me by Brenda and by Eric, whose project it was, a media room 
is an information terminal that a person can walk around inside -- a place where 
you can communicate directly with the machine without explicit input devices 
like keyboards. The room itself is set up to monitor human communication output. This 
presumes that all the hardware and software that are now in experimental or 
developmental stages will be working together to do what a good media room does -- 
without bothering the person who uses it with details of its operations. 

Eric came to Atari from MIT's Architecture Machine Group, an innovative group led by 
Alan Kay's old friend and Atari consultant Nick Negroponte. The idea of "spatial data 
management" that came from the MIT group was a response to the problem of finding a 
way to navigate the huge new informational realms opened by computers, by adopting 
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the metaphor of information space that the user can more or less "fly" through. The 
dominant metaphor in software design viewed large collections of information 
through the well-known "file-cabinet" metaphor, in which each piece of 
information is regarded as part of a "file folder" that the user locates through 
traditional filing methods. But what if the collection of information could be 
displayed visually and arranged spatially, so the user could have the illusion of 
"navigating" through it? 

Perhaps the most well-known demonstration of this metaphor was the "Aspen Map" 
created by Negroponte's group. To use this map, you sit in front of a video screen and 
touch the screen to steer your way down a photographic representation of the streets and 
houses of Aspen, Colorado. 

A computer-directed videodisk connects the video steering controls to a very large 
collection of photographs of Aspen. The computer translates your position and your 
commands into the correct sequence of photographs. If you decide to look to the left, the 
screen shows the streets and houses that are located to the left of this position in the real 
city. If you decide to stop and take a closer look at one of the houses that are specially 
marked, or even open the door and look inside, you can do so. 

The kind of simple branching structure of a city's streets represents only the most basic 
kind of information base that can be represented spatially. The most important aspect of 
this idea doesn't have to do with road maps -- although this is obviously a good way to 
learn how to get around in a town you've never seen before. The important point is that 
some information domains can be organized around a spatial metaphor, creating a 
coherent environment path that each user can move around in by following his own 
particular path. A reference work for someone trying to find the problem in an 
automobile engine or the plumbing system of a nuclear submarine could just as easily be 
mapped in such a way. 

Whether they came from MIT, Carnagie-Mellon, or another video game manufacturer, 
every person in Kay's Atari group represented the cream of the crop of the best young 
minds in fields ranging from robotics to holography to videodisk technology to artificial 
intelligence to cognitive psychology to software design. The necessary hardware 
components of the media room will become available, everyone hopes, by the time the 
really tricky part -- the software design, construction, and debugging -- is on its way to 
completion. 

The person inside a full-scale media room will have 360-degree visual displays of some 
sort -- high-resolution video or holographic images -- computer-generated and archived. 
Images can be retrieved from a library (and added to the library), or they can be 
constructed by the person or by the computer. There will be a total-sound audio system 
ranging into ultralow and ultrahigh frequencies. But the most important element is 
not in the sensory displays, which involve straightforward if now-expensive 
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technology, but in the software -- in the way the room is designed to "know" 
what to do. 

If the media room is to be the universal medium, the room itself must be able to see and 
hear the person inside, and "understand" what it sees and hears well enough to carry out 
the person's commands. Ideally, it should understand the person it is dealing with 
well enough to actively guide the fantasy or the information search, based on its 
knowledge of personal preferences and past performance. Bioelectronic sensors 
built into the floors will keep track of the user's mood. The only thing the room is 
presumed not to do is read minds. 

One of the ways to describe a media room is "a computer with no interface," or "a 
computer that is all interface." When the computer interface disappears, you are not at the 
control panel of a machine, but walking over the Arctic ice, or flying to Harlem, or 
looking through a book in a musty old room. How does one envision the capabilities of a 
technology that doesn't exist yet? How do you deal with an invisible computer? If 
you don't have to worry about how to tell it what to do, and if its computer-representation 
capabilities are too large to worry about, the question shifts from the tool to the task: 
"Okay, now that I can go anywhere, including places that don't exist, where do 
I want to go?" Brenda, Eric, and their colleagues wanted to know what new 
communication styles people might adopt in response to such a system. Most of all, they 
wanted to know how it would feel to use such a system. 

The night I watched her and her colleagues fantasize in that room in Sunnyvale, Brenda's 
idea was to plan the uses of a future technology of this sort by using the same kinds of 
tricks that actors use to create imaginary spaces: "Magical kinds of things can happen 
through improvisation," she told the group, "because it can trick you into revealing 
preverbal ideas. What we each bring to this is our capacity to have inspirations in real 
time." 

The first improvisations were warm-up exercises. Brenda's trip to the Library of 
Alexandria was followed by Scott's visit to a hypermirror that showed him what he 
looked like in the infrared and gave him a real-time scan of his brain metabolism in 
sixteen colors. He watched the colors of his thought processes as he watched the colors of 
his thought processes. 

Then the group decided to make Eric play the role of the person using the system, while 
everyone else improvised roles as the components of the media room -- input to the user's 
vision, mobility, hearing, emotions, thoughts. In the first try, everyone got into their role 
with such enthusiasm that Eric was literally swarming with people mimicking him, 
giving him advice, grimacing. He spent his time rather defensively trying to figure who 
did what. It was like a combination of twenty questions and charades, but it revealed 
something about the bewilderment of even a technically sophisticated computer user 
when faced with a system that does not explain itself but simply acts. 
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In the next experiment, Susan, acting as the person in the middle of such a system, 
decided to try to take control of the elements, and discovered that all the roles of the 
different components could be changed radically by adding a "help agent." The 
help agent oriented the user by saying things like "ask her about a place," or "ask him -- 
he knows what to look for." The idea was to create a kind of "informational butler" that 
would observe both the user and the information system, keep a record of that 
individual's preferences, strengths, and weaknesses, and actively intervene to help the 
user find or do what the user wanted to find or do. 

The next day, several of the crew were going to Southern California, to see what a 
prominent university cognitive science department could tell them about designing 
machines that people can use. About a week later, Brenda and I talked about what she 
had learned from the cognitive scientists, and the improvisation exercise. 

"The cognitive science people are looking at human-machine interactions. Naturally, the 
hired hackers got into the act when the subject of the discussion was how to teach 
secretaries to use a file management system. One of the programmers at the staff meeting 
summarized the problem by asking, 'how do we get a secretary to understand that slash-
single quote-DEL will delete a file?' That was his understanding of the human interface -- 
a matter of figuring out how to adapt a human to the esoteric communication protocol 
some programmer built into a machine." 

That part of a computer game that makes the user step outside the game world, that 
doesn't help the user to participate in the pleasure of the game, but acts as a tool for 
talking to the program -- that's where distance comes in. That's what happens to 
the secretary when the programmer tells her that slash-single quote-DEL means 
"erase this." She doesn't want to ask the computer to erase it; she simply wants 
to erase it. 

What Brenda was getting at seemed so strange and so counter to everything I had been 
taught that it took a while for it to sink in: In essence, she was saying that when it comes 
to computer software, the human habit of looking at artifacts as tools can get in the way. 
Good tools ought to disappear from one's consciousness. You don't try to persuade 
a hammer to pound a nail -- you pound the nail, with the help of a hammer. But computer 
software, as presently constituted, forces us to learn arcane languages so we can talk to 
our tools instead of getting on with the task. 

"The tool metaphor gets in the way when it is applied at the level of the larger system that 
includes the human operator," Brenda explained. Even though your programmer gives 
you a file management system that is functional in a tool-like way, the weird way the 
human is forced to act in order to use the tool creates an unnecessary distance between 
the action the human is required to perform and the tool's function. 

"We also know, however, that there is another set of computer capabilities that aren't at 
all tool-like. Games and creating art, for example. So what is it that a computer does, in 
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that case? My answer is that its function is to represent things. Which, in the case of art 
or games, means that the function is at least the same as the outcome, because in art or 
games, representation is at least part of the outcome." 

Kids don't play video games by the hour because it is a good way to practice hand-eye 
coordination, or for any other reason besides the sheer pleasure of playing. On the other 
hand, nobody uses a word processing program out of sheer enjoyment of using the 
program; they use a word processor because they want to write something. In the case of 
the word processor, the outcome is most important. In the video game, there is no 
separation from the user/player and the world represented in the game. In the 
word processor, the command language of the software creates a distance 
between the user and the task. 

"One strategy in our research is to find out how to eliminate the part that keeps us 
distanced." Brenda explained. "I want to reach my hands right through the screen 
and do what I want to do," she added, with the kind of passionate conviction I hadn't 
encountered since Engelbart got that faraway look in his eyes and started talking about 
what humankind could do with a true augmentation system. I don't want to enter a bunch 
of commands," Brenda insisted. "I might not even want to speak a bunch of 
commands, if I have to speak them in a way that is different from the way I 
normally talk. I want first-person interaction. Great. But first I have to do away 
with all this stuff between me and the outcome. 

"What metaphors haven't been used? Maybe the interface is the barrier. I think that it is 
more than a technological question. You can't expect to solve a problem by building a 
better interface if the whole idea of interface is based on an incomplete metaphor. To use 
a real artsy metaphor that will probably break down under scrutiny, I like to look at the 
computer as a system for making magic portals. Like that moment in The Wizard of Oz 
when Dorothy opens the door and everything changes from black and white to color. 
That is what I want to happen -- perceptually, cognitively, emotionally. The portal is an 
interim metaphor to me. We need something richer. I'm looking for something that will 
click into place and re-explain the idea of the interface. 

"I want to make a fantasy that I can walk through," Brenda explained. "That is 
what an adventure game tries to do. Long before computers were available to regular 
folks, hackers on large mainframe computers were hooked on adventure games. Now 
there are adventure games that you can play on your home computer. What happens 
when you try to build a first-person adventure game? 

"The first thing I do in this game I want to walk around in is to look at it. Maybe there are 
some graphics on the screen. Perhaps the screen is all around me. Maybe there is some 
text to read, or a sound track that reads it to me. All of these are important technical 
aspects, but they are peripheral to my concern. All the screen and speakers do is to 
establish an environment. Once I look around the environment, however, I want to 
interact with it. 
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"Let's say that the environment of this fantasy is something that a science fiction writer of 
the first caliber invented. Say it's a planet that I'm exploring for the United Federation of 
Planets. I start walking through this world. Today, with the state of the interface art as it 
is, if I want to move to the north and turn over a stone, I'd tell the computer, 'Move north. 
Turn stone.' Note that I have to tell the computer. I've just stepped out of the 
fantasy. And you destroy a fantasy when you step out of it. 

"What kind of system enables me to simple move north and pick up the damn stone? I 
don't think it's just a question of making the environment lifelike. It isn't just a technical 
question for a fancier projector to solve. It's a question of how the world is established 
when it is constructed. How the author established the way in which people can relate to 
it. 

"Maybe I can look around the planet until I find a guide. Remember the 'help agent' in the 
media room improvisation? This description of walking around the world sounds a lot 
like a theatrical improvisation. You walk up to the stage, and the director says, 'Okay, this 
is a new planet. You play an explorer. Go.' Nine times out of ten, something like that 
dwindles away, but if you are lucky you discover something useful about the character. 
Very rarely do you look back and say, "That was a wonderful story.'" 

According to Brenda's theory, the reason is rarely memorable, even in a good 
improvisation, is because the actors are forced to use part of their mind to think about 
being playwrights. To achieve an excellent dramatic outcome the actor has to think about 
his character and manipulate the plot line at the same time, so that it all comes out in an 
interesting way. Unless you are an acting genius, you have to trade part of your acting 
power in order to think about the play. And you can't do a great job of crafting a drama if 
you have the acting job to juggle. 

"This is where I think the computer can assist us," Brenda insists: "I still think one 
answer is to put the smarts of the playwright into a first-person fantasy-creating 
system. 

"It has to be built into the way the imaginary world is constructed. Sitting on top of all 
your graphics and voice recognition and speech synthesis is an expert system that can 
make informed decisions about the potential of dramatic situations, using a large 
enough base of knowledge about the possible situations that can arise and a set of rules 
for sifting through the knowledge base." 

Less fantastic, but nonetheless powerful versions of the "expert system" Brenda was 
talking about do exist now -- and in the next chapter we'll take a look at what another 
infonaut thinks about the potential of these "knowledge-transferring" programs. The 
hypothetical variation Brenda was describing would be able to learn form experience -- 
experience with the individual who is using it or with everybody who has ever used it. 
Brenda thinks that such a program could approach the kind of analysis that a drama critic 
does. "Maybe we can put Aristotle's rules for good drama in the system to start." 
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Right now, there are expert systems in existence that can help doctors to diagnose 
diseases. Those systems are able to apply diagnostic rules adapted from human doctors to 
a large collection of data, a knowledge base, regarding known symptoms. Substitute 
drama for disease, and the elements of drama (like universality and causality) for 
symptoms, and the automatic drama expert in our fantasy will be able to pick out the 
most dramatic responses and consequences for actions that the player performs, and 
weave them back into the fantasy. It's an idea that seems to be as far ahead of today's 
entertainment software as Alan Kay's Dynabook was ahead of the computer hardware of 
the 1960s. 

Assume that you can simulate a medieval castle and give an audience member a 360 
degree, first-person role in the dramatic action, so that every time you step into the 
Hamlet world as Horatio or Hamlet or Ophelia, you make different choices about the 
outcome. Artificial intelligence research tells us that you don't have to specifically store 
all the possible events that could occur in a giant data base if you can structure the 
representation of the world in such a way that its characteristics are formulated as 
tendencies to go in certain directions. When you pick up a stone, for example, you are 
likely to find crawly things under it. 

