DNASION OF THE HUMANIIIES AND SOCIAL SEIENEES CAIFORNIA INSTIIUIE OF TECHNOLOGY

PASADENA. CALIFORNIA 91125

ELECTIONS WITH LIMITED INFORMATION:
A MULTIDIMENSIONAL MODEL

Richard D. McKelvey
California Institute of Technology

Peter C. Ordeshook
University of Texas at Austin

Prepared for presentation at the 1983 Annual Meetings of the American Political Science Association, The Palmer House, Chicago, September 1-4, 1983. We acknowledge support of NSF grant /iSES 8208184.

SOCIAL SCIENCE WORKING PAPER 529

ELECTIONS WITH LIMITED INFORMATION:

A MULTIDIMENSIONAL MODEL

Richard D. McKelvey

California Institute of Technology

Peter C. Ordeshook

University of Texas at Austin

Abstract

We develop a game theoretic model of 2 candidate competition over a multidimensional policy space, where the participants have incomplete information about the preferences and strategy choices of other participants. The players consist of the voters and the candidates. Voters are partitioned into two classes, depending on the information they observe. Informed voters observe candidate strategy choices while uninformed voters do not. A11 players (voters and candidates alike) observe contemporaneous poll data broken down by various subgroups of the population.

The main results of the paper give conditions on the number and distribution of the informed and uninformed voters which are sufficient to guarantee that any equilibrium (or voter equilibrium) extracts a 11 information.

Introduction

We develop a game theoretic model of 2 candidate competition over a multidimensional policy space, where the participants have incomplete information about the preferences and strategy choices of other participants. The players consist of the voters and the candidates. Voters are partitioned into two classes, depending on the information they observe. Informed voters observe candidate strategy choices while uninformed voters do not. A11 players, voters and candidates alike, observe contemporaneous poll data broken down by various subgroups of the population. Also, a 11 players have some basic knowledge about the structure of the electorate.

Each participant has beliefs about the parameters he does not observe. I.e. uninformed voters have beliefs abont the candidate strategy choices, and candidates have beliefs about which voters are "informed." They then each choose a strategy conditional on their beliefs. A voter strategy is a choice of a candidate to vote for, and a candidate strategy is a choice of a policy position in the multidimensional policy space.

We define a set of strategies together with a set of beliefs to be in equilibrium if it satisfies two conditions: First, all participants are maximizing their payoff subject to their beliefs. Second, all participants must have beliefs which are consistent with the information they observe. A situation in which the voters are in equilibrium, but the candidates are not is referred to as a voter equilibrium. An equilibrium (or voter equilibrium) is said to extract
a 11 information if al 11 players behave as if they have complete information.

The main results of the paper give conditions on the number end distribution of the informed and uninformed voters which are sufficient to guarantee that any equilibrium (or voter equilibrium) extracts allinformation.

This paper is related to but makes somewhat different
assumptions than a previous paper of ours [1982] which develops a similar model in one dimension. In our previous paper, we assumed that voters observed both endorsement information as well as poll data. Here the voter only sees poll data, but the poll data must be broken down by subgroups in order to provide the voter with enough information to draw inferences about candidate positions. Also, our previous paper did not requite the voters or candidates to have as much structural information about the electorate as we require here. Here, we require the voters to have some knowledge of the distribution of preferences in each subgroup of the population. An assumption of this sort seems to be necessary for the multidimensional extension.

2. The Foral Derolopment

We are given a set, N, of yoters, a set $X \leq \mathbf{R}^{\text {e }}$ of
alternativeg, and for each voter, a e N. atility fraction, $\mathrm{o}_{\mathrm{a}}: \mathrm{X} \rightarrow \boldsymbol{I}$ representing voter $a^{\prime} \mathrm{s}$ preferences. Wo assame that the population, N, of voters can be partitioned into two sobgroups, I and ס, representing the informed and gnipforged voters, respectively. We further assume that t subpopulations, $N_{1}, N_{2} \ldots \ldots, N_{t}$ of N oan be idontified. These can be thought of as ethnic, or other socioeconomic subdivisions of N. Note that the N_{i} need not necesserily be a partition of N, nor need any two N_{i} necossarily be disjoint. We let p be measure on the messurable subsets, N of N, and, for osch f, let μ_{1} be the probebility messure induced on the measorable subsets of N, conditional on betag in N_{i}. Thas for any $C \in N, \mu_{i}(C)$
$=\mu\left(N_{i} \cap C\right) / \mu\left(N_{i}\right)$.
In addition to tho voters, we assome there are two capdidates, labeled 1 and 2 , and we let $K=(1,2)$ be the set of candidates. If EE is a candidate, we use the notation $\overline{\mathrm{E}}$ to represent the other candidate, $1.0 .,\{\overline{\mathbf{k}}\}=\mathbf{I}-\{\mathbf{k}\}$.

Wo now define a game, in which the players are the voters, N, together with the oandidates, K . The stratecy apace! for a voter $a \varepsilon N$ and candidate $k \varepsilon$ are denoted B_{a} and S_{k} respectivoly. The stretegy spaces are defined as follows

Voter Strategy Space: $\mathbf{B}_{\mathbf{a}}=\mathbf{G}\{0]$.

Candidate Strategy Space: $\mathbf{S}_{\mathbf{k}}=\mathbf{X}$.
We let B denote the set of functions from N into $\mathbb{K}\{0\}$, and S denote the set of functions fron X to X. Elements of B are denoted b, with $b(a) \& B_{a}$ representing the choice of strategy by voter a. Elements of S are denoted s, with $(k) ~ S_{k}$ representing the choice of strategy. Alteratively, we also wite b_{a} for $b(a)$ and s_{k} for (k). We call b_{α} voter a^{\prime} b ballot, and s_{k} candidate k 'solicy position. We let $\underline{\Omega}=\mathbf{S} \times \underline{B}$, and an olement $\omega=(s, b)$ e represente a choice of stretegies by all players.

