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ABSTRACT. The textural discontinuity hypothesis (TDH) is based on the observation that animal body
mass distributions exhibit discontinuities that may reflect the texture of the landscape available for
exploitation. This idea has been extended to other complex systems, hinting that the identification and
quantification of discontinuities in the distributions of appropriate variables may provide clues to emergent
system properties such as resilience. We propose a discontinuity index, based on the vector norm of the
full assemblage of observed discontinuities, as a means to quantify and compare this characteristic among
systems. We also evaluate four methods to identify the number and location of the most prominent
discontinuities. Although results of the four methods are similar, they are not identical, and we conclude
that this problem is best addressed with a consistent operationally defined approach in an adaptive inference
framework.
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INTRODUCTION

Holling (1992) proposed that animals have evolved
physical and behavioral characteristics to exploit
environmental texture at particular scales. Holling's
textural discontinuity hypothesis (TDH) posits that
animal body masses are entrained to the specific
pattern and structure of available resources in a
given system. Because resource distribution is
discontinuous across landscape scales, animal body
mass distributions should reflect this pattern and
exhibit discontinuities consistent with the changes
in the scale of resource availability. Holling viewed
discontinuities in animal body mass distributions as
indicative of evolutionary, self-organizing interactions
of animals with the structures and processes specific
to the scale at which they interact with their
environment. Peterson et al. (1998) expanded this
concept, postulating that ecosystem resilience is an
emergent property resulting from functional
redundancies across scales and functional diversity
within scales.

Many subsequent studies have demonstrated results
consistent with the TDH. For example, Raffaelli et
al. (2000) found that experimentally altering marine
sediment assemblages with size-specific perturbations

of organic enrichment and predation caused
densities and relative abundances of invertebrate
taxa to shift, but there was little change in benthic
biomass or the abundance size spectrum,
maintaining a multimodal distribution of species.
Havlicek and Carpenter (2001) compared body
mass distributions in a set of experimental lakes,
and reported that, despite changes in lake nutrient
status and species composition, the multimodal
body mass distributions of a wide range of species
were conserved. Cumming and Havlicek (2002)
used a cellular automaton model to evaluate body
size distributions for 138 fish species. They found
consistent modality in the data, and concluded that
the structure detected was likely driven by
ecological and evolutionary processes. Kamenir et
al. (2004) analyzed seasonal and inter-annual
variability in the size structure of phytoplankton of
Lake Kinneret, Israel, and found that the assemblage
was characterized by size classes separated by gaps.
Stead et al. (2005) sampled a range of size fractions
of stream benthic metazoans, and documented
persistent changes in the number and locations of
modes in the distribution, indicating that no single
factor determines body size distributions. Stead et
al. (2005) claim that breaks in body size
distributions indicate an abrupt shift in the scale at
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which species operate in an environment; a pattern
of peaks and troughs persists, regardless of the
temporal and spatial variation in the data set. Others
continue to document a relationship between
discontinuities in body size distributions and habitat
structure in freshwater fish (Fu et al. 2004) and
nekton (Pittman et al. 2004). Szabo and Meszena
(2006) used a resource use model to investigate the
effect of natural selection on scale of perception.
Their results indicate that discrete scales of
opportunity act as distinct resources, and that
species with similar perceptions are better at using
resources at the same scale.

Accumulating evidence also supports the notion that
discontinuities may be manifestations of scale-
specific structuring processes that organize
ecological systems, possibly with important
management implications. For example, Allen et al.
(1999) concluded that endangered and invasive
species had body masses that fell near
discontinuities—suggesting a possible tool to help
forecast vulnerability or invasive potential. More
recently, Scheffer and van Nes (2006) used a
competition model to demonstrate that modality is
an emergent property resulting from the co-
evolution of competitors. They contend that self-
organized size classes represent scales of
opportunity, separated by discontinuities, that are
indicative of forbidden zones.

Thus, the analysis of the number and location of
discontinuities in features from complex systems
such as animal body mass distributions, or attributes
representing other complex systems, such as city
and firm size distributions (Garmestani et al. 2005,
2006), may provide insight into the structure,
dynamics, and development of these systems.
Additionally, if the pattern of discontinuities
reflects differing scales of self-organizing
processes, as these studies have suggested, then
quantified measures of this attribute may provide a
tool to assess resilience among ecosystems
(Carpenter et al. 2005, Allen et al. 2005).