Leaving aside the technical arguments about the feasibility of constructing such a system, 
Brenda is most concerned about what effects the experience of encountering such a 
system like the one she described might have upon our emotions as well as our 
cognitions: How does it feel to experience a world like that? How does it change my 
perception to walk through its portals? How do I find out where the edges are? What kind 
of transactions can I have with this world?" 

The experience Brenda described is the experience at the human interface -- where the 
mind and machine meet. The interface hardware and software are what computer 
people call the "front end" of the system. The back end is what the system 
needs in the way of smarts so that outcomes end up being dramatically 
pleasurable. Right now, you can wander around in an adventure game and gather 
treasure and kill monsters and finish by winning or being killed. There isn't a sense of 
unfolding drama. In order for the front end of an adventure game to convey that sense of 
direct, first-person drama, it would have to be based on a very sophisticated back end. 

"You use existing technology to make scenes branch according to your decisions, but that 
doesn't converge on a dramatic outcome, except in the most mechanical way. But you 
could take the same world with the same characters and the same elements and add this 
sense of drama, and come out with something that would be more like experiencing a 
drama at first hand. 

"The kind of system I'm describing has to be able to find out what I want by remembering 
what kinds of things I have paid attention to. The system has to have a good enough 
model of me, and memory of how I have acted in the past, to make good guesses about 
how I'm likely to act in the future. 
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"I've tried to describe an element from the simplest thing that I think my colleagues and I 
will actually be able to do in the near future. Let's look down the road ten years. Say we 
really get the system working and we know how to synthesize dramatic outcomes and 
orchestrate sound tracks and images and give the person who uses the system a way to 
affect these representations. 

"We can think of such a system not only as a medium for an interactive fantasy but as a 
kind of an interface to information that is not a fantasy. What if the world, instead of 
planet X or Shakespeare's Denmark, is the world of whales or the worlds of chemical 
reactions? That's a powerful idea that we can see at work right now in the best of 
contemporary educational software." 

She offered the example of a game in which the players experience the fantasy of being 
cadets on a starship. Each cadet would be responsible for running part of the ship. The 
players can choose whether they want to specialize in navigation or propulsion or life 
support or computer systems. In real time, they run their parts of the ship. Then 
something goes wrong -- the life-support systems are threatened, the reactor is 
malfunctioning. Or something interesting occurs -- the exobiologists have spotted a 
planet to investigate. The players have to find out what to do and how to do it. In the first 
person. 

"Now let's look at it from the point of view of drama theory," she proposed. "You accept 
easily the idea that I am a space cadet. I accept it too. This is what happens when a master 
actor impersonates a character. When I am impersonating someone, all of me is 
impersonating that character. What has to go away, to disappear from my own behavior 
to make that possible? The idea that I am me -- the person who doesn't know what I 
haven't learned -- has to go away. The same idea that often gets in the way of learning 
anything new. 

"A willing suspension of disbelief that accompanies a first-person simulation 
enables the person who participates to feel what it would be like to have greater 
personal power. A world like that shows us what it's like not to have the limitations that 
we think we have in everyday life. When we see how much a kid learns about predicting 
simple trajectories and the rules of bodies in motion from playing even simple video 
games, I think it is easy to see the educational potential in using these 'fiction 
environments' as the door to worlds of information that are as useful or healthy to know 
as they are fun to learn about." 

Of course, by this time, I was asking the same question that most of the people reading 
this chapter must be asking: "When are we going to play with these 'fiction 
environments'? How close is Atari to releasing actual products based on this research?" 

The answer, unfortunately, is that it is unlikely that Atari is ever going to translate this 
research into consumer products. Six months after I talked to Alan Kay and observed 
Brenda Laurel's research group, the Systems Research Group was fired en masse. Brenda 
and Eric were given five minutes' notice. Alan went to Apple shortly thereafter. Once 
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again, as in the case of ARC and PARC, it seemed that the management of the 
corporation that nurtured the most exciting research in interactive, mind-
augmenting computer systems seemed to fail miserably when it came to 
developing products. 

After she was fired, Brenda was a lot more willing to talk about the pressures of doing 
long-term research for a consumer-product-oriented company. In her opinion, the 
explanation for the demise of Atari Research, and the dramatic reversal of Atari 
Corporation's fortunes that led to the drastic cutback, is a simple one. "The Warner 
people" (who owned Atari), she claims, "never knew anything about innovation. The 
people they hired to run Atari were from Burlington Industries, Philip Morris, Proctor 
and Gamble -- dog food boys. How often does dog food change?" 

Before she was in Systems Research, Brenda was in marketing. She claims that she told 
Raymond Kassar (former CEO of Atari) that "what people are going to want from us 
is not more deadhead entertainment, but stuff that helps their minds grow. The 
largest market of all is the market for personal power, for new equivalents to 
opposable thumbs." 

Augmentation visionaries like Engelbart, prophets of interactive computing like 
Licklider, and infonauts like Alan Kay and Brenda Laurel tend to talk in grand terms 
about the ultimate effects of what they are doing -- the biggest change since the printing 
press or even since the opposable thumb. They all seem convinced that their projections 
will be vindicated by a technology that will inevitably come into existence despite the 
myopia of institutions like SRI, Xerox, and Atari. 

With the increasing power of home computers, and the growing demand for 
entertainment and educational software, it seems likely that smaller groups, working in 
entrepreneurial organizations rather than academic or large-scale product-oriented 
institutions, will produce the fantasy amplifiers and mind augmentors of the near future. 
One of the most controversial areas of entrepreneurial research is in the field of applied 
artificial intelligence. The subject of the next chapter is involved in the commercial 
development of those intriguing programs that Brenda mentioned, the so-called expert 
systems that originated in the pure research that is being conducted at MIT and Stanford, 
and which seem to be invading the world of commercial software.  
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Chapter Thirteen: 
Knowledge engineers and Epistemological 
Entrepreneurs 
". . . It is extremely important that the development of intelligent machines be pursued, 
for the human mind is not only limited in its storage and processing capacity but it also 
has known bugs: It is easily misled, stubborn, and even blind to the truth, especially when 
pushed to its limits. 

"And, as is nature's way, everything gets pushed to the limit, including humans. We must 
find a way of organizing ourselves more effectively, of bringing together the energies of 
larger groups of people toward a common goal. Intelligent systems, built from 
communications technology, will someday know more than any individual about what is 
going on in complex enterprises involving millions of people, such as a multinational 
corporation or a city. And they will be able to explain each person's part of the task. We 
will build more productive factories this way, and maybe someday a more peaceful 
world. We must keep in mind . . . that the capabilities of intelligence as it exists in nature 
are not necessarily its natural limits."  

 Are future computers going to become tools for extending the power of our 
minds, or are they going to evolve into a new kind of intelligent species that 
operates far beyond the limits of biological intelligence? Avron Barr, the author of 
the statement quoted at the beginning of this chapter, is exploring one of the most 
potentially explosive areas human-computer evolution -- the field that has come to be 
known as "knowledge engineering." 

To me, Barr's specialty seems to be rooted in the same ides that goes back to Licklider 
and Bush -- the inevitability of a human-computer symbiosis. But to many other 
people, the idea of artificial intelligence seems to be fundamentally different 
from augmentation, in that the artificial intelligentsia appear to be more 
interested in replacing human intelligence than extending it. 

Knowledge engineering is but one part of that ever-expanding area of hardware and 
software research that constitutes the field of AI. Unlike other artificial intelligence 
researchers, Avron Barr is not concerned with systems that can direct an optical sensor to 
recognize visual patterns, or to help a speech-recognition system to understand natural 
languages, or direct a robot in the task of climbing stairs. He and his colleagues are 
trying to build systems that can transfer knowledge from experts to novices and 
that can use the transferred knowledge to help people make decisions about 
specific problems. 

Barr's specialty seems to bridge the gap between those who see the future of computers in 
terms of "mind tools" and those who see it in terms of "the next step in the evolution of 
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intelligence." Like the other people I met who have been involved in building tomorrow's 
software tools, Barr has a firm belief in the epochal quality of the changes we will face 
when these experiments filter down to the level of public experience. For example, 
consider the following scenario: 

A general practitioner in a small town in the Southwest was awakened late one night by 
an emergency call -- a six-year-old girl had been admitted to the local hospital. She was 
comatose, and she had a high fever. The doctor ordered all clinical tests that were 
available at that hour in a one-hospital town and called the pathologist. The symptoms, 
and the results of the first tests, weren't anything the GP or the pathologist had seen 
before. Drugs were available -- the pharmacy was well equipped, even if specialized 
expertise was in short supply. But which drug? 

Choosing the proper antibiotic from the hundreds of possibilities was a matter of life and 
death for the little girl, and neither the GP nor the pathologist was comfortable about 
staking the young patient's life on guesswork. They took their laboratory results over to 
the local community college, where one of the young programmers who always seemed 
to be around in the middle of the night used a microcomputer and a telephone to put them 
in contact with an expert in Palo Alto, California, who knew just the right questions to 
ask about a case like this. 

"Has the patient recently had symptoms of persistent headache or other abnormal 
neurologic symptoms (dizziness, lethargy, etc.)?" asked the specialist in California. 

"Yes," replies the local attending physician. 

"Has the patient recently had objective evidence of abnormal neurological signs (nuchal 
rigidity, coma, seizures, etc.) documented by physician observation or examination?" 

"Yes," replied the pathologist. 

With the help of clues provided over the telephone by the expert, the local doctors were 
able to administer one more test that narrowed their search for the disease-causing 
organism down to one of the three possibilities suggested by the specialist. There were 
drugs on hand for treating the infection that the long-distance expert had helped them 
pinpoint. The little girl recovered. The doctor, the pathologist, and the child's family were 
grateful. 

The specialist, a computer program named MYCIN residing in a mainframe computer at 
Stanford Medical Center, chalked up another diagnostic triumph to its already impressive 
record. 

Although this particular story is fictional, the dialogue is an excerpt from a real MYCIN 
consultation. The program does indeed exist, and is in use as a strictly experimental 
diagnostic assistant. It is an example of a whole range of new computer programs 
known as expert systems that are now serving as intelligent assistants to human 
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experts in fields as diverse as medicine and geology, mathematics and 
molecular biology, computer design and organic chemistry. Expert systems are 
just the first of a whole new variety of software probes that infonauts like Avron Barr are 
launching into the unknown regions of human-machine relationships. 

These systems are both research tools and commercial products. A program called 
PROSPECTOR has recently helped pinpoint a molybdenum deposit worth tens of 
millions of dollars. A program named DENDRAL, which started out as an artificial 
intelligence experiment, is now owned by a consortium of chemical companies, whose 
chemists use it to design and synthesize potentially useful new compounds. 

One important difference between an expert system and other kinds of computer 
programs is that the program does not simply provide answers to questions, the way a 
calculator provides the solutions to equations. Expert systems do, of course, suggest 
answers, and eventually they will venture answers accompanied by a numerical statement 
of "confidence" in the answer. But they do more than that. The most important part of 
an expert system is in the interaction between the program and the person who 
uses it. 

The human who is faced with a specialized problem can consult the specialized program, 
which is able to ask the human questions of its own regarding the particulars of the 
problem. The consultation is a dialogue that is tailored to the specific case at hand. The 
program simulates the decision process of human experts, and feeds back the 
results of that process to the human who consults it, thus serving as a reference and guide 
for the person who uses it. 

Expert systems as they exist today are made of three parts -- a base of task-
specific knowledge, a set of rules for making decisions about that knowledge, and a 
means of answering people's questions about the reasons for the program's 
recommendations. The "expert" program does not know what it knows through he raw 
volume of facts in the computer's memory, but by virtue of a reasoning-like process of 
applying the rule system to the knowledge base; it chooses among alternatives, not 
through brute-force calculation, but by using some of the same rules of thumb that human 
experts use. 

Statistics about how often experts turn out to be right are the ultimate criteria for 
evaluating expertise -- whether the expert is a person who has studied for years, or a 
computer program that was literally born yesterday. The methodology for conducting 
such an evaluation was suggested in the 1950s, by Alan Turing. The "Turing test" 
bypasses abstract arguments about artificial intelligence by asking people to determine 
whether or not the system they are communicating with via teletype is a machine or a 
person. If most people can't distinguish a computer from another human, strictly by the 
way the other party responds to questions, then the other party is deemed to be intelligent. 
A similar strategy has been employed to judge the efficacy of expert systems. Why not 
just ask some human experts to distinguish human from machine diagnoses? 
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One experiment conducted by the Stanford Medical School began by submitting to 
MYCIN case histories of ten patients with different types of infectious meningitis. At the 
same time, eight human physicians, including five faculty specialists in infectious 
diseases, a research fellow, and a resident, were given the same information that had been 
fed to MYCIN. MYCIN's recommendations were sent, along with the human physicians' 
recommendations, also unidentified as such, and a record of the therapy the patients 
actually received, to eight non-Stanford specialists. The outside specialists gave the 
highest rating to MYCIN. 

In the 1980s, there is little question that expert systems can be highly effective, 
if not superior to human expertise, in certain highly specialized fields. Twenty 
years ago, few people, even inside the artificial intelligence community, were confident 
that it could be done at all. The normally "pure" research field of artificial intelligence 
strayed into this potentially controversial area of applied AI, as it was bound to, because 
the questions surrounding expertise are at the core of the effort to simulate human 
intelligence. 

Edward A. Feigenbaum was one of the people from artificial intelligence research who 
decided, in the mid-1960s, that it is important to know how much a computer program 
can know, and that the best way to learn something about the question would be to try to 
construct an artificial expert. Joshua Lederberg, the Nobel laureate geneticist, suggested 
the task of determining the molecular structure of compounds, based on data from mass 
spectrography and guided by the rules that are known to govern molecular bonds, was an 
appropriately difficult and potentially useful problem for artificial intelligence 
techniques. Together with software expert Bruce Buchanan and Nobel laureate 
biochemist Carl Djerassi, Lederberg and Feigenbaum started to design DENDRAL, the 
first expert system, in 1965, at Stanford University. 