Given a choice of strategies, any $\omega(s, b)$ by ell players, we can compute poll potcone and the ontcome fynction, For onch $1 \leq i \leq t$, and $k I U(0)$, we define

$$
\begin{align*}
& V_{k}(s, b)=\left\{a \operatorname{Na} \mid b_{a}=k\right\} \tag{2.2}\\
& v_{k}(s, b)=\mu\left(V_{k}(s, b)\right) \tag{2.3}
\end{align*}
$$

and

$$
\begin{equation*}
p_{i k}(s, b)=\mu_{i}\left(V_{k}(s, b)\right) \tag{2.4}
\end{equation*}
$$

So $V_{k}(s, b)$ represente the get of voters voting for candidate k (or abstaining if $k=0$), $\nabla_{k}(s, b)$ is the total vote for candidate k and $P_{i k}(s, b)$ represents the poll result in group $i(1.0$. , the proportion of group i voting for cardidate k). For obch i, ve use the notetion

$$
\begin{equation*}
v(s, b)=\left(v_{0}(s, b), v_{1}(s, b), v_{2}(s, b)\right) \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{i}(s, b)=\left(p_{i 0}(s, b), p_{i 1}(s, b), p_{i 2}(s, b)\right) \tag{2.6}
\end{equation*}
$$

We also write

$$
\begin{equation*}
p(s, b)=\left(p_{1}(s, b), \ldots, p_{t}(s, b)\right) \tag{2.7}
\end{equation*}
$$

We let $\Delta=\left\{q=\left(q_{0}, q_{1}, q_{2}\right) \in R^{3} \mid \sum_{i=0}^{2} q_{i}=1, q_{i} \geq 0\right.$ all i) to be the
 $p(s, b) \varepsilon \Delta^{t}$. We let $r=\left(r_{1}, \ldots, r_{t}\right)$ e E^{t}, with $r_{i}>0$ for alli. (For example, we conld define $r_{i} \in \mu\left(N_{i}\right)$ for each $i_{\text {. }}$) Thon for any $p^{1}, p^{2} \& \Delta$, we define $\left\|p^{1}-p^{2}\right\|_{r}=\left.\sum_{i=1}^{t} r_{i}\right|_{p_{i}} ^{1}-p_{i}^{2} \mid$, where $\left|p_{i}^{1}-p_{1}^{2}\right|=\sum_{k=1}\left|p_{i k}^{1}-p_{i k}^{2}\right|$. We next dofine the ontcone function by

1 if $\nabla_{1}(s, b)>v_{2}(s, b)$
$k(s, b)=2$ if $\left.v_{2}(s, b)\right) v_{1}(s, b)$
0 otherwise.

So $k(s, b)$ represents the winning candidate, given the choico of strategies (s,b) by all players.

With these definitions, wo can now define the papoff function to the game. We write $M_{\alpha}(s, b)$ and $X_{k}(s, b)$ for the payoff function for a voter a $e \mathrm{~N}$ and a candidate, E (F , and they are defined by; for $11 a \varepsilon \mathrm{~N}$,

$$
\begin{equation*}
u_{a}(s, b)=v_{a}\left(s_{k}(s, b)\right), \tag{2.10}
\end{equation*}
$$

Where we define $n_{\alpha}\left(s_{0}\right)=\frac{1}{2} \dot{a}_{\alpha}\left(s_{1}\right)+\frac{1}{2 q_{\alpha}}\left(s_{2}\right)$. For $k \in$,

$$
\begin{array}{r}
1 \text { if } k(s, b)=k \\
y_{x}(s, b)=-1 \text { if } k(s, b)=\bar{k} \tag{2.11}
\end{array}
$$

In eddition to the above more or less standard structure, we assume that each actor has beliefs about cortain parameters of the game. Tho belief space for voter a is donoted $\tilde{\mathbf{S}}^{\mathbf{a}}$, and that for candidate k is denoted c^{k}. We assume the belief spaces are given by:

$$
\begin{equation*}
\text { Voter Belief Space: } \tilde{\mathbf{s}}^{\mathbf{a}}=\tilde{\mathbf{x}}^{2} \tag{2.12}
\end{equation*}
$$

$$
\text { Candidate Belief Space: } \quad C^{\mathbf{k}}=\mathbb{N}
$$

Bere \tilde{X}^{2} is the set of probability measures over $\boldsymbol{X}^{2}=X X X$. We let $\underline{\tilde{S}}$ denote the set of functions from N into $\overrightarrow{X^{2}}$ and C the set of functions
 represent $\boldsymbol{z}(a)$, for $a \in N$. Similarly, olements of C are donoted C. with C^{k} repreqenting $C(k)$, for $k N$, So $\tilde{c}^{a} \tilde{X}^{2}$, and $c^{k} e N$. Wo can think of $\tilde{c}^{\mathbf{a}}$ as boing a probability measure representing voter $\alpha^{\prime} s$ belief of the probable location of the candidate positions,
$=\left(s_{1}, s_{2}\right)$. Wo use the notation aup $\left(\tilde{s}^{\alpha}\right)$ to represent the support
set of the measire \tilde{s}^{a}. On the other hand, C^{k} representa candidate k 's belief about the subset $c^{k} I N$ of voters vho are "ooncerned" -1.0. ,

Who know the candidate positions. We let $\boldsymbol{\Lambda}=\underline{\mathrm{C}} \times \underline{\tilde{s}}$.
Before we define the notion of equilibrium used here, wo

$$
\hat{V}_{k}(s)=\left\{a \in N\left|n_{a}\left(s_{k}\right)\right\rangle u_{a}(s-)\right\}
$$

and

$$
\begin{equation*}
\hat{V}_{0}(s)=\left\{a \in N \left\lvert\, n_{a}\left(s_{k}\right)=u_{a}\left(s-\frac{1}{k}\right)\right.\right\} \tag{2.13}
\end{equation*}
$$

So $\hat{\mathbf{v}}_{\mathbf{k}}(s)$ is the ect of voters who prefer the policy position of candidate k over that of $\overline{\mathbf{k}}$, while $\hat{\mathbf{V}}_{0}(s)$ is the set of votors who are indifferent between the two candidates.

Nert, given any weasurable $C \mathbb{N}$, we define,
for allketu\{0\},

and
$\hat{p}_{i k}(s \mid C)=p_{i k}(s, \hat{b}(s \mid C))=\mu_{\mu_{i}\left(\hat{V}_{k}(s) \cap C\right) \text { if } k \in \mathbb{V}}^{\left.\hat{V}_{k}(s) \cap C\right)+\mu_{i}(N-C) \text { if } k=0}$
We write $\left.\hat{\mathbf{p}}_{1}(s \mid C)={\hat{p_{10}}}_{10}(s \mid C), \hat{p}_{11}(s \mid C), \hat{p}_{12}(s \mid C)\right)$, and $\hat{p}(s \mid C)=\left(\hat{p}_{1}(s \mid C), \ldots, \hat{p}_{t}(s \mid C)\right)$. Given any set $C E N, \hat{b}_{a}(s \mid C)$ is the
ballot that vould result if all voters in C voted correctiy, and all those in N - C ebstained. Wo call the set C the set of concerned rotors. So, $\hat{p}_{i}(s \mid c)$ is the prodicted poll in group i when the voters behave according to $\hat{b}(\mathrm{~s} \mid \mathrm{C})$.