However, in addition to stirring considerable
interest, Holling’s proposal has evoked skepticism.
Brown (1995) agreed that body mass distributions
appear discontinuous, but offered an alternative
explanation for the presence of a discontinuous
pattern. Manly (1996) analyzed the TDH from the
perspective of looking for body mass modes rather
than discontinuities, and concluded that the body
mass distributions examined were plausible small-

sample outcomes from underlying unimodal or at
most bimodal distributions. Siemann and Brown
(1999) argued against the existence of discontinuities
in mammal data sets by analyzing the gap size
between modes, concluding that the observed gaps
were not unusually large when compared with gaps
generated from a continuous uniform distribution.

In this analysis, we consider the nature of the data
on which the TDH is based, and evaluate approaches
to identify and quantify the discontinuous structure
in data from complex systems. These data include
body mass information from several ecosystems,
and firm and city size data from socioeconomic
systems. We first evaluate the approaches offered
by Manly (1996) and Siemann and Brown (1999)
to provide perspective on the framework in which
these data are currently viewed, and suggest
alternatives.

EXAMINING THE NUMBER OF MODES

The TDH arose initially from the visual observation
that adult animal body mass histograms appear
discontinuously rather than smoothly distributed,
and that this pattern occurs consistently in different
systems (Holling 1992). Manly (1996) examined
this supposition as a question of multimodality,
asking: “Do the body mass distributions provide
evidence for more than one mode?” Manly posed
this question of the data sets originally examined by
Holling using Silverman’s (1981) kernel density
method, and concluded that there was little evidence
for more than two modes in any of the data
examined.

Determining the number of modes in a distribution
consisting of several underlying distributions is a
difficult problem, particularly when the number and
location of the component distributions is unknown.
There is an extensive statistical literature on the
subject exploring the properties of various
methodologies. The problem becomes increasingly
difficult as the number of suspected modes increases
and the distance between modes decreases (Roeder
1994). Silverman’s method is known to
conservatively estimate the actual number of
modes. In other words, in the test of the null
hypothesis “the data likely arise from a distribution
with one mode,” Silverman’s test will overestimate
P values, even in large samples (Hall and York
2001). Hall and York show in the simplest case, with
an HA of two modes, the power of the test is low
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until modes become widely separated. Thus, the
number of modes is likely to be underestimated
using this method.

In addition, Manly (1999) clearly regarded his
inquiry to be drawing inference about “the true
underlying distributions” of the body mass data,
implying that the available data are small samples
from a large population. However, we argue that
these data are more appropriately viewed as
censuses, or near censuses, representing specific
geographic regions. Most of the data considered
have encompassed relatively large, easily
observable species for which substantial undercounting
is unlikely, thus the body mass distributions are
more closely analogous to inventories than to
samples. Although there is some measurement
uncertainty in mean adult body mass estimates,
measurement error usually obscures pattern, thus
the presence of substantial error would not produce
consistent patterns across systems. Therefore, the
validity of the TDH is not appropriately evaluated
by asking if the observed modes are “real” or just
artifacts of sampling error, using a classical
hypothesis testing approach.

EXAMINING GAP SIZE

Siemann and Brown (1999) approached this
question differently, examining the size of the gaps
(discontinuities) within body mass distributions,
rather than the number of modes. They simulated
adult body sizes using random values from uniform
distributions tailored to conform to animal data sets
from several biomes, and showed that the largest
gap in most of the data sets examined was a plausible
outcome from a continuous uniform process. In the
few instances where the largest gap was unusually
big, they sequentially evaluated the second and third
largest gaps to show that there was not a succession
of unusually big gaps. From this analysis, Siemann
and Brown (1999) concluded that gaps were not a
general feature of mammalian body mass
distributions.

However, this testing does not accurately capture
the premise of the TDH. The TDH is posited on the
idea that adult body size distributions exhibit an
assemblage of gaps, reflective of underlying
processes, not that the gaps are unusually big. Small
random samples from a uniform distribution will
generally not be evenly distributed, they will exhibit
gaps and modes (Fig 1). An evenly distributed

sample from a continuous uniform distribution is
unlikely (Fig. 1), more probably the result of a
systematic than a random process. Thus, it is not
clear that a uniform process provides an appropriate
null hypothesis against which the TDH is
appropriately tested.