Human chemists know that the possible spatial arrangement of the molecules that make 
up any chemical compound depends on a number of basic rules about how different 
atoms can bond to one another. They also know a lot of facts about different atoms in 
known compounds. When they make or discover a previously unknown compound, they 
can gather evidence about the compound by analyzing the substance with a mass 
spectrograph. The mass spectrograph provides a lot of data, but no clues to what it all 
means. 

Conventional computer-based systems had failed to provide a tool for discovering 
molecular structures, based on spectrographic data. The problem is that the rules allow a 
very large number of "near misses" -- possible structures that almost, but not quite, fit all 
the data. There appears to be a "complexity gap" when it comes to the task of sifting 
through all the near misses. The far simpler computing processes that were used to 
discover simple structures are just not adequate for more complex structures. DENDRAL 
was designed to find that one "structure in a haystack" that perfectly fit the 
spectrographic data and the rules of chemical bonds. 
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It turns out that you can't just feed all the known facts into a computer and 
expect to get a coherent answer. That isn't the way human experts make decisions, 
and apparently that isn't the way you coax a computer into making a decision. What you 
need is an "inference engine" to fit together the rules of the game, the body of 
previously known facts, the mass of new data, then venture a guess about what 
it all means. 

Building the right kind of "if-then" program, one with enough flexibility to use the kind 
of rules of thumb that human experts employ, was only the first major problem to be 
solved. Once you've created the program structure capable of manipulating expert 
knowledge, you still have to get some knowledge into the system. After feeding the 
computer program lots of data about molecules, and rules about how they can be 
combined in molecular structures, the creators of DENDRAL interviewed expert 
chemists, trying to specify how the experts made their decisions about which 
combinations and structures are likely to be useful. The resulting program became 
a milestone in the evolution of software, and the first of a series of software tools for 
chemists, biologists, and other researchers. 

The process of constructing DENDRAL had another useful, unexpected side effect: The 
task of extracting judgment-related knowledge from human experts led to a new subfield 
known as "knowledge engineering." "Knowledge engineering" is the art, craft, and 
science of observing human experts, building models of their expertise, and 
refining the model until the human experts agree that it works. One of the first 
spinoffs from MYCIN was EMYCIN -- an expert system for those people whose 
expertise is in building expert systems. By separating the inference engine from the body 
of factual knowledge, it became possible to produce expert tools for expert-systems 
builders, thus bootstrapping the state of the art. 

While these exotic programs might seem to be distant from the mainstream of research 
into interactive computer systems, expert-systems research sprouted in the same 
laboratories that created time-sharing, chess playing programs, Spacewar, and the hacker 
ethic. DENDRAL had grown out of earlier work at MIT (MAC, actually) on programs 
for performing higher level mathematical functions like proving theorems. It became 
clear, with the success of DENDRAL and MYCIN, that these programs could be useful 
to people outside the realm of computer science. It also became clear that the kind of 
nontechnical questions that Weizenbaum and others had raised in regard to AI were 
going to be raised when this new subfield became more widely known. As the first 
frighteningly practical applications to the field of medicine proved when they 
were created, the field of artificial expertise involves important ethical as well 
as philosophical, psychological, and engineering considerations. 

The clearest area of potential danger in applying knowledge engineering to human 
medicine is the possibility of misuse through misunderstanding. Although the people 
who built the system see it as a marvelous but thoroughly fallible tool, many 
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people tend to give too much weight to the recommendation of a computer 
simply because it comes from a computer. Since medical advice often deals in life 
and death matters, you have to take into consideration the potential psychological impact 
of such an "automatic doctor" when you attempt to build something that gives medical 
advice to an expert. 

Like all complex issues, the ethics of medical knowledge engineering have another side. 
It might be noted by someone from a non-Western, nonindustrial, or nonurban culture 
that expertise, particularly medical expertise, is a desperately scarce resource. The few 
medical, hygiene, and agricultural experts who are fighting the biggest humanitarian 
problems of the world -- epidemics and famine -- are spread too thin and are working too 
hard to keep up with scientific progress in their fields. Even in major medical centers, 
expertise in certain important specialties is a rare commodity. 

While so many of the trappings of "modern medicine" -- like CAT scanners and other 
medical imaging technologies -- are so expensive as to be limited to a few wealthy or 
well-insured patients, the potential cost per patient of a software-based system is 
absurdly low, almost low enough to do some good in a near-future when the number of 
critically ill people on earth might number in the hundreds of millions. 

Medicine -- with all its promise and all its difficult ethical implications -- appears to be 
one of the most promising areas of application for commercial knowledge engineering. In 
the mid 1970s, a physician and computer scientist at Stanford Medical School, Dr. 
Edward H. Shortliffe, developed MYCIN, the diagnostic system quoted in the earlier 
dialogue. The problems associated with diagnosing a certain class of brain infections was 
a technically appropriate area for expert-system research, and an area of particularly 
pressing human need because the speed with which the infecting agent is identified is 
critical to successful treatment. 

MYCIN's inference engine (the part of the program that makes decisions by applying 
general rules to scientific specific data), known as E-MYCIN, was used by researchers at 
Stanford and Pacific Medical Center to produce PUFF, an expert system that assists in 
diagnosing certain lung disorders. An even newer system, CADUCEUS (formerly known 
as INTERNIST), uses AI techniques to simulate the diagnostic skills of a specific human 
physician -- Dr. Jack Meyers of the School of Medicine at the University of Pittsburgh. 
Meyers and his partner, Harry Pople, Jr., a Carnagie-Mellon-trained AI expert, have been 
storing parts of Meyers' problem-solving style and his knowledge about the entire range 
of medicine, along with an impressive body of information from the medical literature. 
CADUCEUS is not yet complete, but it can already perform creditably when it is 
submitted difficult cases from the medical journals. 

People told Katherine Fishman, the author of The Computer Establishment, that their 
object is to provide "something the physician would use instead of going to the library or 
consulting a specialist. There aren't that many experts available, even at major centers." 
Among the sponsoring agencies who have shown interest in CADUCEUS are NASA, 
which has an obvious need for such a medical helper in manned space missions, and The 
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Navy, which could use something similar for nuclear submarines. Special gear for 
astronauts and nuclear submariners might sound remote from most people's 
daily lives, but in recent history, the transistor radio, handheld calculators, and 
many other examples of new technologies have traveled from the exotic 
confines of NASA to the breast pockets of teenagers around the world in less 
than ten years. 

Like the creators of previous technological advances, knowledge engineers first had to 
prove that expert systems could be built at all and that they were useful. That took about 
ten years. Next, they had to find potential areas of application -- a task that didn't take 
nearly as long. About two dozen corporations are currently developing and selling expert 
systems and services. TeKnowledge, founded by Feigenbaum and associates in 1981, was 
the first. IntelliGenetics is perhaps the most exotic, specializing in expert systems for the 
genetic engineering industry. Startups in this field tend toward science-fictionoid names -
- Machine Intelligence Corporation, Computer Thought Corporation, Symbolics, etc. 
Other companies already established in non-AI areas have entered the field -- Xerox, 
DEC, IBM, Texas Instruments, and Schlumberger among them. 

Expert systems are now in commercial and research use in a number of fields. A partial 
sampling: 

•  KAS (Knowledge Acquisition System) and TEIRESIAS help knowledge engineers build expert systems.  
•  ONCOCIN assists physicians in managing complex drug regimens for treating cancer patients.  
•  MOLGEN helps molecular biologists plan DNA experiments.  
•  GUIDON is an education expert system that teaches students by correcting answers to technical 
questions.  
•  GENESIS assists scientists in planning cloning experiments.  
•  TATR helps the Air Force plan attacks on enemy airbases.  

It's hard to argue with a molybdenum deposit or a significantly high rate of successful 
diagnoses. As the debate over whether software is capable of acting intelligently 
dies down in what mathematicians call an "existence proof," the question of 
whether computer technology ought to be applied to such areas as medicine, air 
traffic control, nuclear power plant operations, or nuclear weapons delivery 
systems is just beginning. 

Some critics, prominent members of the artificial intelligentsia among them, have been 
sounding alarms over the potential ethical dangers of relying too much on electronic 
artifacts like expert systems to make decisions. Joseph Weizenbaum fears that there is 
great peril in relying too much on a technology that is very good at mimicing what are 
actually much deeper human thought processes. Expert systems are the epitome of 
the kind of "imperialism of instrumental reasoning" Weizenbaum rails against -
- the kind of thinking that sees all problems as solvable through the kind of 
analytical, mechanical processes a computer uses. 
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In a 1983 interview, Weizenbaum said: "To think that one can take a very wise teacher, 
for example, and by observing her capture the essence of that person to any significant 
degree is simply absurd. I'd say people who have that ambition, people who think that it's 
going to be that easy or possible at all, are simply deluded." 

Avron Barr is a knowledge engineer who does not feel that he is deluded, and 
knowledge-based educational systems happen to be one of the areas of his expertise. 
Surprisingly, Barr agrees with Weizenbaum about the potential ethical danger of mixing 
human lives and artificial intelligence research: "Artificial intelligence doesn't exist yet," 
Barr emphasizes, "but I believe that the kind of research we have started to 
explore with knowledge-based expert systems can eventually create a tool that 
truly understands human inquiries. And I'm not sure that people are prepared 
for the ethical decisions that will accompany that kind of power." 

From our conversations, and from my perusal of his written work, it has been evident to 
me that Barr also feels that the potential for using this technology to assist humanity is 
well worth pursuing, despite the dangers of misuse. Besides developing and distributing 
automated expertise to both specialists and ordinary citizens as an informational antitoxin 
to life in a complicated world, Barr likes to wonder aloud how else might these software 
entries be used to further positive ends. His personal dream is to eventually build an 
expert system that is an expert in helping humans reach agreement. If chemists and 
physicians can use intelligent assistants, why can't diplomats and arms-control 
negotiators avail themselves of the same assistance? Avron Barr's odyssey through 
philosophy, psychology, and computer programming has led him to suspect a deep 
connection between what we know individually and how we agree collectively. 

I met Avron Barr in a short-order restaurant in the heart of artificial intelligence country -
- an establishment named "late for the Train," located next to the Menlo Park train 
station. If there is an eavesdropping hit list for technological spies, this 
seismographic hotcake-and-sprouts joint has to be in the top five. SRI 
International, one of the oldest robotics research centers, and the birthplace of 
PROSPECTOR, the molybdenum-sniffing software assistant, is a few shady, tree-lined, 
affluent blocks away. The tweedy old fellow buttering a scone at the next table 
looked like a central-casting stereotype of a Nobel laureate. 

Barr was wearing a white shirt and tie when we met. He appears to be in his midthirties. 
His hair is brown and well-groomed, his moustache neatly trimmed -- another one of the 
many babyboomers who might have been hippies in the sixties, but who now go to 
hairstylists twice a month. He looks like the young man who used to put your groceries in 
the bag. 

Barr got into programming in the first place because he needed a job, and he 
became involved with artificial intelligence because AI programmers seemed to have the 
only tools he could find that were capable of helping him to create the kind of programs 
he needed in his work for a research team. His need for a job came after he dropped out 
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of graduate school. His undergraduate work in physics and math at Cornell led to 
Berkeley, in 1971, where a few months as a physics graduate student made it clear to him 
that he really didn't want to be a physicist, after all. 

At that point, a career in computer science wasn't even on his list of goals, but 
programming happened to be one of his marketable skills -- he had worked his way 
through Cornell doing scientific programming for various faculty members, stumbling 
along in FORTRAN, which he taught himself from a book one weekend. After he 
abandoned his physics career and he began to look for employment, an announcement for 
a research associate with programming experience came to his attention. The Stanford 
job called for a resident software handyman in a laboratory that was exploring the 
technology of instruction. He took it. 

He had become a significant contributor to the research team, as well as the hired 
computer jockey, when he joined a small research group at Stanford Institute of 
Mathematical and Social Sciences. Over the next several years, he helped design a 
program that taught beginners how to program in the language BASIC. 

"Which meant that I had to go back to thinking about what kinds of people were going to 
be dealing with computers," Barr recalls, "and finding out what kinds of problems those 
people might have in the process of learning their first computer language. 

"One of the first things that is evident is that computer programs are very different from 
most of the things we learn in school because programmers rarely if ever hit the right 
answer the first time out. Programming is debugging. So being wrong is not so 
much something to be avoided at all costs, but should be seen as a clue to the 
right way of doing it. That's why it was actually an environment rather than just an 
instructional program. We tried to build a curriculum for teaching BASIC, along with the 
handholding help people seemed to need in learning software, right into the BASIC 
language interpreter." 

An interpreter, it must be remembered, is not a person who specializes in deciphering 
computer jargon, but a kind of computer program that can convert programming 
commands written in the kind of high-level language that people find easier to write into 
a machine-language form that the computer can read. 

The very primitive communications between programmer and interpreter created much of 
what beginners have always found frustrating about learning old-style programming. 
Interpreters cannot create programs that will run successfully on computers unless the 
programs are written perfectly, without a single minor error. If a parenthesis is out of 
place, the interpreter simply stops operation and puts some spine-chilling message on the 
screen -- the infamous "Fatal Error" or the enigmatic "Syntax Error." 

The communication between first-time BASIC programmers and the BASIC interpreter 
necessary to run their programs was the part of the system Avron Barr and his colleagues 
were trying to make easier and less frustrating to the human user: "Usually, interpreters 
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return cryptic 'error messages' when they are fed a program with a bug in it," Barr 
explains. "The program we were building was meant to use the error messages and the 
debugging as a way to learn how to program." 