Now, for any $\mathrm{s}, \mathrm{s}^{\prime}$: S we define an equivalence relation $\underset{\sim}{\sim}$ on S as follows:

$$
\begin{equation*}
z \approx s^{\prime} \Leftrightarrow \hat{V}_{k}(s)=\hat{V}_{k}\left(s^{\prime}\right) \text { for allkgEU\{0\}. } \tag{2.16}
\end{equation*}
$$

 1et $\underline{S}^{0} \mathcal{E} \underline{S}$ be subspace of S thich contains exactiy one representative of each equivalence class. And finally, for any $p \& \Delta^{t}$, we define $\underline{S}^{0}(p) \leq \underline{S}^{0}$ by

$$
\begin{equation*}
\underline{S}^{0}(p)=\arg \min | | p-\hat{p}\left(s^{0} \mid N\right) \|_{r} \tag{i,17}
\end{equation*}
$$

So $\underline{S}^{0}(p)$ is the get of ε^{0} s which give the best fit of the uctual to the predicted poll based on s^{0}.

Definition 2.1: An eqgilibxing is a pair (a, $\boldsymbol{\eta}$), where $\omega=(s, b)$ a \underline{q} and $\eta=(C, \dot{s})$ e Λ entisfy

Yoters: For alla E ,

$$
\text { V1: } b_{a}=\operatorname{mg} \max _{b_{a} e B_{\alpha}} E\left[u_{a}\left(z_{b_{a}}\right)\right]
$$

Where the expectation i with respect to $\mathbf{s}^{\text {a }}$,
V2: $\alpha \in I \Rightarrow \operatorname{spp}\left(\tilde{s}^{\alpha}\right)=[s]$,
$a \in U \Rightarrow \operatorname{supp}\left(s^{a}\right) \sim s^{a}$ for soma $s^{a} E S^{0}(p(s, b))$

Condidetog: For allke E ,

$$
\begin{aligned}
& \text { C1: }{ }^{b_{k} \in \arg \max _{s_{k} S_{k}} H_{k}\left(s, \hat{b}\left(s \mid C^{k}\right)\right)} \\
& C 2: c^{k} \varepsilon \arg \min _{C H}\left[\|p(s, b)-\hat{p}(s \mid c)\| \|_{r}\right]
\end{aligned}
$$

The equilibrium conditions require that all players maziaize their expected payoff subject to their beliofs (Conditions V and C1). Further, the beliefs which the players hold most be as consistent as possible with the information they observe (Conditions V2 and C2). We also define apartial equilbrim," or "voter equilibrium," in which the voters are in equilibrim, but the candidates are not. This type of equilibrium is useful in describing what oight oocer if there are orogenous constraints on candidate positions.

Definition 2.2 A yoter equilibring, conditional on $t E$, is pair (b, $\bar{s})$, where b e \underline{B} and $s \vec{S}$ satisfy

$$
\text { V1: } \left.b_{a} e \arg \max _{a} \operatorname{EB} B_{a}\left[{u_{a}}_{b_{a}}\right)\right]
$$

Where the expectation is with respect to o^{a}.

```
V2: a\inI mupp}(\mp@subsup{\tilde{s}}{}{~})={\textrm{a}
```


3. Interpretation

The formulation of the previons ection makes certain implicit assumptions about that information each participant observes, and about vhet each participant knows about the underiying structure of the game. We discoss these assumptions in more detail before proceeding.

The Information Assumptions

Our definition of equilibrium assmes that each participant observes cortain contemporaneous data on the strategy choices of other participants. Candidates and informed voters observe the candidate positions, s, as rell as the poll results, p(s,b). However, uninformed voters do not observe candidate positions. They only observe poll resilts.

In addition to this contemporaneous information abont plager strategies which they directly observe, all ectors are assumed to bave some basic knowledge about the preferences and likely behavior of other participants. This underlying structural information is captared in thidr knowledge of the function $\hat{p}(s \mid C)$, which is a reconstruction of the ifiely voting behevior that wlll resilt when the
candidate positions are givon by s, and tho set of conoerned voters is C. Note, howevor, that the voters noed only know $\hat{p}(s / N)$, while the candidatea have the more particelaristic koviedge of $\hat{p}(s \mid c)$ for any measurable Ce

The information which it assumed of each participant is sumarized in the following table. For the case vhen preforences are In the class of "intermediate preferonces," ve show later that the stractural information which is generated by \hat{p} is equivalent to the players having cortain knowedge about the distribution of voter characteristics in each group N_{i}. This equivalent structural information is given in the last colum of the table (the messure μ_{i} Vill be defined later).

[^0]
Earilibrim Conditions

We next justify each of the fonr Equilibrime conditions. We consider first the voters, then the candidates.

Yotors

For standard Bayesian equilibrina, each voter would try to maximize his expected payoff, given his beliefs abont the strategies of the other pleyers. Thus, applying (2.10), voter a E N should solvo

$$
\begin{equation*}
\max _{b_{a} \varepsilon B_{a}} E\left[u_{a}\left(s_{k}(s, b)^{\prime}\right]\right. \tag{3.1}
\end{equation*}
$$

Where the oxpectation is taken vith respect to a 's bolief of (s,b). However, since the ballot aggregation procedure (i.e., sajority rale) is positively responsive, given any boliffs \tilde{z}^{a} of the candidate positions, voter a has a dominant strategy regardiess of the value of b. Namely, voting for the candidate with the highest expocted otility can never hurt that candidate and night sometimes help. In this analysis, wo assume that voters adopt this dominant strategy. This, we can dispense vith voter beliefs about b, and assume that voter a - 111 choose \mathbf{b}_{a} to

$$
\begin{equation*}
\max _{b_{a} \varepsilon B_{a}} E\left[u_{a}\left(s_{b}\right)\right] \tag{3.2}
\end{equation*}
$$

Where the expectetion is now with respect to tho voter's belief
\tilde{s}^{a} of s . This is oxectly statement (V) of Dofinition 2.1.
Note that by assuming (3.2) directly inetead of (3.1), Fe avold one difficulty for the infinite voter case: If N is infinite, no one voter has any impact on the ontcome, so gay strategy is equally good if we assume (3.1). By assming (3.2) instoad, we insure that even in the infinite voter case, voters will vote for the candiate whose policy position gives them the highest utility.

Our dofindition of equilibrinn requires not only that voters marimize expocted utility (V1) with respect to thoir beliofs, but also that their beliefs be consistent with the information they observe (V2). Here, we mast differontiate between the informed and uninformed voters.

Informed Yoters

Informed voters have perfect information. I.e., givense \mathbf{S}
and $a \operatorname{e}$, for \tilde{s}^{a} to be in equilibrius, $V 2$ mast hold:

$$
\begin{equation*}
\operatorname{spp}\left(s^{\alpha}\right)=\{s\} \tag{3.3}
\end{equation*}
$$

So an informed voter's beliefs of candidate positions mest coincide -ith what the candidates actually decido to do.

Dninformed Yoters

An uninformed voter also has a beliof, F^{a} of .