Additionally, the method used by Siemann and
Brown (1999) is more conservative than is
immediately evident from the use of a 0.05 P value
as a decision criterion, because this criterion was
applied multiple times to each data set tested,
increasing the likelihood that few body mass
distributions would be found to have a set of
unusually big gaps. They tested the second largest
gap only if the largest gap was judged to be
unusually big. Then, if the second largest gap also
was judged unusually big, they tested the third
largest gap, and so on. Assuming that the sizes of
successive gaps are independent, the joint
probability that the largest and second largest gaps
will both be in the upper fifth percentile of their
respective distributions is 0.052, and the joint
probability that the three largest gaps will all
simultaneously be in the upper fifth percentile is
0.053; thus, the test performed was actually much
more stringent than it appeared.

However, this independence assumption invites
investigation, as the size of the largest gap will
influence the size of the successively smaller gaps.
For example, if the largest gap is unusually small,
then subsequent gaps will also tend to be small,
because they must be smaller than the largest gap.
Concurrently, if the largest gap is unusually big, it
is less likely that subsequent gaps will also be big,
because the gaps must sum to the total interval width
spanned by the body masses. In the most extreme
example, all organisms could conform to one of two
body masses. In this case, the largest gap would
equal the entire interval width, and all subsequent
gaps would be of size zero, resulting in only one big
gap.

Thus, there are conflicting constraints; unusually
small largest gaps will tend to make subsequent gaps
small, and unusually big largest gaps will also tend
to make subsequent gaps small. To evaluate the net
effect of these constraints on the independence
assumption, we used a uniform random number
generator to simulate animal body mass
distributions with sample sizes ranging from n = 20
to n = 100. For each sample size, we generated 5000
outcomes from the uniform distribution, sorted the
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Fig. 1. Comparison of samples (n = 25) randomly generated from a uniform distribution (blue triangles)
to systematically generated, evenly spaced samples (red triangles).

gaps by size, and tallied the proportion of the
outcomes in which the first, second, and third largest
gaps were in the upper 5th percentile of their
respective distributions.

The results (Table 1) confirm that the distributions
of the largest, second largest, and third largest gaps
are not independent. The constraint that
successively smaller gaps must be smaller than their
predecessors dominates the overall distribution
structure, imposing a weak positive correlation (Fig.
2), and resulting in joint probabilities that are higher
than would be expected if the distributions were
independent (Table 1). However, these joint
probabilities are still much lower than 5%. Thus, we
conclude that the testing performed by Siemann and

Brown (1999) was much less likely to find more
than a few big gaps than was implied by a 0.05 P 
value.

A DISCONTINUITY INDEX

We argue that classical hypothesis testing is not an
appropriate framework to evaluate the TDH; most
data sets examined are near censuses rather than
small samples, and there is no clear universally
applicable null model. However, we propose that
the uniform distribution does provide a basis to
develop a discontinuity index (DI) useful to
compare data sets, using the assemblage of
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Table 1. Comparison of the joint probability of the largest and second largest gaps, and the largest, second
largest, and third largest gaps all simultaneously falling in the upper 5th percentile of their respective
marginal distributions. Results are based on 5000 random draws from uniform distributions for assemblages
ranging from n = 20 to n = 100 observations.

 
Proportion in upper 5th percentile of
largest and 2nd largest gap

Proportion in upper 5th percentile of
largest, 2nd largest, and 3rd largest gap

Expectation if Independent → 0.0025 0.000125

n

20 0.0044 0.0006

30 0.0068 0.001

40 0.007 0.0016

50 0.0106 0.0024

60 0.0112 0.0032

70 0.0092 0.004

80 0.0112 0.0034

90 0.0098 0.0026

100 0.0098 0.0044

discontinuities as a basis for comparison. The gap
assemblage can be considered a vector, the
magnitude or length of which is the vector norm
(Friedberg and Insel 1986) calculated as:

(1)

where m is the number of gaps (= n - 1, where n is
the number of species). Geometrically, this quantity
is the higher dimensional analogue of calculating
the length of the hypotenuse of a right triangle as
the square root of the sum of the squared lengths of
the other two sides. For a given interval, the largest
possible value of this quantity occurs if all species
lie on either end of the interval. In this case, there
is one discontinuity that constitutes the entire
interval width, and the rest of the gaps are all zero.