In order to build an interpreter that not only is able to identify errors, but also 
can give beginning users hints about how to go about solving the problem, 
Avron had to go beyond the normal tricks of the programming trade and learn 
about some of the exotic new notions that were beginning to emerge from AI 
research. This wasn't standard operating procedure for the vast majority of 
programmers: To most computer programmers, even scientific programmers, 
AI was esoteric hocus-pocus that a clique of obsessed academics did with a lot 
of money from the Defense Department. 

When the intelligent interpreter project was finished, Barr entered the computer science 
department as a graduate student at Stanford, where he encountered Ed Fiegenbaum. 
Although he had been working as a professional programmer, and he was surrounded by 
artificial intelligence types, and had even picked up a few tricks from AI hackers, this 
was Barr's first formal exposure to the field. Feigenbaum had an idea about writing and 
editing a book. Avron took on the task. They thought they could produce a general 
handbook on AI by the end of the summer. It took five and a half years. 

Besides the course requirements of his graduate work, Barr's paying job required him to 
produce a general text from the contributions of hundreds of AI researchers, a book that 
someone in a noncomputer related field could use to get an overview of the most 
significant work that had been done in AI. The job stretched out longer and longer, and 
during the time it took to complete his editing duties, he progressed from his master's 
degree to a Ph.D. in cognitive science. 

By the late 1970s, Barr was not alone in feeling that the exploration and engineering of 
knowledge -- learning how it is acquired by humans or machines, how it is represented 
in the mind or in software, how it is communicated between humans and computers and 
disseminated throughout a culture -- was a central problem in philosophy, 
psychology and artificial intelligence that might well be answered in surprising 
ways by the new discipline created by the builders of expert systems. 

Computers can track large amounts of information, and they can move through that 
information very quickly. But when it comes to solving any but the simplest problems -- 
the kind that a human toddler or a chessmaster can handle easily -- computers run up 
against a severe problem. Large is never large enough when it comes to the computer 
memory needed, and fast is never fast enough in terms of computational speed. There is 
simply too much information in the world to solve problems by checking every possible 
solution. The difference between brute-force calculation and human knowledge 
is the missing link (and holy grail) of hard-core AI research. 
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Personal knowledge is a tricky thing to describe, and hence a difficult thing for a 
computer to emulate. Knowledge is more than a collection of facts, frozen into some 
rationally coded order. How do our minds do all the things they do when we're thinking, 
without consciously thinking about how to do it? How do you know which details in a 
sea of information are worth your attention? The difference between a novice and an 
expert, for example, is not simply a quantitative question of more stored facts about the 
area of expertise; the difference hinges, instead, on the ability to make judgments about 
novel problems in the field. 

Chess has been the classic example of the difficulties of emulating expertise with 
computer programs. It is a finite game, with a limited number of clearly allowable moves, 
each of which have perfectly specified outcomes. Chess qualifies as a formal system in 
the Turing machine sense, and hence can be imitated by a computer. Give the computer 
the rules, the starting position, and the opponent's first move, and the computer is capable 
in principle, of calculating all the possible responses to that move and formulating a 
response based on that calculation. 

Yet, after a quarter of a century of effort, nobody has come up with an unbeatable chess 
playing program. The reason that brute-force calculation hasn't defeated a human 
grandmaster is not rooted so much in technology as in mathematics: the combinational 
explosion is the term for the brute-force barrier noted by Shannon back in 1950. Even 
with only 64 squares and a limited number of allowable moves, the number of 
possible moves in chess multiplies so quickly that it would take uncountable 
years to evaluate all legal possibilities. 

In chess and many other formal systems, the correct answer is a member of a very large 
number of possible alternatives. The problem posed by an opponent's move is best 
answered by a move that will lead to capturing an opponent's king. Hidden among the 
huge number of possible countermoves for each one of the opponent's move is one 
answer or a small group of answers that would have the best chance of achieving the final 
goal or some intermediate goal. The abstract domain in which the solution is hidden is 
known as a "problem space." 

The brute-force method of finding the right chess move by generating and checking each 
and every possibility that could exist according to the rules is known as an "exhaustive 
search of the problem space." Problem space is where the combinational explosion lurks, 
waiting to be triggered by any branching more than a few levels deep. 

The problem of the combinational explosion can be easily visualized as a tree structure. If 
the decisions needed to choose between different options are seen as the branches of a 
tree, then a simple two-decision example would yield two branches on the first move, 
four on the next, eight on the one after that. By the time you get to sixty-four moves, each 
with twice as many branches as the previous move, you won't be able to see the forest for 
the branches. If you increase the number of cases to be decided between from two to 
three, it gets even more snarled: After two moves on a triple-branching tree, there are 
nine branches (instead of four); after three moves there are twenty-seven (instead of 
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eight), etc., ad infinitum. So you have to build a system to weed out the legal but absurd 
moves, as well as a strategy to evaluate two or three moves in advance. 

What a machine needs to know, practically before it can get started, is that the mysterious 
something that human chessmasters know that enables them to rule out all but a few 
possibilities when they look at a chessboard (or hear a chess situation described to them 
verbally). When a human contemplates a chess position, that person's brain 
accomplishes an information processing task of cosmic complexity. 

The human brain has obviously found a way to bypass the rules of exhaustive 
search -- a way to beat the numbers involved in searching problem space. This is the 
vitally important trick that seems to have eluded artificial intelligence program designers 
from the beginning. 

What does the human chessmaster do to prune the tree created by brute-force programs, 
and how can computers help other humans perform similar tasks? The point of expert-
system building is not to outdo the brain but to help human reasoning by creating an 
intelligent buffer between brain processes and the complexities of the world -- especially 
information-related complexities. A problem-pruning tool could be an important 
component of such an informational intermediary. 

Human brains seem to accomplish tasks in ways that would require absurd amounts of 
computer power if they were to be duplicated by machines. The first expert-systems 
experiments were not focused exclusively on machine capabilities nor on human 
capabilities, but on the border between the two types of symbol processors. How could a 
machine be used to transfer expertise from one human to another? The emerging 
differences between machine capabilities and human cognitive talents were brought into 
sharper focus when it was demonstrated by systems like MYCIN that this kind of 
software was capable of measurably augmenting the power of human judgment. Doctors 
who used MYCIN to aid their diagnostic decision-making ended up making accurate 
diagnoses more often than they did before they used the program to assist them. The 
"reasoning" capabilities of the first expert systems were actually quite 
primitive, but the way these systems worked as "consultation tools" made it 
clear that there was great potential power in designing software systems that 
could interact with people in ways that simulated and augmented human 
knowing. 

The present link between the technology of augmenting human intellect, the business of 
building expert systems, and the science of artificial intelligence, Avron Barr and his 
colleagues, is the role of transfer of expertise both as a practical, valuable tool and as a 
probe for understanding the nature of understanding: 

A key point in our current approach to building expert systems is that these key programs should not only 
be able to apply the corpus of expert knowledge to specific problems, but that they should also be able to 
interact with the users just as humans do when they learn, explain, and teach what they know. . . . These 
transfer of expertise (TOE) capabilities were originally necessitated by "human engineering" considerations 
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-- the people who build and use our systems needed a variety of "assistance" and "explanation" facilities. 
However, there is more to the idea of TOE than the implementation of needed user features: These social 
interactions -- learning from experts, explaining one's reasoning, and teaching what one knows -- are 
essential dimensions of human knowledge. These are as fundamental to the nature of intelligence as expert-
level problem-solving, and they have changed our ideas about representation and about knowledge.  

In order to make a decision with the help of an expert system, a human user 
must know more than just the facts of the system's recommendation. First, the 
human has to learn how to communicate with the computer; then he or she needs to know 
how the system arrived at its conclusion, in terms that he or she can understand. And in 
order to tell the human about the steps of its reasoning process, such systems must have a 
means for knowing what they know. 

By this point, the exercise has become more than a mechanical search through long lists 
of possibilities. Problem-solving is only part of the function of a system that must 
convince a human that a solution it has found is indeed the correct one. The internal and 
external communication aspects of this transfer process, Barr suspects, offer clues to 
some of the most significant problems in artificial intelligence as well as intellectual 
augmentation research: 

We are building systems that take part in the human activity of transfer of expertise among experts, 
practitioners, and students in different kinds of domains. Our problems remain the same as they were 
before: We must find good ways to represent knowledge and metaknowledge, to carry on a dialogue, and to 
solve problems in the domain. But the guiding principles of our approach and the underlying constraints on 
our solutions have been subtly shifted: Our systems are no longer being designed solely to be expert 
problem solvers, using vast amounts of encoded knowledge. These are aspects of "knowing" that have so 
far remained unexplored in AI research: By participation in human transfer of expertise, these systems will 
involve more of the fabric of behavior that is the reason we ascribe knowledge and intelligence to people.  

Like Doug Engelbart and Alan Kay, Barr feels that future generations will be less 
inhibited than present-day computer builders and users when it comes to stretching our 
ideas of what machines and humans can do. This adjustment of human attitudes and 
computer capabilities is a present-day pragmatic concern of knowledge engineers, and a 
long-term prerequisite for the kind of human-machine symbiosis predicted by Licklider. 

In his conversations, lectures, and writing, Barr often refers to what he and other 
cognitively oriented computer scientists call "the flight metaphor." Early AI 
researchers, who were seeking pragmatic means to deal with the question of 
whether machines could think, compared themselves to those human inventors 
who not so long ago believed they would eventually build flying machines: 
"Today, despite our ignorance, we can point to that biological milestone, the thinking 
brain, in the same spirit as the scientists many hundreds of years ago pointed to the bird 
as a demonstration in nature that mechanisms heavier than air could fly," wrote 
Feigenbaum and Feldman in 1963. 

"It is instructive to pursue this analogy a bit farther," Barr wrote in 1983: 
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Flight, as a way of dealing with the environment, takes many forms -- from soaring eagles to hovering 
hummingbirds. If we start to study flight by examining its forms in nature, our initial understanding of what 
we are studying might involve terms like feathers, wings, weight-to-wing-size ratios, and probably wing 
flapping, too. This is the language we begin to develop -- identifying regularities and making distinctions 
among the phenomena. But when we start to build flying artifacts, our understanding changes immediately.  

Barr then cited another contributor to the flight metaphor, Seymour Papert of MIT, 
Project MAC, and LOGO fame, who pointed out that the most significant insights into 
aerodynamics occurred when inventors stopped thinking so extensively about how birds 
flew. Papert stated to a 1972 European seminar attended by Barr: "Consider how 
people came to understand how birds fly. Certainly we observed birds. But 
mainly to recognize certain phenomena. Real understanding of bird flight came 
from understanding flight; not birds."  

The most difficult barrier faced by the first designers of artificial aviation was not in the 
environmental obstacles their inventions faced, nor in the nature of the materials and 
techniques they had available, but in their ideas of what flight could and could not be. 
The undeniable proof of the simple but incredible idea that flight does not 
require flapping wings was the most important thing achieved by the Wright 
brothers. 

At the turn of the century, a fundamental part of the problem facing aviation designers lay 
in abandoning prejudices about the way things actually were so that the possible might be 
discerned. Those who wanted to build flying machines had to abandon their fixation with 
the way nature solved the problem of evolving a flying lifeform so that they might see 
beyond birds to understand the nature of flight. In the same sense, a fundamental part of 
the problem of artificial intelligence design lies in the ability to see beyond brains or 
computers to understand something about the nature of intelligence. 

Cognitive scientists know that such knowledge can shed light on the way human brains 
work. Barr points out that such knowledge might expand into varieties of intelligence as 
different from human intelligence as a jet plane is different from an eagle. 

If the flight metaphor could be faithfully extrapolated to the artificers of thinking 
machines and engineers of programs that understand, Barr claims, new worlds of 
unimaginable information processing mechanisms would become possible -- mechanisms 
that would be compatible but quite different from the way human brains do things: 

. . . Every new design brings new data about what works and what does not, and clues as to why. Every 
new contraption tries some different design alternative in the space defined by our theory language. And 
every attempt clarifies our understanding of what it means to fly. 

But there is more to the sciences of the artificial than defining the "true nature" of natural phenomena. The 
exploration of the artifacts themselves, the stiff-winged flying machines, because they are useful to society, 
will naturally extend the exploration of the various points of interface between the technology and society. 
While nature's explorations of the possibilities is limited by its mutation 
mechanism, human inventors will vary every parameter they can think of to 
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produce effects that might be useful -- exploring the constraints on the design 
of their machines from every angle. The space of "flight" phenomena will be 
populated by examples that nature has not had a chance to try. 

Intelligence, like flight, is a way of dealing with the environment. Intelligence, again like 
flight, conveys a survival advantage to the organism or species that possesses it. The 
sheer usefulness, the practical value to society of being able to fly from place to place 
ensured better artificial ways to fly. Barr suggests that expert systems and other 
knowledge-based technologies are the kind of "flying machines of the mind" 
that will have an equally high utilitarian value, and the economics of the 
marketplace will therefore drive the future exploration of their capabilities. 

The "applied" part of "applied AI" is one of the most significant aspects of expert 
systems, in Barr's opinion, because the linkage of intelligent systems with valuable social 
goals guarantees the further development of the young science. Because the development 
of better products in this particular market also means the development of better means of 
augmenting human intelligence, the evolution of this kind of machine will be rather 
closely coupled with the future evolution of human thought: 

It is the goal of those who are involved in the commercial development of expert-systems technology to 
incorporate that technology into some device that can be sold. But the environment in which expert systems 
operate is our own cognitive environment; it is within this sphere of activity -- people solving their 
problems -- that the eventual expert-system products must be found useful. They will be engineered to our 
minds. 