However, the uninformod voter does not observe the cendidate positions, rather he only observes aggregate data, namely tho poll data $p(s, b)$. Requirement ($V 2$) for the uninformed voter a 0 states that
$\operatorname{supp}\left(\tilde{s}^{a}\right) \sim s^{0}$ for sone s^{0} e $S^{0}(p(s, b))$
where
$\underline{S}^{0}(p(s, b))=\arg \min _{s_{s} S^{0}} \| p(s, b)-\hat{p}\left(s^{0} \mid N\right)| |$

Thus the minformed voter uses the poll data to inform his belief, \tilde{a}^{a}, of candidate positions in such a way as to make his predicted poli ontcome correspond es closely as possible with the observed poll ontcomes. According to (3.4) and (3.5), the uninformed voter nes his structural information of the rest of the olectorate to infer that the poli result which will oocur given a choices s of candidate strategies is $\hat{p}(s \mid N)$. I.e., he assumes that all other voters who are voting are perfectly informed and vote rationally. Using (2.15), we can write, for $k \mathbb{C}\{0\}, 1 \leq i \leq t$,

$$
\begin{equation*}
\hat{p}_{i k}(s \mid N)=\mu_{i}\left(\hat{V}_{k}(s)\right) \tag{3,6}
\end{equation*}
$$

There are several things to note about the above expressions for (V2). First, note that the form of the objective function is consistent with the viev that each voter believes that as fothor
voters are making errors as postible. Second, in light of (3.6), the structural information necessary for the uninformed voter to be able to solve (3.5), is aimply that he know μ_{i} for $1 \leq i \leq t$. Noxt, note that the model used by the uninformed voter for predicting poll ontcomes is quite simple. Namely, given any candidate positions s' S, the voter assumes that the supporting coslitions for candidates k and $\bar{z} E$ are described by the sets of voters who, onder full information, would prefer s_{k} ' or $s_{\underline{z}}{ }^{\prime}$, respectively.

Candidetoa

The candidates will choose policy positions to maximize their expectation of wining the election, subject to the beliefs they have about the voter utility funotions, and hence about the voting behavior of the electorate. These beliefs, sumarized by their beliof, c^{k}, of the "ooncerned olectorate," must be consistent with the information they have about $p(s, b)$. Now for atandard Bayesian equilibrim, candidate $E X$ should choose $s_{k} E X$ to solve

$$
\begin{equation*}
\max _{\mathrm{m}_{k} \in X} E\left[M_{1}(s, b)\right] \tag{3.7}
\end{equation*}
$$

where the expectation is taken over his belief of b and of for
 We require that for any $s \in S$, and boliof $C^{k} \leq N$, candidate k asmes that b is gonerated according to $\hat{b}\left(s \mid C^{k}\right)$. It follows that M_{k} can be written as a function only of s_{k}, z_{k} and C^{k}.

4. Resalts: Yotor Rogilibria

We now consider the existence and properties of equilibria in the model developed in the provions two sections. Specifically, we are concerned with conditions onder which the equilibriom to the nodel corresponds to the behavior which would occur onder full information. In this situation, wo vill say that the equilibrium extracts all avallable information. We consider first only voter equilibria, given fixed positions of the candidates:

Definition 4,1 A voter equilibrium (b, $\bar{z}) ~: ~ E X \tilde{S}$, conditional on $s \in$ is said to extract all ayallable information iff, for all a E, k EX,

$$
\begin{equation*}
a \in \hat{v}_{k}(s) \Rightarrow b_{a}=k \tag{4.1}
\end{equation*}
$$

Thas, a voter equilibriom extracts all available information iff all voters, inforned and uninformod alike, vote for the candidate they rould prefer if they had full information.

Ve start with acouple of simple Lemass characterizing individual voting behavior in any voter equilibrium (indopendent of whether it oxtracts information).

Lemma 4.1 Given fixed candidate strategios $:^{*}$ E S. With $:_{k}^{*} \neq z_{k}^{\circ}$, if
(b, s$)$ e $\underline{\underline{E}} \times \underline{\tilde{\mathrm{s}}}$ is a voter equilibrima, conditional on $*$, and $p^{*}=p\left(s^{*}, b\right)$, Then for $k \in E$,
a) for allae I

$$
a \in \hat{v}_{k}\left(s^{*}\right) \Rightarrow b_{a}=k
$$

b) for allae $0, \mathcal{J} \mathrm{~s}^{\mathrm{a}} \varepsilon \mathrm{s}^{0}\left(\mathrm{p}^{*}\right)$ such thet

$$
a \in \hat{v}_{k}\left(s^{a}\right) \Rightarrow b_{a}=\mathbf{k}
$$

Proof For 011 voters. wo have, from (V) that

$$
\begin{equation*}
b_{a} e \arg \max _{b_{a} e B_{a}} E\left[a_{a}\left(s_{b_{a}}\right)\right] \tag{4.2}
\end{equation*}
$$

where the expoctation is with respect to $\mathbf{s i n}^{\circ}$. But by (V2), for
a ε I, supp $\left(\tilde{s}^{a}\right)=\left[s^{*}\right]$. Honce, we aust have

$$
\begin{equation*}
b_{a}=\arg \max _{b_{a} \in B_{a}} u_{a}\left(s_{b_{a}^{*}}^{*}\right) \tag{4.3}
\end{equation*}
$$

So, $a \in \hat{V}_{k}\left(s^{*}\right) \Rightarrow E_{a}\left(s_{k}^{*}\right)>a_{a}\left(s_{k}^{*}\right) \Rightarrow b_{a}=k$, which proves part (a).
For $a \in U$, on the other hand, whave that $\operatorname{supp}\left(\tilde{s}^{a}\right) \approx a^{a}$ for some
s^{a} e $\underline{S}^{0}\left(p^{*}\right)$. But then, for all $s \mathrm{~s}$ supp ($\left.\mathrm{s}^{\mathrm{a}}\right)$, wo have $\mathrm{z} \mathrm{z}^{a}$, or
$\hat{V}_{k}(s)=\hat{V}_{k}\left(s^{\alpha}\right)$. Hence, $\left.\tilde{u}_{a}\left(s_{k}^{a}\right)\right) n_{a}\left(s_{k}^{a}\right) \Leftrightarrow a \in \hat{V}_{k}\left(s^{a}\right)$

$$
\begin{equation*}
\arg \max _{b_{a} B_{a}} E\left[n_{a}\left(s_{b_{a}}\right)\right]=\arg \max _{b_{a} B_{a}}\left[n_{a}\left(s_{b_{a}}^{a}\right)\right] \tag{4.4}
\end{equation*}
$$

and hence $a \in \hat{V}_{k}\left(s^{a}\right) \Rightarrow n_{\alpha}\left(s_{k}^{a}\right) \geqslant n_{a}\left(s_{k}^{a} \Rightarrow b_{a}=k\right.$.
Q.E.D.