The smallest possible value of this index occurs if
the species are evenly distributed, and all of the
discontinuities are the same size. Therefore, a body
mass distribution with similar-sized species,
constituting only a few groups, will have a large
vector norm, but if the body masses are evenly
distributed the norm will be small.

We generated this index by taking 5000 draws from
a [0, 1] uniform distribution, calculating the vector
norm of the discontinuities for each of the 5000
draws, and calculating the cumulative density
function (cdf) for each set of 5000 draws. We
calculated and plotted the index for a range of
plausible sample sizes, from n = 20–100 by intervals
of 10 (Fig. 3). Additionally, we calculated the vector
norm for six example data sets to compare with the
index. The data chosen represent four ecological
examples: Boreal forest birds (n = 101) and
mammals (n = 36) (Holling 1992), Everglades (n =
35) and Mediterranean (n = 31) mammals (Allen et
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Fig. 2. Comparison of gap sizes generated from 5000 simulations. For each simulation, 50 numbers
were randomly selected between 0 and 1, then the largest gap, second largest gap, and third largest gap
were determined. 95th percentiles are depicted by dotted lines—upper right quadrant is the upper 5th 
percentile. A) Plot of largest gap vs. second largest gap, B) largest gap vs. third largest gap, C) second
largest gap vs. third largest gap.
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al. 1999), and two examples from other complex
systems: regional city size data from the
southwestern United States in 1890 (n = 48)
(Garmestani et al. 2005), and regional manufacturing
firm data (SIC Code 225) from South Carolina (n =
63) (Garmestani et al. 2006). Each example data set
was normalized to a [0, 1] interval by subtracting
the value of the smallest observation from each entry
then dividing each entry by the difference between
the largest and smallest observation.

The six example data sets had a range of DI values.
The 1890 SW US city data set had the highest DI,
above the 99th percentile for a data set of n = 48.
Boreal forest birds had a DI of 98.6, whereas SIC
226 firm data scored 95.8. Mediterranean mammals
had the lowest DI at 46.0, and boreal forest and
Everglades mammals were intermediate at 81.4 and
76.4, respectively.

We suggest the vector norm of discontinuities as an
index rather than a “significance test” because
significance testing carries a fixed binary decision
criterion—accept or reject. Instead, we propose this
index as a useful tool to assist in the evaluation of
structure in animal body mass (or other)
distributions, providing a possible quantitative
measure of resilience (Allen et al. 2005), and a basis
for comparison among observed data sets.

IDENTIFYING GROUPS

Although this index provides a measure of
“gappiness,” there is still a need to develop rigorous
approaches to evaluate where the discontinuities
(and thus the groups) occur in a given data set (Allen
et al. 2006). The structure and persistence of
discontinuities has been proposed as a metric to
assess resilience in complex systems (Allen et al.
2005), thus consistent approaches to determine this
structure are necessary. Evaluating possible
grouping in ordered data with n observations is
challenging, as there are 2n - 1 possible ways to
group the data.

Here we compare four candidate methods to
determine groups, the “gap rarity index” (GRI)
(Restrepo et al. 1997), hierarchical cluster analysis
(HCA) (SAS Institute 1999), classification and
regression trees (CART) (Breiman et al. 1984) and
the Bayesian implementation of CART (BCART)
(Chipman et al. 1998).

The GRI uses computer simulations that compare
observed body mass distributions with a null
distribution established by estimating a continuous
unimodal kernel distribution of the log-transformed
data (Silverman 1981). Gaps are defined as areas
between successive body masses that significantly
exceed the discontinuities generated by the
continuous null distribution. A species aggregation
is a grouping of three or more species with body
masses not exceeding the expectation of the null
distribution. This algorithm has been used
previously in determining discontinuities and
testing the TDH, but it is not readily available for
broad application (Restrepo et al. 1997).