. . . It is a long way from the expert systems developed in the research laboratories to any products that fit 
into people's lives; in fact it is difficult even to envision what such products will be. Egon Loebner of 
Hewlett-Packard Laboratories tells of a conversation he had many years ago with Vladimir Zworykin, the 
inventor of television technology. Loebner asked Zworykin what he had in mind for his invention when he 
was developing the technology in the 1920s -- what kind of product he thought his efforts would produce. 
The inventor said that he had a very clear idea of the eventual use of TV: He 
envisioned medical students in the gallery of an operating room getting a clear 
picture on their TV screens of the operation being conducted below them. 

One cannot, at the outset, understand the application of a new technology, because it will find its way into 
realms of application that do not exist. Loebner has described this process in terms of the technological 
niche, paralleling evolution theory. Like the species and their environment, inventions and their 
applications are co-defined -- they constantly evolve together, with niches representing periods of relative 
stability, into a new reality. . . . Thus, technological inventions change as they are applied 
to people's needs, and the activities that people undertake change with the 
availability of new technologies. And as people in industry try to push the new technology 
toward some profitable niche, they will also explore the nature of the underlying phenomena. Of course, it 
is not just the scientists and engineers who developed the new technology who are involved in this 
exploration: Half the job involves finding out what the new capabilities can do for people.  

In order to build an expert system, a knowledge engineer needs to encode the 
rules a human expert uses to make decisions about problems in a specific field, 
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then connect those decision rules with a large collection of facts about that 
field. The human expert is asked to test the software model. If the human expert 
disagrees with the system's suggested solution to a problem, then the human asks the 
system to reconstruct the chain of rules and facts that led to its decision. 

By pinpointing the places where the program went wrong, the human expert and the 
knowledge engineer turn their rough mock-up into a working expert system by a process 
of progressive debugging. Eventually, they end up with a program that will agree with the 
human expert a very high proportion of the time. Consensus comes in when you ask a 
second expert to evaluate the system. In real life, human experts disagree with one 
another, even at the highest levels of expertise. Which means that no matter how well an 
expert system agrees with one particular human expert, that does not guarantee that 
another expert won't catch the software making a wrong decision. 

The key to taking advantage of these natural disagreements between experts, Barr 
realized, was to build in a mechanism for "remembering experiences," for keeping 
around old decisions, even if they were wrong, and creating new rules from the outcome 
of disagreements. Taken far enough, this aspect of the system leads directly to one of the 
hottest issues in AI research -- the question of whether programs can learn from 
experience. Barr was only interested in one specific aspect of this issue -- the possibility 
of creating a means of tracking decisions and keeping track of instances where human 
experts disagree with each other. 

"When two experts disagree," Barr explains, "they try to find ways to show each other 
cases where the other's knowledge is not appropriate to produce what they both agree 
would be the right result. The first steps of establishing consensus, then, involve figuring 
out where you do agree. Then you can get on to the second step -- trying to find exactly 
where in your individual knowledge systems the disagreement lies. 

"Locating the point of disagreement usually turns out to be an important part of the 
process, because in consciously looking for disagreements the experts realize that they 
don't share the same meanings for the terms they are using or that they don't share a 
compatible description of the goal. 

"This kind of debugging isn't exciting, but it creates a foundation for the third step of 
consensus, where the experts have to decide what to do about each other. They can agree 
that one of them was wrong, they both can remain convinced that they are right, they can 
decide that they are both wrong or both right. They can look for an investigation or 
experiment that could decide the issue. Or they can decide that they both have to wait for 
new knowledge." 

Barr believes consensus assistance is only a start on "the ultimate kind of thing we can do 
with intelligent assistants. Consensys started out as a way of describing how you 
communicate with one of these systems, in particular, how you might push the expert 
system to deal with two different human experts and incorporate the value of the 
differences that the two experts might have. 
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"My dream has to do with the idea that there is a purpose for us all being here, and we're 
all necessary for discovering that purpose. Each of us has our own little peephole onto the 
building being constructed. None of us know what it is, but each of us has a slightly 
different perspective. And all of those perspectives are necessary to figure out what's 
being built. It's strange that we can achieve so much as a culture in such short time, and 
we can get all these great ideas about how we got here and how the universe works, and 
yet know so little about the point of it all. I think that's a clue that computation has a role 
to play. 

"I think of computation as an abstract idea about what it is to share an 
interpretation of the environment. Computation involves systematic manipulation of 
symbols, and symbols have a cognitive relation to the world. We need those intermediate 
messages between our internal representations in order to share perspectives on the 
world. 

"I think it is indeed possible that these kinds of systems will someday be used as a way to 
work out differences between people. The understanding that is necessary for that to 
begin to happen involves admitting that we don't know what the purpose is, then finding 
out why we don't know, and figuring out together how we might come to understand. 
Perhaps computers can play a role in understanding that purpose. 

"This might sound very philosophical, but the nature of understanding is at the core of the 
problems AI programs are up against right now. Pattern recognition in artificial vision or 
hearing, the ability to understand natural language, the emulation of problem-solving, the 
design of an intelligent computer interface -- all of these research questions involve 
the nature of understanding. We don't know what the purpose of understanding is, or 
why you have to know a whole lot about the world in general to recognize a face or 
understand a sentence. 

"I think most of us believe that understanding is better than not understanding, and that 
the more we understand the better off we'll be. And I think that the descendants of today's 
knowledge-based expert systems will help us all to better understanding. Each of us will 
be able to understand better because we'll be interacting with people and with information 
through the assistance of expert tools. They may even help us understand things that 
nobody understands." 

Few people object to the notion of understanding things that nobody understands -- until 
it is suggested that the agent for achieving that understanding might be an intelligence 
that is made of silicon rather than protoplasm. The AI infonauts might be on a track that 
ultimately will bypass the near-future technologies that augment, but do not surpass, 
human intelligence. If Barr and his colleagues are correct, then their ideas offer strong 
reinforcement for the speculations that Licklider made in 1960, when he introduces the 
idea of a coming human-machine symbiosis. Licklider suggested that such a symbiosis 
was an intermediate step for the interim decades or centuries before the machines surpass 
our ability to keep up with them. 
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Even if the human-machine partnership is to be an intermediate relationship, lasting only 
a few human generations, those next few generations promise to be exciting 
indeed. When we look at the history of computing, it is clear that the experts consistently 
underestimate the rate at which this technology changes. Even the boldest AI pundits 
might be seriously underestimating the technological changes that will occur in 
the next fifty or one hundred years. 

The paths to the future of mind-augmenting technology appear to be fanning out, the 
range of alternatives becoming wider and less predictable. It is possible, given past 
developments, that all of these paths will lead to distinct new technologies, and will 
precipitate significant changes in human culture. One direction seems to involve the kind 
of interactive, first-person fantasy amplifiers exemplified by the work of people like Alan 
Kay and Brenda Laurel. Engelbart's dreams of intellectual augmentation furnish a 
different model of how the universal tool might evolve. In the next chapter, we'll look at 
yet another path -- one that is more connected to the history of literature than the history 
of machines. 

Ted Nelson, our final infonaut, envisions a future in which the entire population joins the 
grand conversation of human culture that has heretofore been restricted to those few 
creators whose works have found their way to library shelves. Wild as his predictions 
may be, they have to be considered seriously, in light of the uncannily accurate forecasts 
he made back in the "old days" of personal computer history -- the 1960s and 1970s.  
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Chapter Fourteen: 
Xanadu, Network Culture, and Beyond 
"Computer was a bad name for it. It might just as well have been called an Oogabooga 
Box. That way, at least, we could get the fear out in the open and laugh at it."  

Ted Nelson is one of the most outrageous and probably the funniest of the infonauts. Of 
pronouncements like the one quoted above, he likes to say, " If that sounds wild, it 
means you understand it" -- a statement that could apply to his life as well as 
his ideas. He's been called "a tin-pot Da Vinci," and "a weirdo who thinks he's a titan" -- 
and that's how he describes himself. Opinion in the computer community is mixed 
when it comes to the question of whether Nelson will ever amount to anything 
besides a gadfly, pamphleteer, and tinkerer. He seems to have either inspired or 
irritated most of the key figures in contemporary computing -- academic, 
commercial, or underground. 

Even in a crowd of precocious, eccentric loners, Ted seems to set himself apart 
from the rest. His fate is less certain than those who started augmentation research in 
the early 1960s or who created the homebrew computer movement in the mid 1970s. 
Alan Kay is closing in on the marketable version of his fantasy amplifier. Bob Taylor 
continues to catalyze the development of on-line intellectual communities. Evans & 
Sutherland is an extremely successful flight-simulation company, and Ivan Sutherland is 
a millionaire. 

But the idea people in universities and corporate laboratories, the research and 
development pioneers who made the technology possible, were not the only 
contemporaries whom Nelson watched and applauded in the mid 1970s as they streaked 
past him on their way to somewhere. As had happened so often before, some unknown 
young people appeared from an unexpected quarter to create a new way to use the 
formerly esoteric machinery. The legend is firmly established by now, and Ted was the 
first to chronicle it, in The Home Computer Revolution. 

By the mid-1970s the state of integrated circuitry had reached such a high degree of 
miniaturization that it was possible to make electronic components thousands of 
times more complicated than ENIAC -- except these machines didn't heat a 
warehouse to 120 degrees. In fact, they tended to get lost if you dropped them on the rug. 
In 1971, a team at Intel Corporation developed the special integrated circuits that 
contained all the components needed to make a fairly powerful von Neumann-type 
computer -- the 4004, followed by the 8008 "computer-on-a-chip." 

At the time it was invented, nobody realized that the microprocessor, one of 
thousands of electronic components churned out every year, would become a 
household word. At that point, probably no more than a few score highly placed or 
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technically fanatic people in the world had computers in their homes for their personal 
use. IBM and DEC didn't exactly see the invention of the microprocessor chip as the 
signal to start producing consumer computers. 

In 1974, a fellow in New Mexico named Ed Roberts, president of a company called 
Micro Instrumentation and Telemetry Systems (MITS), happened upon the 8008 chip and 
got a notion. The chip itself was useless to anyone but an electronic engineer. It had an 
"instruction set" of "firmware" primitive commands built into it, an arithmetic 
and logic unit, a clock, temporary storage registers, but no external memory, no 
input or output devices, no circuitry to connect the components together into a 
working computer. 

Roberts decided to provide the other components and a method for interconnecting them 
and sell the kits to hobbyists. In January of 1975, Popular Electronics magazine 
did a cover story on "a computer you can build yourself for $420." It was called 
the Altair (after a planet in a Star Trek episode). Roberts was hoping for 200 orders in 
1975, to keep the enterprise alive, and he received more than that with the first mail after 
the issue hit the stands. 

Bill Gates and Paul Allen were nineteen and twenty-two years old when they 
wrote a version of BASIC for the Altair. They went to New Mexico to work with 
MITS, developing software for the first hobbyist computers. It had been obvious from 
day one that a great many people wanted to have computers of their own. MITS had the 
usual problems associated with a successful start-up company. Roberts eventually sold it. 
In 1977, Commodore, Heathkit, and Radio Shack began marketing personal computers 
based on the interconnection method established by the Altair -- still known as the S100 
bus. 

Steve Wozniak and Steve Jobs started selling Apples in 1977 and now are firmly 
established in the annals of Silicon Valley garage-workshop mythology -- the Hewlett 
and Packard of the seventies generation. Gates and Allen became Microsoft, Inc. Their 
company sold over $50 million worth of software to personal computer users in 1983. 
Microsoft is aiming for the hundred-million-dollar category, and Gates still has a couple 
more years before he reaches the age of thirty. 

Alan Kay and Bob Taylor and Ivan Sutherland have already been acknowledged for their 
past accomplishments, and look forward to the completion of their future projects under 
the auspices of well-funded and prestigious organizations. Gates and Allen and Wozniak 
and Jobs are multimillionaires working on their first billions. They all have what they 
need to materialize the tools and toys they have dreamed about for decades. 
Ted Nelson's fortunes, have not (yet) turned out so spectacularly.  

What Ted Nelson and his long-suffering associate Roger Gregory have now is a long 
program written in the "C" language -- a program that is either a future goldmine for Ted 
Nelson and a boon to all humankind, or yet another crackpot boondoggle on the fringes 
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of computer history. Unsettled as his future might be, what he had in the past was 
the foresight, the orneriness, and the tenacity to talk clearly and plainly about 
the computer empire's new clothes. 

Ted Nelson was another one of the few people who saw the personal augmentation 
potential of computers early in the game and grasped the significance of the work being 
done at Utah, SRI, MIT and PARC. Unlike many of the more sheltered academics, 
he also saw the potential of a hobbyist "underground." Nelson chose to bypass 
(and thereby antagonize) both the academic and industrial computerists by 
appealing directly to the public in a series of self-published tracts that railed 
against the pronouncements of the programming priesthood. 

Nelson's books, Computer Lib, The Home Computer Revolution, and Literary 
Machines, not only gave the orthodoxy blatant Bronx Cheers -- they also 
ventured dozens of predictions about the future of personal computers, many of 
which turned out to be strikingly accurate, a few of which turned out to be bad 
guesses.  

As a forecaster in a notoriously unpredictable field, Ted Nelson has done better 
than most -- at forecasting. His business and scholarly ventures have yet to 
meet with success in either the academic establishment or the computer 
marketplace. He has a history of disenchanting and antagonizing the people 
who have enough respect for his wild talents to take the risk of hiring him. He's 
currently on his "third career crash." and still has a while to wait before he knows 
whether the stock he holds in the company that is going to market his dream will make 
him a millionaire, thereby vindicating his long struggle, or leave him penniless, thereby 
branding him as a bona fide crank instead of a late-blooming visionary. 

Like so many other computer prodigies, Ted Nelson started his often lonely and 
always stubbornly unique intellectual journey when he first realized what they 
were trying to do to him in school. "I hated school all my life," he claims, "from the 
first grade through high school, unrelentingly and every minute. I have never known 
anyone who hated school as much as I did, although my assumption is that other dropouts 
do."  