So, in short, in equilibrium, the informed voters will always vote correctly, while the uninformed voters will ench vote according to an idiosyncratic, normalized, nonstochastic representative of thoir private beliofs. Each of these idiosyncratic private boliefs, of course, mast be as consistent as possible with the observed poll. Then $\underline{S}^{0}\left(p^{*}\right)$ is single valued, then it follows that all uninformed voters will vote according to the game (although possibly incorfect) belief s^{a} of ${ }^{*}$.

Next, for any messureable $E \mathrm{E}$, wo dofine the conditionel probability measure H_{i}^{E} by

$$
\begin{equation*}
\mu_{i}^{E_{1}}(C)=\frac{\mu_{i}(E \cap C)}{\mu_{i}(E)}=\frac{\mu\left(N_{i} \cap E \cap C\right)}{\mu\left(N_{i} \cap E\right)} \tag{4.5}
\end{equation*}
$$

Setting $t_{i}^{I}=\mu_{i}(I)$ and $t_{i}^{U}=\mu_{i}(D)$, it follows that (aince I and U partition N) for all 1 〔i St

$$
\begin{equation*}
\mu_{i}=t_{i}^{I} \mu_{i}^{I}+t_{i}^{D_{i}} \mu_{i}^{I} \tag{4.6}
\end{equation*}
$$

where $t_{i}^{I}+t_{i}^{U}=1$. (In other words, for all weasureable $C \in X, \mu_{i}(C)$

$$
\begin{equation*}
\hat{\mathbf{q}}_{i k}(s)=\mu_{i}^{E}\left(\hat{V}_{k}(s)\right) \tag{4.7}
\end{equation*}
$$

$=\left(\hat{q}_{1}^{E}(s), \ldots, \hat{q}_{t}^{E}(s)\right)$. We also write $\hat{q}_{i k}(s)=\hat{q}_{i k}^{N}(s), \hat{q}_{i j}(s)=\hat{q}_{i}^{N}(s)$ and

$$
\begin{equation*}
\hat{q}(s)=\hat{q}^{N}(s) \tag{4.8}
\end{equation*}
$$

Clearly, Fith the above notation, wo heve

$$
\begin{equation*}
\hat{q}(s)=\hat{p}(s \mid N) \tag{4,9}
\end{equation*}
$$

Given any fired candidate position s^{*} \& we can define a correspondence, $T: \Delta^{t} \rightarrow \Delta^{t}$ by setting

$$
\begin{aligned}
T(p)= & C o\left[p \cdot \Delta^{t} \mid \text { for some } a^{\alpha}=S^{0}(p), \dot{p}_{i}^{\prime}=t_{1}^{I} q_{i}^{A}\left(s^{*}\right)\right. \\
& +t_{i}^{\left.\sigma_{i}^{N} q_{i}\left(s^{a}\right) \text { for all } 1 S i \leq t\right] .}
\end{aligned}
$$

So $T(p)$ is the set of polls that could result if all voters vote optimally according to their boliofs, generated by c , and their beliefs are consistent with the information p. (see Leams 4.1).

$(b, \tilde{s}) \varepsilon \underline{B} \times \underline{\underline{S}}$ is voter equilibrium, conditional on ${ }^{*}$, and $p^{*}=p\left(s^{*}, b\right)$, then we nust have $p^{*}=T\left(p^{*}\right)$.

Proof: Follows imediately from Lemm 4.1 together with the definition (4.10).
Q.E.D.
I. ©., for any equilibrium $(b, \tilde{b}), p=p\left(s^{*}, b\right)$ must bo a fixed point for the correspondence, T. The correspondence T, oan also be thonght of es dynamic describing the convergence of the model to equilbrinm. This will be elaborated on later.

Nert, wo define notion of consistency of poll ontcomes:

Definition $4,2 \mathrm{~A}$ poll p s A^{t} is said to be consietent fer $\mathrm{C} I \mathrm{~N}$ if \boldsymbol{J}
s 8 Sach that

$$
\begin{equation*}
p=\mathbf{q}^{\mathbf{q}}(x) \tag{4.11}
\end{equation*}
$$

If p is consistent for N, we say it is consistent

Thus, the poll is consistent for C if the poll rosults restricted to C could have been generated by some pair of candidate positions with all voters in C voting as if they had complete Information. For all of our results, ve need an assumption on consistent polls which requires that cach consistent poll be generated by anique $s \in \mathbf{S}^{0}$.

Assumption 4.1 If p e Δ^{t} is consistent for C, where C is either N, I,

Our next Lemma proves the oxistence of equilibria that extract $a 11$ information and shows that if the poll resulting from a voter equilibrium is consistent, then the equilibrium must extract all available information. Thus, the only equilibria of the model occur either when all voters vote corroctly or when the resulting poll is Inconsistent.
 there oxists $\begin{aligned} & \text { voter equilibrim that extracts ell information. }\end{aligned}$ Further, under Assumption 4.1, any voter equilibrium (b, s) besed on \boldsymbol{c}^{*} for which $p\left(b, b^{*}\right)$ is consistont extracts ali information.

Proof: For existance, dofine (b, \tilde{s}) by, for a $\mathrm{N}, \mathrm{y} \in \mathrm{X}(0)$,

$$
\begin{align*}
& b_{a}=k \text { if a } \varepsilon \hat{V}_{k}(s) \tag{4.12}\\
& \operatorname{supp}\left(\hat{s}^{a}\right)=\left\{s^{*}\right\} \tag{4.13}
\end{align*}
$$

From (2.4), $p_{i k}\left(s^{*}, b\right)=\mu_{i}\left(\hat{V}_{k}\left(s^{*}\right)\right)=\hat{q}_{i k}(s)$. so $p\left(s^{*}, b\right)$ is consistent. But then from (4,9), it follows that $\hat{p}_{1}\left({ }^{*} \mid N\right)=p_{i}\left(s^{*}, b\right)$ for all 1 . So pick s^{0} e \underline{S}^{0} vith $s^{0} \approx s^{\bullet}$. Then $s^{0} \in \underline{S}^{0}\left(p\left(s^{\bullet}, b\right)\right)$. Hence (V2) is

 information.