The HCA and CART algorithms work similarly,
seeking to define homogenous groups in data, by
successively splitting the data into two groups based
on measures of within-group homogeneity. The
resultant set of splits can be depicted as a branching
tree, where the terminal nodes define groups of
maximum homogeneity. However, a limitation of
these methods is that the conditional recursive
partitioning algorithm may result in a tree structure
that is not globally optimal. A Bayesian
implementation of the CART algorithm addresses
this limitation by performing a stochastic search
over the space of all possible trees, based on prior
probabilities of a split occurring at any given node
(Chipman et al. 1998). Selecting the best tree is
based on the log integrated likelihood, a measure
provided by the software. Considerable experimentation
with this approach has indicated minimal sensitivity
to the choice of prior probabilities, though the
number of iterations required may be affected by
poorly chosen priors. The Bayesian algorithm has
been found to be particularly effective at detecting
discontinuities in datasets (Bremner and Taplin
2004).

The four methods identified a similar number of
discontinuities in the representative data sets, which
were similar across methods, although they were
never all identical (Table 2). The location of the
discontinuities also was similar, resulting in
interpretations that differ only slightly among
methods (Fig. 4).

The methods described above provide results that
contrast the conclusions of both Manly (1996) and
Siemann and Brown (1999), and indicate that the
distributions analyzed are discontinuously distributed.
The differences in location and number of
discontinuities confirm earlier suggestions that a
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Fig. 3. Discontinuity index based on vector norm of gap sizes. Solid lines (left to right) represent sample
sizes of n = 160, 120, 80, 60, 40, and 20. Dashed lines (left to right) represent example data sets with n =
101 (boreal forest birds), n = 63 (firm data SIC 226), n = 48 (SW cities 1890), n = 36 (boreal forest
mammals), n = 35 (Everglades mammals), and n = 31 (Mediterranean mammals). Dots on dashed lines
depict where the example data set vector norm is located on the cdf.

convergence of approaches should be used when
interpreting results for discontinuities, given that
none of the methods provides an unequivocal
solution to the question “How discontinuous are
these distributions and where are the discontinuities
located?” Instead we recommend a consistent,
operationally defined approach, using several
methods in parallel.

We suggest the application of these quantitative
methods in an adaptive inference framework
(Holling and Allen 2002). Adaptive inference is
appropriate for complex systems where structure

derives from multiple sources operating at differing
scales and where discrimination between pair-wise
hypotheses is not possible. Adaptive inference uses
a suite of tests that accumulates a body of evidence.
Instead of pitting each member of a pair of
hypotheses against each other, adaptive inference
relies on exuberant invention of multiple,
competing hypotheses, followed by an explanation
of the logical consequences of each using carefully
structured comparative data. It involves the
accumulation of multiple lines of mutually
reinforcing evidence that build a line of credible
argument. Falsification, confirmation, deduction,
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Table 2. The number of discontinuities detected in six data sets by hierarchical cluster analysis (HCA),
Bayesian classification and regression tree (BCART), classification and regression tree (CART), and gap
rarity index (GRI).

 

Data set METHOD

HCA BCART CART GRI

Boreal forest birds (n =
101)

8 8 7 8

South Carolina
manufacturing firms
SIC 226 (n = 63)

6 6 6 8

Southwestern U.S.
cities 1890 (n = 48)

3 4 4 4

Boreal forest mammals
(n = 36)

5 5 5 4

Everglades mammals
(n = 35)

5 5 6 5

Mediterranean mammals
(n = 31)

4 4 5 4

and induction are all employed to evaluate empirical
evidence obtained by all manner of observations and
tests for the purpose of sorting between hypotheses.
Early stages of adaptive inference seek to minimize
Type II error. Only later, as competing hypotheses
have been sifted, empirical and experimental
approaches seek to minimize Type I error. Adaptive
inference is likely to facilitate methodological
progress and understanding of the mechanisms
responsible for the observed dynamics and
structures in complex systems. Understanding the
dynamics and structure of complex systems, such
as ecosystems and economies, is a process.
Identifying scales of structure in complex systems
by identifying where discontinuities occur is an
important step in that process.

Responses to this article can be read online at:
http://www.ecologyandsociety.org/vol12/iss1/art26/responses/
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Fig. 4. Discontinuities detected by HCA, BCART, CART, and GRI approaches for boreal forest birds
(top left), firm size SIC 226 (top right), SW cities 1890 (middle left), boreal forest mammals (middle
right), Everglades mammals (bottom left), and Mediterranean mammals (bottom right). Dots at bottom
represent data used in each analysis, dashed lines depict gaps (discontinuities).
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