Despite his repeated clashes with educational authorities, Ted Nelson managed to 
establish himself as an "extreme loony on campus" at Swarthmore , in the late 
1950s, a place and an era where extreme loonies were rather more rare than they became 
a decade later. He also managed to graduate with an academic record good enough to 
give him his choice of graduate schools. He decided on Harvard, an institution known to 
tolerate intellectual arrogance as long as it was accompanied by near-genius originality. 
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In the fall of 1960, during his second year of graduate school, Ted Nelson found out 
about computers, and not a moment too soon. He was drowning in his own 
information, carrying around an already monumental collection of barely 
collated notes about his abundant dreams and schemes. He found out about 
Vannevar Bush's paper and embraced the idea that he could use a computer to keep track 
of his own prodigious stream of thoughts and sketches. 

Ted was disappointed to discover that there were no computers equipped or programmed 
to perform such a service. Down the road at MIT, the first time-sharing computers were 
only beginning to be built. But Ted needed a storage and retrieval system to keep 
track of his notes, and it seemed like such an obvious way to use computers as 
aids to creative thought that he set out to create such a program himself. 
Twenty-three years later, he admitted: "It seemed so simple and clear to me 
then. It still does. But like so many beginning computerists, I mistook a clear 
view for a short distance. " 

The Harvard course in computer programming that Ted took in 1960 used the only 
computer then available at Harvard, the IBM 7090 at the Smithsonian Observatory. As a 
term project, Ted decided to write a machine-language program that would enable him to 
store his notes and manuscripts in the computer, to change and edit drafts in various 
ways, and produce final printed versions. Somewhere around the forty-thousandth line of 
his program, it dawned on him that his first estimates of the magnitude of the task -- and 
the amount of time it would take to establish it -- had been overoptimistic. 

Nelson's inability to create something even though he was able to clearly envision it is 
not unusual in the software world. The problem is so widespread that one of the 
unofficial rules of computer programming (known in some circles as "Babbage's Law") 
is: "Any large programming project will always take twice as long as you 
estimate." Even though the simplest of the text-handling capabilities he specified in 
1960 were to become, in the hands of other programmers, the software spearhead of 
office automation in the 1980s, Nelson went far beyond simple text manipulation in the 
program he set out to write for his term project. 

Like Doug Engelbart, whose work he had yet to learn about, Nelson yearned for more 
than a lazy man's typewriter. They both wanted the freedom to steer their 
thought paths in new ways. And Ted especially desired the prerogative of changing 
his mind. He wanted the freedom to insert and delete words and move paragraphs around, 
but he also wanted the computer to remember his decision path. One of the specs was for 
something he called "historical backtrack," in which the computer could quickly show 
him the various earlier alternative versions of his ever-changing text. 

"Alternative versions"? From a place to store notes to a tool for sculpting text, his 
term project had now landed him in even more wondrous science-fiction 
territory, a place where it was possible to think in terms of parallel alternatives. 
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Of entire libraries of parallel alternatives, and automated librarians to perform the most 
tedious of searches in microseconds. Why should we abandon any thought at all? Why 
not just store every variation on everything and let the computer take care of 
sifting through it when we want to view something? 

Ted Nelson was hooked, and desperately wanted to become a "computer person," but 
came up against the still-prevalent notion that computers are "mathematical." Never one 
to be accused of excessive modesty regarding his intellectual powers, Nelson admits that 
he was "a mathematical incompetent." He was even an outsider to those outsiders who 
were dropping out of MIT and hanging around Building 26. A Swarthmore/Harvard 
person just wasn't versed in the way Bronx-Science/MIT people talked about computers. 

He couldn't find any jobs as a computer dreamer, but he did manage to find a position as 
a photographer and film editor at a laboratory in Miami where a man named John Lilly 
was conducting research on dolphin intelligence. Lilly had a very rare piece of 
instrumentation -- one of the original LINC microcomputers designed by Wes Clark. 
(Nelson didn't use the machine in his work, but its existence convinced him that the idea 
of small, personal computers was indeed sensible.) After that came a job teaching 
sociology at Vassar. 

Over the next two years, while he taught sociology and thought about the complexities of 
storing and cross-referencing that had prevented him from finishing his note-keeping 
program, Nelson realized that he was trying to create a new kind of thing. It was 
a tool, but it was also a library, and a medium, and a legion of slave-librarians. 
In the mid-1960s, when he was working at a book firm, he started to call the whole 
scheme Xanadu. He says it is "a traditional name for a magic place of literary 
memory," but it is worth noting that Coleridge's poem of that name, like Nelson's term 
project, was unfinished. 

By the late sixties, having offended anyone who could help him in the worlds of 
academic, commercial, and military computing, Ted was free to find a few like-minded 
and computer-obsessed friends and attempt to write the software that would make 
Xanadu possible. By this time, he had not only dreamed up the specifications for the full-
blown version of this new information processing system, he had managed to attract a 
few equally fanatic allies. 

The basic note-keeping scheme that started it all was meant to have a system for taking 
care of all backtracking. The next step was to expand this capability to handle alternative 
versions and to show the user which parts of different versions are the same and which 
are different. This versioning capability, which Nelson now estimates to consume about 5 
percent of the Gross National Product -- from the boiler-plate paragraphs used by 
attorneys to the 47 different versions of the 747 design that are stored in Boeing's 
computers. In real life, there is hardly ever such a thing as "the contract" or "the 747 
blueprint." Mixtures of standard and custom features that make for slightly different 
versions of contracts or blueprints are more often the case. 
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Historical tracing and versioning, however, don't make for much more than a 
powerful word processing system. Things started getting extradimensional 
when Nelson thought about adding links. Engelbart thinks that he and Nelson just 
happened to come up with something similar around the same time, although Engelbart 
had the technology and the wherewithal to actually get such a system up and running. 
The whole idea started out as a kind of computer-dynamized footnote -- a way 
to jump from part of the text to something outside the main body of the current 
document. 

Instead of encountering an asterisk and looking at the bottom of the page for a footnote, 
and possibly looking up another document elsewhere in the library to verify a reference, 
the user would point a lightpen or a mouse as the electronic equivalent of the asterisk, 
and automatically bring the appended or referenced material to the screen. A return 
button would bring the user back to the point in the original text where the link symbol 
appeared. A very similar feature was built into Doug Engelbart's early NLS system. 

Engelbart was more concerned with constructing the toolkit and workshop for solving 
problems than speculating about the kind of literary form such a facility might create. 
Nelson, however, being a liberal arts type rather than an engineering type -- a dichotomy 
he deplores, since it kept him away from computers for so long -- wondered what art 
forms and intellectual systems might emerge. In its simplest essence, a link is a reminder 
that "there is something to jump to here." Links meant that literature no longer had to be 
sequential. 

The link facility, Nelson insisted from the first, provides something far more powerful 
than a means of attaching odds and ends. A system with backtrack, versioning, and 
links would create the possibility of a new way of organizing thoughts into 
words, a nonsequential form of writing that was never possible before 
computers, a literary form he called hypertext. 

Hypertext, as he first imagined it, could apply to scholarship as well as to 
poetry. Scientific literature, the very basis of worldwide scientific scholarship, consists 
of published documents which refer to many previously published documents. An 
experiment is usually performed to test a hypothesis that was based on previous 
experiments. Performing a "search of the literature" is the first thing a scientist does when 
confronted with a new research problem. 

The problem today is that scientific research is too successful. As Vannevar Bush warned 
forty years ago, the rate and volume of scientific publication have overwhelmed the 
coping capacity of our print-era technology. With a hypertext system, each scientific 
document could have links to its intellectual antecedents and to documents 
regarding related problems. The entire body of relevant scientific literature could be 
collapsed into each individual document. The links would function in the same way as 
footnotes, but with immediate access to the cited material, as if each footnote was like a 
window or door into the cited document. 
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A system with links, backtrack, and versioning needs only an economic 
structure to become a publishing system. Nelson sees an anarchic but self-
organizing system based on his conception of royalties and subroyalties. In a Xanadu-
like system, royalties are automatically monitored by the host computer 
network, and are based largely on transmission time -- the amount of time 
people pay on-line attention to a given document. Every document in the system 
has an owner, and every owner is paid "a whiff of royalty" whenever somebody calls 
their document from the memory and displays it in words, sounds, or images. 

Everybody can create what text they want and put it on the system, from sonnets to 
pamphlets to textbooks, and everybody can quote or cite any other document. Documents 
can consist of links. Compendia, guided tours, directories, and indexes will spring up as 
independent documents; order would become a valuable commodity. "The result is a 
seemingly anarchic pool of documents, true, but that's what literature has been anyhow . . 
. ," Nelson claims. "Its orderliness is not, as some would suppose, imposed by the 
computer or its administrators, but by something which arose long ago in the natural 
structure of literature, and which we are merely retaining." Just as literary critics and 
librarians have found ways to organize and categorize the apparently chaotic 
stream of traditional literature, Nelson claims that people will spontaneously 
invent methods of organizing a hypertext-based body of literature. 

Nelson sees his ultimate concerns about the technology as political. Where most 
revolutionaries have regarded the computer as a tool of totalitarian oppression, a symbol 
of centralized power and dehumanization, Nelson has long known that these ideas are 
based on an outmoded kind of computer. Distributed networks of individually powerful 
computers are an entirely different thing from a central computer with a lot of extensions, 
and Nelson was one of the first to point out this technology's potential for 
creating social forms directed by the individual members, who are beyond the 
command of any old-fashioned, mainframe-type central control. He is enthused by the 
personal power that comes with having ready access to usable forms of information -- the 
bite of the old hacker apple -- and zealous about preserving the freedom to explore it in 
your own way: 

Those of us who grew up believing passionately in ideals that made our country great, such as liberty and 
pluralism and the accessibility of ideas, can hardly ignore the hope of such an opening-out. Libertarian 
ideas of accessibility and excitement might unseat the video narcosis that now 
sits on our land like a fog. I want to see the writings of Herodotus, 
Nostradamus, and Matthew Brann as accessible as those of Rod McKuen, 
along with the art of the renaissance and movies of tomorrow -- an all-
encompassing picture-book encyclopedia tumult graffiti-land, the Whole 
Works. 

If this all seems like a wild idea, that means you understand it. These are times wild with possibility. In an 
age of pocket calculators, the Pill, hydrogen bombs by rocket, and soap operas by satellite, we can try to 
create whatever wildness we want in our society. 
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. . . I say these worlds are possible soon. We need them, and they will make lots of money. The software is 
on the way. But what is really lacking are the visionary artists, writers, publishers, and investors who can 
see the possibilities and help carry such ideas into reality.  

What Nelson is raving about is not a technology, but a community. The idea of 
electronic communities is no longer just an idea. Lap-sized computers with crude 
display screens are already on their way to being commonplace. The visual displays will 
grow far more sophisticated, and the computers' processing power will increase as prices 
drop. Dynabooks and ARPAnets are suddenly not limited to research laboratories or 
military bureaucracies. On-line interactive communities are evolving right now, all 
around the world, through the wholly voluntary efforts of teenagers with modems, 
traveling business people with briefcase telecomputers, information utilities, computer 
bulletin board systems, and telecommunes of every stripe. 

Ted Nelson is voicing what a few people have known for a while, from the technical side 
-- that the intersection of communication and computer technologies will create 
a new communication medium with great possibilities. But he notes that the art of 
showing us those possibilities might belong to a different breed of thinker, people with 
different kinds of motivations and skills than the people who invented the technology. 
After Gutenberg came Cervantes. After movable type came novels. As Alan Kay pointed 
out, literature was the software of the era. The Cervantes of Hypertext might be learning 
to read right about now. 

Twenty years ago, the few hundred people who built time-sharing began to get excited 
about several new means of communication that were becoming possible via computer 
mediation. Fifteen years ago, the thousand-odd people who joined the first version of 
ARPAnet began to experiment with the new media -- in their daily work as a way to have 
fun. About a decade ago, another group of people began to concentrate on software 
systems specifically designed to facilitate communications among a dispersed community 
-- computer teleconferencing. 

The concept of computerized conferencing came from the usual convergence of 
unexpected factors -- in this case the Berlin airlift of 1948, a decision tool invented by a 
think tank, and the wage-price freeze of 1971. The idea was to build a system in 
which computers make it possible for groups that are separated by both space 
and time to communicate in various ways, over common-carrier 
communication lines. Community communication was first tired during the Berlin 
airlift, when the only agency with direct real-time communications of its own to all the 
NATO countries was the State Department, with its old-style teletype machines. 
Somebody tried to wire all these machines together, without the aid of 
computers to help organize the message-stream -- which created a classic mess, 
and the classic story of the birth of the new medium. 

The earliest development of the idea of using computer mediation in 
geographically dispersed conferences is most widely associated with Murray 
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Turoff, the standard eccentric prodigy, the character who happens to see everything 
differently and who, like other young, independent-minded thinkers before him, liked to 
follow an idea wherever it led him. 

In the late 1960s, Turoff was working on war games and other kinds of computer-based 
simulations for a Washington, D.C., think tank, the Institute for Defense Analysis. Some 
of these games involved connecting several "players" at once, via remote 
computing systems. As a result of this experience, Turoff became interested in using 
computers to mediate a special process developed at Rand, known as the "Delphi 
Method," in which printed questionnaires and responses circulate among a community of 
experts. Delphi was a way to reach a quick collective judgment about a complex 
situation; Turoff thought the process was ideally suited to the kind of on-line 
communications then being demonstrated on the ARPAnet. So he started to experiment 
with a computerized Delphi system. 