Now let (b, \tilde{s}) be voter equilibrim besed on ${ }^{*}$, and vrite

clearly $s^{\prime} \mathbf{S}^{0}(p)$. Further, by assmption 4.1, it follows that any other element of $S^{0}(p)$ mat have $\sim s^{\prime}$. Honce $\mathbb{S}^{0}(p)$ is single
 Lema 4.2, we mest have p e $T(p)$. But since $S^{0}(p)$ is single valued, this meane that

$$
\begin{align*}
& p_{i}=p_{i}\left(s^{\bullet}, b\right)=t_{i}^{I} \mathcal{q}_{i}\left(s^{*}\right)+t_{i}^{D_{i}^{\prime} q_{i}^{\prime}}\left(s^{\prime}\right) \\
& \left.=\left[t_{i}^{I} q_{i} I^{*}\right)-t_{i}^{I q_{i}}\left(s^{\circ}\right)\right] \\
& +\left[t_{i}^{I} q_{i}^{I}\left(s^{\prime}\right)+t_{i}^{U_{1}^{\prime} q_{i}^{\prime}}\left(s^{\prime}\right)\right] \tag{4.14}
\end{align*}
$$

But, since p is consistent, it follows that $p=\hat{q}\left(s^{\prime}\right)$, or equivalently, for all $1 \leq i \leq t$, that $p_{i}=p_{i}\left(s^{*}, b\right)=\hat{q}_{i}\left(s^{*}\right)$. Therefore, equation (4.14) implies that for all $1 \leq 1 \leq t$, $q_{i}^{I}\left(s^{*}\right)=q_{i}^{I}\left(s^{\prime}\right)$. Now, by Assumption 4.1, we have $s^{*} \approx s^{\prime}$, so $\hat{V}_{k}\left(s^{*}\right)=\hat{\mathbf{V}}_{k}\left(s^{\prime}\right)$ for allkexU\{0\}. Hence, for a ε, we have $b_{a}=k$ if $a \in \hat{V}_{k}\left(s^{*}\right)$, and the resint is proven.
Q.E.D.

The above lema does not rule ont the possibility of equilibria which do not extract all information, since it is quite possible for inconsistent polls to be in eqnilibrim. Wo introduce a further assumption on the distribation of the voters.

Assumption 4.2 (Idontical Distributions) For elles,

$$
\hat{q}^{A}(s)=\hat{q}^{\mathbf{U}}(s)=\hat{q}(s)
$$

We prove that under Assmption Al, if there are nore informed than uninformed voters, there is always an eqnilibrime.

Thoorem_ If Assumptions 4.1 and 4.2 are mot and $\mu_{i}(\delta)<1 / 2$ for all
 if ($b, \stackrel{s}{\prime}$) is voter equilibrim, it extracts all information.

Proof: Lot (b, E) be a voter equilibriw, Fith corresponding poll $p\left(s^{*}, b\right)=p=\left(p_{1}, \ldots, p_{t}\right)$, Since (b, \vec{s}) is an equilibriven we mut have p e $T(p)$. So we can write, for $1 \leq i \leq t$

$$
\begin{aligned}
& p_{i}=t_{i}^{I} \hat{q}_{i}\left(s^{*}\right)+t_{i}^{U} \sum_{j=1}^{t} \hat{J}_{j}^{*} \hat{q}_{i}\left(s^{j}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left\|p-\hat{q}\left(s^{*}\right)\right\|_{r}=\sum_{i=1}^{t} r_{i} l_{p_{i}}-\hat{q}_{i}\left(s^{*}\right) \| . \\
& \left.=\sum_{i=1}^{t} r_{i} \mid t_{i}^{I \hat{q}_{i}}\left(s^{*}\right)+t_{i}^{U_{i}} \sum_{j=1}^{t} \nabla_{j} \hat{q}_{i}\left(s^{j}\right)\right]-\hat{q}_{i}\left(s^{*}\right) \mid \\
& =\sum_{i=1}^{t} x_{i} t_{i}^{J_{i}}\left[t \sum_{j=1}^{t} \Pi_{j} \hat{q}_{i}\left(z^{j}\right)\right]-\hat{q}_{i}\left(v^{*}\right) \mid
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\sum_{i=1}^{t} r_{i} t_{i}^{U} \|\left[\sum_{j=1}^{t} w_{j}\left(\hat{q}_{i}\left(s^{j}\right)-p_{i}\right)\right]+\left(p_{i}-\hat{q}_{i}\left(s^{*}\right)\right)\right] \\
& \left.S \sum_{i=1}^{t} r_{i} t i d \sum_{j=1}^{t} w_{j}\left|\hat{q}_{i}\left(s^{j}\right)-p_{i}\right|+\left|p_{i}-\hat{q}_{i}\left(c^{\oplus}\right)\right|\right] \\
& =\left[\left.\sum_{j=1}^{t} w_{j} \sum_{i=1}^{t} r_{i} t_{i}^{0}\right|_{\mathbf{q}_{i}}\left(s^{j}\right)-p_{i} \mid\right]+\left[\left.\sum_{i=1}^{t} r_{i} t_{i}^{U}\right|_{p_{i}}-\hat{q}_{i}\left(s^{\bullet}\right) \mid\right] \\
& \leq\left[\sum_{j=1}^{t} w_{j}^{t} \sum_{i=1}^{t} r_{i} \mid \hat{q}_{i}\left(s^{j}\right)-p_{i} \|\right]+\left\{t \sum_{i=1}^{t} r_{i} f p_{i}-\hat{q}_{i}\left(s^{*}\right) \|\right] \\
& =\left[\sum_{j=1}^{t} w_{j} t^{*}\left\|\hat{q}\left(s^{j}\right)-p\right\|\right]+\left[t^{*}\| \|_{p}-\hat{q}\left(s^{*}\right) \|\right] \\
& S\left[t^{*} \sum_{j=1}^{t}\left\|_{j}^{A}\left(s^{*}\right)-p\right\|\right]+\left[t \mid\left\|_{p}-\hat{q}\left(s^{*}\right)\right\|\right] \\
& =2 t^{*}\left\|P-\hat{q}\left(s^{*}\right)\right\|<\| \|_{p}-\hat{A}\left(s^{*}\right) \|
\end{aligned}
$$

Hence, any fixed point p to $T(p)$ must have $\left\|\left\|_{p}-\hat{q}(*)\right\|=0\right.$ or $p=\hat{q}\left(s^{*}\right)$. But, then p is consistent, so it follows from Lemma 4.3 that the voter equilibrium ($b, \tilde{8}$) extracts all information.
Q.F.D.

5. Examplee

Wo consider now a general class of proferences to which the above development applies, namely the class of so callod "intermediate preferences." See 0.B., Grandmont [] and Kramer []. Let X be a positive integer and let $f_{0}: X \rightarrow$ and $f=\left(f_{1}, \ldots, f_{L}\right): X \rightarrow R^{L}$ be continuous functions on X. Then for ony $\beta=\left(\beta_{1}, \ldots, \beta_{L}\right) \& \mathbb{R}^{L}$, define

$$
\begin{equation*}
\nabla_{\beta}(x)=f_{0}(x)+\beta^{\prime} f(x)=f_{0}(x)+\sum_{i=1}^{L} \beta_{i} f_{i}(x) \tag{5.1}
\end{equation*}
$$

Then the class of intermediate proferences based on f_{0}, f, witten $U\left(f_{0}, f\right)$ ia dofined as

$$
\begin{equation*}
U\left(f_{0}, f\right)=\left\{v_{\beta}=f_{0}+\beta^{\prime} f \mid \beta \varepsilon \mathcal{R}^{L}\right\} \tag{5.2}
\end{equation*}
$$

It is ensily verified that many standard classos of preferences are representeble as classos of intermediate preferences. For onample, the space of Cobb Donglas utility functions is generated by setting $f_{0}(x)=0$ and $f_{i}(x)=\ln x_{i}$. The space of Euclidian, or type I, proferences $i f$ gererated by setting $L=m, f_{0}(x)=-\frac{1}{2} x$, and $f_{i}(x)=x_{i}$. The space of quadratic utility functions where osch voter has an idiosyncratic salience matrix and ideal point is generated by setting $L=(n+1)=f_{0}(x)=0, f_{i}(x)=x_{i}$ for $1 \leq 1 \leq m$, and $f_{m^{\prime} j_{i j}}(x)=x_{i} x_{j}$ for $1 \leq i \leq m, 1 \leq j \leq$ m.

For our parposes, we noed to idontify voters not only by thoir otility fanctions, but also by their information clasz and voter type. So we let $N=\{0,1\}^{t+1} \times \mathbf{R}^{L}$, where L is a positive integer. So oach voter $a \in N$ is described by vector of attributes $a=(\gamma, \beta)$, vhere $\gamma \in\{0,1)^{t+1}$ and β e \mathbb{R}^{K}. The vector $\gamma=\left(\gamma_{0}, \gamma_{1}, \ldots, \gamma_{t}\right)$ describos the voter type (i,e.. his inforation class and the subgroups to thich he belongs). Wo dofine $I=\left\{a=\left.(\gamma, \beta) \in N\right|_{\gamma_{0}}=1\right), D=\left(\left.\alpha \in N\right|_{\gamma_{0}}=0\right\}$ and $N_{i}=\left[\alpha \in N \mid \gamma_{1}=1\right]$. The vector $\beta=\left(\beta_{1}, \ldots, \beta_{L}\right)$ gives the parameters of the voter utility function. Fo let $f_{0}: I \rightarrow$ and $f: X \rightarrow R^{L}$ be defined as above. Then for ouch $a=(\gamma, \beta): N$, ve

$$
\begin{equation*}
u_{a}(x)=f_{0}(x)+\beta \cdot f(x)=f_{0}(x)+\sum_{=1}^{L} \beta_{1} f_{i}(x) \tag{5.3}
\end{equation*}
$$

Clearly, $\left.a_{a} \in \operatorname{D(f} f_{0}, f\right)$ for all a \in.
Now, for any \& S, whave that, for $k \in \mathbb{E}$,
$\hat{V}_{k}(s)=\left(\alpha \in N\left|n_{a}\left(s_{k}\right)\right\rangle n_{\alpha}\left(s_{k}\right)\right\}=\left\{\alpha e N\left|f_{0}\left(s_{k}\right)+\beta^{\prime} f\left(s_{k}\right)\right\rangle f_{0}\left(s_{k}\right)+\beta^{\prime} f\left(s_{k}\right)\right.$
$\left.=\left\{\alpha \varepsilon N \mid \beta^{\prime}\left(f\left(s_{k}\right)-f\left(s_{k}\right)\right)\right) f_{0}\left(s_{k}\right)-f_{0}\left(s_{k}\right)\right\}$
$\left.=\left\{a \varepsilon N \mid \beta \cdot h_{E}(s)\right) c_{k}(s)\right\}$
where

$$
\begin{align*}
& h_{k}(s)=f\left(s_{k}\right)-f\left(s_{k}\right): R^{L} \tag{3.5}\\
& c_{k}(s)=f_{0}\left(s_{k}\right)-f_{0}\left(s_{k}\right) e \text { R }
\end{align*}
$$

So $\hat{\mathbf{V}}_{k}(\mathrm{~s})$ is simply the set of voters in N who's parametors \boldsymbol{B} ife in a half space in \boldsymbol{m}^{2} defined by the vector $h_{k}(b)$ and $c_{k}(s)$. A poll $p \in \Delta^{t}$ is consistent for $E[N$ iff $\mathcal{E} \mathrm{s}$ S such that for all $1 \leq i \leq t a n d \in \mathbb{C}(0)$.

$$
\begin{equation*}
p_{1 k}={\hat{q_{1 k}}}_{\mathbf{q}_{1 k}}(s)=\mu_{i}^{E}\left(\hat{V}_{k}(s)\right) \tag{5.6}
\end{equation*}
$$

Now, for Assumption 4.1 to be wet, for any s, s' (With

$$
\begin{equation*}
\hat{q}_{\mathbf{q}}(s)=\hat{A}_{\mathbf{q}}\left(s^{\prime}\right) \Rightarrow \hat{V}_{k}(s)=V_{k}\left(s^{\prime}\right) \tag{5.7}
\end{equation*}
$$

 $s, s^{\prime} \in S, E \in \mathbb{C}(0), E \in\{1,0, N\}$,

$$
\begin{equation*}
\mu_{i}^{E}\left(\hat{V}_{k}(s)\right)=\mu_{i}^{R}\left(\hat{V}_{k}(s)\right) \text { for } 1 \leq i \leq t \Rightarrow \hat{V}_{k}(s)=\hat{V}_{k}\left(s^{\prime}\right) \tag{5.8}
\end{equation*}
$$

We conjecture that a sufficient condition for (5.8) to be gonerically gatisfied (with rospect to an appropriate topology on the set of possible measures μ on N) is thet $t \geqslant+1$. I.e. thore muet be more sources of information then thore are freo paraneters in the class of utility functions. The intuition bohind this conjecture is 111ustrated in Figures 1 and 2 for the caso vhen $L=2$. Here the marginal density functions of the μ_{i}^{E} over the parameter space are assomed to be oontinuous density functions with support equal to $\mathbf{R}^{\mathbf{2}}$. The figures give contours of the merginal density fanctions for the μ_{i}^{E} over the parameter space, \mathbf{R}^{2}. If $t=L$, thon wo note that any consistont poll can be generated by two different voting conitions. However, if mother group is addod, as in figuro 3, then as long as the density function for the third gromp is not "colinear" with that of the first two, thon the additional information provided by the poll in the third groop identifies the correct voting coalition, so that Assumption 1 is satisfied. A similar argument seems to hold for larger dimensions as vell. With an appropriate topology on the set μ of allowable measures on N, any measure will bo arbitrarily close to one for which μ_{1}^{E} is continuous with support equal to \mathbf{R}^{L}, end for vhich the μ_{i}^{E} are not "colinoar." The ebove ergument is obviously very houristic, and wo Ieave it for futuro research to stody the validity

Two consistent candidate
positions for the poll
$\mathrm{p}=((0, .8, .2),(0, .3, .7))$

FIGURE 2
With three groups, candidate strategy pair s^{\prime} is no longer consistent for the poll $p=((0, .8, .2),(0, .3, .7),(0, .01, .99))$
of this conjecture in more dotail. In any case it shonld be clear thet with t cofficiently large, and the μ_{i} continnous Fith support equal to R^{L} and sufficiently disporsed, Astumption 1 will be met.