In the early 1970s, Turoff had moved to the Office of Emergency Preparedness, where 
his job wasn't related to his immediate interests in teleconferencing. His superiors 
found out that he was using his computer terminal to experiment with an 
unauthorized conference system, and there was some on-the-job friction. But 
then came the wage-price freeze of 1971, an action that required the rapid 
collection and collation of an unprecedented amount of information. Turoff's 
superiors changed their minds. The Delphi Conference System was ready just in time.  

In the process of putting it together, the people who designed the system and the people 
who used it began to discover that some of the system's features just seemed to become 
popular with the on-line community, with no official urging and often with no connection 
to the task at hand. There was, for example, a feature simply called "messages." 
Anyone plugged into the system could leave a message for anyone else on a 
kind of computerized blackboard. Like a blackboard, you could check your message 
later and see if anyone appended a note. Notes proliferated so fast that people began to 
develop programs for sifting through them. 

The fancy part of the software came in when you wanted to be able to review only the 
last five messages, or only those relating to a particular topic, or all the messages from a 
particular person, or on a given date. Similar efforts to build electronic mail systems were 
also going on in conjunction with the ARPAnet. One unique feature of both systems that 
emerged early was the capability of communicating with a specialized audience, even if 
you didn't know who was in that audience. For example, if you indicate to the host 
computer that you want all future messages on the topic of AI research, folk 
dancing, and Spacewar to be routed to your electronic mailbox, then anyone 
with news about one of those topics can reach you without knowing who you 
are. 

 229

http://eies.njit.edu/%7Eturoff/
http://eies.njit.edu/%7Eturoff/Papers/delphi3.html
http://eies.njit.edu/%7Eturoff/Papers/delphi3.html


They were also discovering something that had been unknown in previous 
communication media -- the content of the message is capable of also being an address. 
Far from being a tool of dehumanization, the computer conferencing system 
could boost everybody's ability to contact a community of common interest. 
Some kinds of teleconferencing software were created in order to make it possible to post 
a message on the topic of zucchini or microprocessors (or emergency preparedness 
procedures, or organizing an airlift) and be sure that the messages would be transmitted 
to everyone who needed to know about those topics. 

The use of a computer-mediated message system, as Turoff understood, 
ultimately created several new social phenomena. It was obvious from the vigorous 
electronic mail traffic on the ARPAnet that some new kind of conversation was going on. 
At a technical level, the users of these systems were able to share computer resources and 
research findings, as they were supposed to. But it also turned out that whenever 
people are introduced to a computer network, they seem to want to use it to 
communicate with each other. 

People on the ARPAnet devoted hours to composing messages. For the small community 
of people who had access to such systems, the continuing dialogues on AI and foreign 
policy, space shuttles and space-war, diatribes, puns, puzzles, pranks, and running jokes 
became a kind of combination electronic water-cooler and customized daily 
news medium. All the other news media were collapsed into subsets of the new one, 
since it was no problem to plug the wire services into the system. The metamedium 
seemed to foster new kinds of values, as well. Iconoclasm, debate, the right to an 
unbridled heterogeneity of interests seemed to be highly valued in the emerging 
on-line community. 

In some quarters of that community, people like Turoff and Engelbart were trying to 
learn enough from network communication behavior to help them design new tools for 
group communications. The National Science Foundation, deeply concerned with the 
problem of establishing a new way for the half-million scientists in this country to 
communicate with each other, sponsored some of the conferencing research. Under NSF 
sponsorship, Turoff moved to the New Jersey Institute of Technology (NJIT), to both 
study and improve the technology. A similar project had already begun in California, at a 
place called Menlo Park, not far from SRI and PARC, called the Institute for the Future. 

Roy Amara and Jacques Vallee and other staff members at the Institute for the Future 
worked on a system known as PLANET (for Planning Network, because it was initially 
directed at planners in government and industry). Both Turoff's and the institute's systems 
began with electronic mail, a shared notebook space for joint compositions, a conference 
facility for in-line and off-line group communications, and an open-message/bulletin 
board. 

Turoff and his associates' EMISARI system that had evolved from the Delphi Conference 
System evolved again into the RIMS (Resource Interruption Monitoring System) which 
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had been used, according to Turoff, by the "Federal Preparedness Agency in every major 
national commodity shortage and transportation strike since 1971." 

By the time he joined NJIT, Turoff's interest had expanded beyond the 
development of a communications tool for crisis management: "I think the 
ultimate possibility of computerized conferencing is to provide a way for 
human groups to exercise a 'collective intelligence' capability," he noted in 1976. 
"The computer as a device to allow a human group to exhibit collective intelligence is a 
rather new concept. In principle, a group, if successful, would exhibit an intelligence 
higher than any member. Over the next decades, attempts to design computerized 
conferencing structures that allow a group to treat a particular complex problem with a 
single collective brain may well promise more benefit for mankind than all the artificial 
intelligence work to date." 

In 1977, the National Science Foundation funded the NJIT to build "an electronic 
communication laboratory for use by geographically dispersed research communities." 
By July, 1978, seven trial projects were under way, each one a part of an established 
research community of ten to fifty members. The system was set up to collect data on its 
own operations, in order to test the hypothesis that a teleconference-like system could 
enhance the effectiveness of research communities. 

The Electronic Information Exchange System, known as EIES (pronounced "eyes"), was 
one of those experiments that never shut itself down because the experimental subjects 
just wouldn't let go of it. It seemed to happen with every new development of interactive 
computing -- people would simply refuse to stop experimenting with the system, and 
wouldn't give up the experimental tools when the experiment was over. As Jim Fadiman 
noted of ARC, people seem to be as reluctant to be deaugmented as they are 
resistant to augmentation in the first place. 

EIES was first set up to enable members to send private communications to individuals or 
groups, maintain permanent transcripts of comments on discussion topics, and provide 
text processing and file management services that participants could use to construct 
jointly authored papers. The protocols for using all the communication features, like 
Engelbart's NLS system, were not easy to learn. It took some commitment to the idea that 
it was worthwhile learning, which is one reason why research communities were ideal 
laboratories for the experiment. 

EIES quickly expanded from pure scientific research communities to legislative 
researchers and medical researchers. Another project in the late seventies used a 
modification of Engelbart's NLS system to enable EIES subscribers in one experimental 
group to quickly browse through time-sensitive technical information. By 1978, policy-
makers, artists, long-range planners, and others began to join EIES. Roxanne Hiltz and 
Turoff published a book that year, entitled Network Nation, in which they predicted that 
the medium wouldn't be limited to a few laboratories and think tanks. They noted that 
any microcomputer with a modem and appropriate software could plug into any network 
its user knew how to enter. They saw the development of easier-to-use, 
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population-wide teleconferencing networks as a means of reducing the distance 
between people's minds and thoughts, as a forum for intellectual discourse and 
group decision-making, as a model for a new kind of community where one's 
age, gender, race, or physical appearance would no longer matter as much as 
what one has to say. 

By the early 1980s, personal computers were being sold by the millions, and some of the 
people who bought them wanted to plug into these networks they were beginning to hear 
about. EIES has always been something of an elite -- you have to apply and pay a 
relatively high fee. But the first public information utility wasn't long in coming. 
In June, 1979, the Telecomputing Corporation of America opened for business out of a 
host computer in McLean, Virginia. Reader's Digest bought the company in 1980, and it 
was renamed Source Telecomputing Corporation. Reader's Digest, not an organization 
known for small-scale pursuits, carried the organization through the early years when 
computer sales crept into the hundreds of thousands. By the end of 1982, The Source had 
over 25,000 subscribers, and a growth rate of over 1000 new subscribers per month. 
Satellites and state-of-the-art computers and new software were added to accommodate 
up to a quarter-million subscribers. 

To those who can afford an initiation fee of $100, and a connect-time fee of $7 to $22 per 
hour, The Source and its newer competitor, Compuserve, offer computer owners 
admission to an electronic community-in-the-making. Besides remote computing, 
electronic mail, communications, telemarketing, software exchange, game playing, news 
gathering, bulletin board, and other services, The Source provides something called "user 
publishing." 

Since subscribers are billed according to how much time they spend with their computer 
connected to the Source host computer, it is possible to pay royalties to "information 
providers," based on a portion of that connect time. Every time a Source subscriber reads 
wire service information, the information provider gets a cut of the take. The same is true 
of user publishers. You have to pay for everything you put in storage, so the popularity of 
your service with the subscribers is what determines whether any publication is 
economically viable. To a creative writer, the challenge is tempting -- as long as 
you can keep your audience reading, the royalties will outweigh the storage 
charges. The artist can now be the publisher and go directly to the audience. 

Two electronic magazines I encountered my first time out were called Sourcetrek and 
Mylar's Warp. Sourcetrek, subtitled "Journeys through the Electronic Void," is put out by 
"Sourcetronaut Dave," aka "Sourcevoid Dave." When you give The Source the command 
to connect you to Sourcetrek, you get a choice of menus on your screen, along with a list 
of different statistics about the choices -- reading time, number of times read, the exact 
time it was last read. I selected the first "article," entitled "Hello," which went (in part) as 
follows: 

Hello. 
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I am "Sourcevoid" Dave. David Hughes otherwise. 

I was born in Colorado, descended from stubborn Welshmen who were never too loyal to the king. Which 
is probably why I am content being a maverick of sorts, with a Welsh imagination. 

I live in Historic Old Colorado City at the base of 14,114 foot Pike's Peak. 

I work out of my 1984 Electronic Cottage with a variety of microcomputer and telecommunications tools. . 
. . 

I am a happily married middle-aged family man who has seen enough of Big Government, Big Industry, 
Big political Causes -- either of the left or the right -- to now prefer to operate a small business out of a 
small house, in a small neighborhood, working with small organizations, using a small computer to make it 
all possible.  

I also have a small computer bulletin-board to link my local friends with my brain -- asychronously and in 
the noble written form of English. . . .  

Dave has opinions and poems and stories to tell. He teaches classes via modem to 
students around the world. And all subscribers can read what he has to say, at their own 
expense, and reply by electronic mail if they wish, also at their own expense. The other 
electronic magazine I sampled, Mylar's Warp, an Electronic Serial, by Floyd Flanagan, 
was strictly fictional. The idea is the same idea behind any serial -- the writer has to keep 
it interesting in order to keep the readers' attention. 

The title of Chapter 1 was "Reflections on Ice," and this is as much as I read before I 
realized how much I was spending in connect time: 

I know I'm freezing to death. Wasn't supposed to feel a thing. Ha! A sucker born every minute. Just because 
you're frozen alive, that doesn't mean you can't still be freezing to death. I may be slowed down, but I ain't 
dumb. Sure as hell, I'm freezing to death. 

So, how did I get here? No reason not to go over it again for the eleven millionth time. Nothing else to do. 
I'm Johnny Mylar, from Peabody, Utah. Peabody's claim to fame was Dinah, a life-sized pea-green cement 
replica of a dinosaur, like me, frozen out of time. . . . 

Anyway, it all started when I was getting my drivers license renewed and the lady asked me if I would like 
an organ donor sticker on the back of my license. Hadn't ever really thought about it before, I told her. So, 
she explained how, if I died and there was a sticker on my license, the hospitals would be able to use my 
organs to help people who had lost an eye, or heart, or brain, or tooth, or whatever. "Sure," I said. 
"Whatever's right." I had always had a cavalier attitude concerning the most basic matters, like sex and 
death. Didn't I always buy Girl Scout cookies from the little girls in the short green skirts, and . . . "  

While the community of subscribers to EIES, The Source, Compuserve, Dow Jones, and 
other information utilities is still small enough to keep the costs of services high, the 
inevitable growth of telecomputing population from tens of thousands to millions, 
spurred by the proliferation of modem-equipped home computers is sure to lower the 
price enough to make it possible for more Floyd Flanagans and David Hughses to 
experiment with their electronic magazines. But the big info-utilities are not the only kind 
of on-line community in existence. At the same time that the larger utilities seek to plug 
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individual subscribers together into what is essentially a centrally controlled time-sharing 
technology, a different way of interconnecting computers is giving birth to an 
even wilder mutant of network culture -- the computer-based bulletin boards. 

A computer bulletin board system, often called a CBBS, or simply a BBS, consists of a 
computer controlled by special software and the hardware needed to connect it to an 
ordinary telephone line. The software enables a small host computer to automatically 
answer when its telephone number is dialed, and transmit and receive messages to and 
from remote computers. By leaving such a system hooked up continuously, and posting 
the access number in one or two places, the grapevine takes care of the rest. Come back 
and read all the messages a week later and you'll discover that a community has created 
itself. 

The first software that enabled microcomputer owners to set up CBBS was created by 
Ward Christensen and Randy Seuss, in Chicago, in 1978. By 1984, the number of such 
systems is difficult to determine, but it must at least be in the hundreds, and probably will 
soon be in the thousands. To connect to a BBS, you need a personal computer, a modem, 
telecommunication software, and a telephone. Plug the telephone into the modem, use the 
communication program to dial the BBS number, then when the computers are 
connected, the host system will put words on your screen and tell you how to work the 
system. 

Most people know of these systems, and the underground community of users, because of 
the movie WarGames, television programs about computer whiz kids, and publicity about 
dark-side hackers. In fact the community has changed so swiftly that piracy, phone-
freaking, destructive hacking, and even obsessive interest in how computers work now 
occupy only a small part of the BBS scene. Many bulletin boards have been in existence 
for years, but even more seem to spring up and die out on a weekly basis. In my own 
limited sampling of the BBS world, over the span of a few months, I 
encountered teenage philosophers, homespun lecturers of all ages and both 
sexes willing to ramble about any topic you'd care to name, and I even 
stumbled onto a couple of on-line religions, both cybernetic and pagan. 

I met Clyde Ghost Monster one night out in the bulletin board zone, and Clyde ultimately 
turned me on to the number that led me to the on-line religion. It started the way it 
usually does when you browse the boards. A list of bulletin board numbers had led me to 
a list of bulletin board numbers that led me to another lively discussion group called 
"Sunrise" in New Jersey, consisting of random drop-ins from anywhere in the country, 
like me, and a core group, mostly local, who seemed to know each other, and who spent 
hours trading messages about utterly anything at all. 

While some boards are strictly for hackers or computer enthusiasts or science-
fiction freaks or sex freaks or peace types, Sunrise appeared to be a kind of 
electronic cracker-barrel store crossed with a public restroom wall. I joined 
Sunrise as "Johnny Jupiter" when I decided to add my two cents to a very funny ongoing 
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conference that consisted of nothing but lists of "my favorite people." You can say a lot 
with just a list of people, the Sunrise community discovered one night, when "Ivan Idea" 
started it all by posting the first list. The creators of the lists that followed within hours 
signed themselves with names like "Tater Tot," "Clock Speed," and "Clyde Ghost 
Monster." 

I checked in on Sunrise from week to week, and one night, while scrawling some 
graffitist reply to an ongoing epistemological debate, the words "SYSOP REQUESTS 
CHAT" appeared on my screen. I typed "OKAY LET'S CHAT," hit the return key, and 
started conversing in real time with an utterly fascinating individual, via an exchange of 
quickly typed messages. 

It turned out that the host computer was located in Clyde Ghost Monster's bedroom, 
which made Clyde the system operator. Sysops are like benevolent dictators. They can 
weed you out of the community memory if they want, but then again, their computer is 
the one that provides a message-mediation system to anyone who wants to drop in, 
electronically speaking. Clyde Ghost Monster was an anarchist sysop, who preferred the 
rule of wit. Clyde Ghost Monster, I was to learn weeks later, was also a sixteen-
year-old girl. Tater Tot was a seventeen-year-old boy who went to her high school. 
They had no idea who Ivan Idea was. 

Clyde told me that if I wanted to find out about new kinds of communities, I ought to call 
a conference-tree bulletin board in Santa Cruz, California, and read the opening message 
for "ORIGINS." The conference tree is a bulletin-board-based medium that seems 
particularly well suited to wildly heterogeneous experiments in communitarian 
communication. The idea behind a conference tree is that you can call in and read from or 
write to a variety of conferences, each one consisting of a constantly branching list of 
messages and submessages. The name of the message conveys something of what it is all 
about, and all the variations of opinion from rabid enthusiasm to utter contempt can be 
expressed in submessages and submessages of submessages. 

My modem beeped its way to the host computer, and when the word CONNECT 
appeared on my screen, I hit the return key twice. A menu of conferences appeared, in the 
form of the list of names of the first message in each conference. I selected "ORIGINS," 
as instructed. ORIGINS first gave me an address to write to obtain a brochure, then the 
following message appeared on my screen: 

ORIGINS is a movement that started on this computer (Santa Cruz, 408-475-7101). Origins began on the 
START-A-RELIGION conference, but we don't call it a religion. 

ORIGINS is partly a religion, partly like a westernized form of yoga society, partly a peace movement. It is 
a framework for improving your life and improving the world at the same time. 

The movement centers on "practices" -- actions you can use in everyday life to build effective human 
relationships, strength of community, and self-awareness. All the practices are based on action. None 
require any special equipment, settings, leaders, theories or social status. The human universals of the 
ordinary, everyday moment, and the personal relationship, form the basis for this training. 
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ORIGINS has no leaders, no official existence, nothing for sale. Because it started in an open computer 
conference, no one knows who all the creators are. 

This movement has just begun. The brochure mentioned above recommends seven practices (Leverage a 
favor, Ask for help and get it, Use charisma, Finish a job, Use magic, Observe yourself, Share Grace), but 
these suggestions are only starters. The idea is to continually develop new training/action methods, as a 
community project, then discuss and share them through whatever communications media are available. 
This movement will never be finished, because it seeks a community of permanent innovation. 

The hope is to build something which can make a better world. The first step is to make your own life 
better. For a more detailed overview of ORIGINS, get the brochure from the address above. To see how the 
movement developed, read the START-A-RELIGION message and its submessages. 

Although the conference tree that contained ORIGINS, along with its parent and sister 
and daughter conferences (as submessages and root messages are known in BBS jargon), 
was one of the most intriguing electronic gathering places I found in a few months of 
vicarious wanderings via my modem, it was far from the only unusual one. 

The pros and cons of religion, and the possibility of starting new ones or reviving old 
ones, seems to be a popular topic of discussion. ORIGINS was an example of the 
cybernetic variety. I ran across a few Christian boards and a meditators' BBS, but the 
most startling discovery was the Pagan faction who announced themselves with a 
message on a conference tree: 

The covenant of the Goddess is an umbrella organization for pagan groups of all kinds. It was created in the 
60s to provide some structure (and maybe some muscle, since some groups were being harassed by the 
government) to an otherwise amorphous group of covens in Northern California, but eventually had 
members everywhere. A pagan group mostly refers to witches, although there are Druid groves and other 
strictly unallied organizations online as well. Witches means any affinity group which holds as one of its 
general tenets that Jehovah may not be the guy in charge after all -- that he is a powerful illusion created by 
an awful lot of misguided and power-hungry folks, and that the supreme being is and should be somebody 
with more of a sense of humor as well as compassion, not even to mention love. In short, it might be fair to 
claim that it's better than any other way, then it's probably pagan. These definitions are by exclusion 
because one way of defining the whole pagan movement is as a group that believes in saying yes to more. 
A coven is an affinity group of witches. The name is very old. Some covens have fierce strict codes of 
behavior and rules of ceremony and others get together now and then and shoot the shit. By and large, 
witches have the best parties of any groups going. There is another organization in the California area 
known as the New Reformed Orthodox Order of the Golden Dawn, which was started as a gag in the 60s 
and presently has several thousand members, a good many of which can apparently be counted on to show 
up for a bash. It is typically pagan, incidentally, to start your biggest umbrella organization for a joke. Lots 
of witches compute, and there are probably a bunch on this very tree who have not bothered to identify 
themselves. (Witches have no identifying marks -- except for that humorous glint in the eye.)  

Religion, ancient or modern, is still less popular than sex as a topic for BBS discussion. 
A certain steady percentage of boards are entirely sexually oriented. The problem 
used to be that there simple weren't any females on the system, but that appears to be 
changing rapidly. Sexually oriented CBBS and dial-a-date boards are an entrance into yet 
another subculture, some members of which use the system to arrange real-life 
assignations with compatible companions, but most of whom use the system to live out 
fantasy sex lives consisting of hot dialogues with other anonymous participants. 
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Because computer programs can be sent over the telephone wires as easily as words or 
numbers, some boards engage in software piracy -- passing along proprietary software 
without paying the licensing fee. Others dispense "public domain" software as a 
community service. some of them offer access to special information, like an insider 
newsletter, and issue passwords and bill for connect-time. Some are exclusive, and many 
are promiscuous, about who is allowed to write as well as read messages. 

Then there are folks who are starting to use temporary on-line communities as art forms 
and as experiments in changing the consciousness of larger communities like 
neighborhoods and cities. In 1983, a literary group in Seattle that called itself Invisible 
Seattle instigated the creation of a fifteen chapter mystery story written by a 
representative sampling of the half-million citizens of the city itself. The collective novel 
was not a new form, as far as the more standard kinds of networks go. EIES started a 
serial years before, in which different writers took on the personae of various characters 
and wrote the story like a conference. 

Invisible Seattle, however, sent "literary construction workers" out into the city looking 
for people from all works of life who were willing to contribute plots, words, ideas, 
which were communicated from the point of origin to the other nodes throughout the city 
via a temporary arrangement of video arcade game parts, two larger personal computers, 
some custom written software, and six smaller personal computers. 

What do Xanadu, EIES, The Source, Clyde Ghost Monster, and Invisible Seattle have to 
do with the technology created by Turing, von Neumann, Licklider, et al.? What would 
the patriarchs think of the infonauts? The changes that were predicted by the earliest 
software prophets seems to be only the beginning. The religion that germinated on the 
ORIGINS conference tree -- was its origin any stranger or less likely than the dominant 
religions of today that sprang up centuries ago in dusty Middle Eastern villages? Xanadu 
and EIES might seem like novel and unfamiliar media -- but so did the printing 
press and telephones when they first appeared. 

The forms that cultural innovations took in the past can help us try to forecast the future -
- but the forms of the past can only give us a glimpse, not a detailed picture, of what will 
be. The developments that seem the most important to contemporaries, like blimps and 
telegraphs, become humorous anachronisms to their grandchildren. As soon as something 
looks like a good model for predicting the way life is going to be from now on, the 
unexpected happens. The lesson, if anything, is that we should get used to 
expecting the unexpected. 

We seem to be experiencing one of those rare pivotal times between epochs, before a new 
social order emerges, when a great many experiments briefly flourish. If the 
experiences of past generations are to furnish any guidance, the best attitude to 
adopt might have less to do with picking the most likely successors to today's 
institutions than with encouraging an atmosphere of experimentation. Is Ted 
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Nelson any crazier than Alan Turing? Did Gutenberg think about the effects of public 
libraries? 

Hints to the shape of the emerging order can be gleaned from the uses people are 
beginning to think up for computers and networks. But it is a bit like watching the old 
films of flying machines of the early twentieth century, the kind that get a lot of laughs 
whenever they are shown to modern audiences because some of the spiral-winged or 
twelve-winged jobs look so ridiculous from the perspective of the jet age. Yet everyone 
can see how very close the spiral-winged contraption had come close to the principle of 
the helicopter. 

The dispersal of powerful computer technology to large segments of the world's 
population, and the phasing-in of the comprehensive information-processing 
global nervous system that seems to be abuilding, are already propelling us 
toward a social transformation that we know very little about, except that it will 
be far different from previous transformations because the tool that will trigger 
the change is so different from previous tools. Not all of those who have tried to 
predict the course of this transformation have been so optimistic as Licklider or Nelson. 
Joseph Weizenbaum, in particular, has voiced his fear of the danger of mistaking 
computers for human minds or treating human beings as machines. 

Weizenbaum's argument, in part, points out that the aspect of human nature that was 
externalized by the invention and evolution of computers was precisely the most 
machine-like aspect. The machines that embody this aspect can do some very impressive 
things that humans cannot do, and at present can do very little of the more sophisticated 
intellectual feats humans can accomplish. Even so, they are taking over the management 
of our civilization. Before we begin to give more decision-making responsibility 
over to the machines, Weizenbaum warns that it is a terrible mistake to believe 
that all human problems and all important aspects of human life are 
computable. 

This "tyranny of instrumental reasoning" can lead to atrocities, Weizenbaum warns, and 
in the closing years of the twentieth century, it is not at all paranoid to have some 
healthy suspicions about what any shiny new technology that came from the 
Defense Department in the first place might do to our lives when they get 
around to mass producing it. And there is no dispute that war was the original 
motivation and has been the continuing source of support for the development 
of computer technology. 

If it is true that the human brain probably started out as a rock-throwing 
variation on the standard hominid model, it has also proved capable of creating 
the Sermon on the Mount, the Mona Lisa, and The Art of the Fugue. If it is true 
that the personal computer started out as an aid to ballistic calculations, it is 
also true that a population equipped with low-cost, high-power computers and 
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access to self-organizing distributed networks has in its hands a potentially 
powerful defense against any centrally organized technological tyranny. 

Licklider believed that a human-computer symbiosis would be the means of steering our 
planet through the dangerous decades ahead. Others have used another biological 
metaphor for our future relationship with information processing technology -- the 
concept of coevolution, an agreement between two different organisms to change 
together, to interact in such a way that improvements in the chances for survival for one 
species can lead to improvements in the chances for survival of the other species. 

Perhaps yet another biological metaphor can help us foresee the transformation ahead. 
When a caterpillar transforms into a butterfly, it undergoes a biologically unique process. 
Ancient observers noticed the similarity between the changes undergone by a butterfly 
pupa and those of the human mind when it undergoes the kind of transformation 
associated with a radical new way of understanding the world -- in fact the Greek word 
for both butterfly and soul is psyche. 

After the caterpillar has wound itself with silk, extraordinary changes begin to happen 
within its body. Certain cells, known to biologists as imaginal cells, begin to behave very 
differently from their normal caterpillar cells. Soon, these unusual cells begin to affect 
cells in their immediate vicinity. The imaginal cells begin to grow into colonies 
throughout the body of the transforming pupa. Then, as the caterpillar cells begin to 
disintegrate, the new colonies link to form the structure of the butterfly's body. 

At some point, an integrated supercolony of transformed cells that had once crawled 
along the ground emerges from the cocoon and flies off into the spring sky on 
multicolored wings. If there is a positive image of the future of human-computer 
relations, perhaps it is to be seen reflected in the shapes of the imaginal cells of 
the information culture -- from eight-year-olds with fantasy amplifiers to knowledge 
engineers, from Ted Nelson to Murray Turoff, from Clyde Ghost Monster to Sourcevoid 
Dave, from ARPA to ORIGINS. 

The flights of the infonauts are not the end of the journey begun by the patriarchs, but the 
beginning of the most dramatic software odyssey of them all. It is up to us to decide 
whether or not computers will be our masters, our servants, or our partners. 

It is up to us to decide what human means, and exactly how it is different from 
machine, and what tasks ought and ought not to be trusted to either species of 
symbol-processing system. But some decisions must be made soon, while the 
technology is still young. And the deciding must be shared by as many citizens 
as possible, not just the experts. In that sense, the most important factor in 
whether we will all see the dawn of a humane, sustainable world in the twenty-
first century will be how we deal with these machines a few of us thought up 
and a lot of us will be using.  
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