To illustrate some of the idens which have been developed
above, wo present an example. We let $X=\mathbf{n}^{2}$, and asame preferonces are Euclidian.

So for all $a=(\gamma, \beta) \& N, u_{a} \in U\left(f_{0}, f\right)$, where $f_{0}(x)=-\frac{1}{2^{2}} x^{\prime}$ and $f(x)=x$. So $a_{\alpha}(x)=\beta^{\prime} x-\frac{1}{2} x^{\prime} x=\left(\beta-\frac{x}{2}\right){ }^{\prime} x$ for some $\beta \in \mathbb{R}^{2}$. (The parametor β represents a^{\prime} s idoal point). Using (5.4) and (5.5), we can write

$$
\begin{equation*}
\hat{\mathbf{V}}_{\mathbf{k}}(s)=\left\{a \in N\left|\beta^{\prime} h_{k}(s)\right\rangle c_{k}(s)\right\} \tag{5.9}
\end{equation*}
$$

where

$$
\begin{aligned}
& h_{k}(s)=f\left(s_{k}\right)-f\left(s_{\mathbf{k}}\right)=s_{k}-s_{s_{k}} \\
& c_{k}(s)=f_{0}\left(s_{k}\right)-f_{0}\left(s_{k}\right)=\left(s_{k}-s_{k}\right) \cdot \frac{\left(s_{k}+s_{k}\right)}{2}
\end{aligned}
$$

So

$$
\begin{align*}
& a \varepsilon \hat{V}_{k}(s) \Leftrightarrow \beta \varepsilon G_{k}(s) \text {, where } \\
& G_{k}(s)=\left\{\beta \in \mathbb{R}^{L}\left|\beta^{\prime}\left(s_{k}-s_{\bar{k}}\right)\right\rangle \frac{\left(s_{k}+s_{k}\right) \prime\left(s_{k}-s_{k}\right)}{2}\right\} \tag{5.11}
\end{align*}
$$

Hence $\hat{\mathbf{V}}_{k}(s)$ consists of eractiy those voters whose parameter β (which corresponds to the voter's ideal point) is closer to z_{k} then to s.

We essume there are 3 abpopalations, N_{1}, N_{2}, and N_{3}, which partition N. We assame that $\mu\left(N_{i}\right)=\mu(N) / 3$ for all 1 , and for $E=I$ or $E=0$, we assume that, for any borel sot C C.
$H_{i}^{E}(\{a=(\gamma, \beta) \in N \mid \beta \in C))=\int_{C} \frac{1}{\sqrt{2 \pi}} e^{-1 / 2\left(x-x_{i}^{E}\right) \cdot\left(x-x_{i}^{E}\right)} d x$
Where

$$
\begin{array}{ll}
x_{1}^{I}=(-2.0,-1.0) & x_{1}^{U}=(-2.0,0.0) \\
x_{2}^{I}=(2.0,1.0) & x_{2}^{U}=(2.0,2.0) \tag{5.13}\\
x_{3}^{I}=(1.0,-2.0) & x_{3}^{U}=(3.0,2.0)
\end{array}
$$

We asame that for oach $i, \mu_{i}(0)=\mu_{i}(I)=1 / 2$, so that for each i,

$$
\begin{equation*}
\mu_{i}(C)=1 / 2 \mu_{i}^{I}(C)+1 / 2 \mu_{i}^{U}(C) . \tag{5.14}
\end{equation*}
$$

Now. We assume that the candidates adopt the positions $s^{*}=($, $)$, ad we consider the initial voter strategy (b, s) which is dofined as follows: For as voters vote oorrectly. I.o.,

$$
\begin{equation*}
a \in \hat{V}_{k}\left(s^{*}\right) \Rightarrow b_{a}=1 \tag{5.15}
\end{equation*}
$$

or equivalentiy, $B \in G_{k}\left(s^{*}\right) \Rightarrow b_{a}=k$, whereas for $a \in U$,

$$
\begin{aligned}
& a \in N_{1} \Rightarrow b_{a}=2 \\
& a \in N_{2} \Rightarrow b_{a}=1 \\
& a \in N_{3} \Rightarrow b_{a}=1
\end{aligned}
$$

(Thns, the uninformed voters vote in anch a way as to oreate a vorst case-4.0. the \quad uninforsed voters voto contrary to how they vonld tend to vote under full information). The resulting poll, p^{\prime}, is given in Table 1.

Wo now consider a sequence of polls $\left\{p^{t}\right\}_{t=1}^{\infty}$ generated by choosing p^{t+1} e $T\left(p^{t}\right)$ for each $t 2$. This is the sequence of polis which would rosult if voters, in period t, adjusted their beliefs to be consistont vith p^{t} (say to $e^{t} E S^{0}\left(p^{t}\right)$), and thon voto optiadiy according to this belief. I.e., for ac I, in poriod t,

$$
\begin{equation*}
a \in \hat{V}_{k}\left(s^{*}\right) \Rightarrow b_{a}^{t}=k \tag{5.17}
\end{equation*}
$$

and for a $\in \mathbb{D}$, in poriod t,

$$
\begin{equation*}
a \varepsilon \hat{V}_{k}\left(s^{t-1}\right) \Rightarrow b_{a}^{t}=k \tag{5.18}
\end{equation*}
$$

Equivalently, in light of (5.9)-(5.11), we can write, for
$\alpha \in I, \beta \in G_{k}\left(8^{*}\right) \Rightarrow b_{a}=k$, whoresefor $a \in D, \beta \in G_{k}\left(s^{t-1}\right) \Rightarrow b_{a}=k$. So for elli,

$$
\begin{equation*}
p_{i}^{t}=1 / 2 \hat{q}_{i}\left(s^{t-1}\right)+1 / 2 \hat{q}_{i}^{I}(s) \tag{5.19}
\end{equation*}
$$

(Compare to equation (4.10)).
Table 1 gives, for each period, $q^{U}\left(s^{t-1}\right), A^{\prime}\left(s^{*}\right), p^{t}$, and the bost fitting poll to p^{t}, namely $\mathbf{~ (~} \mathrm{s}^{t}$). Figure 1 graphe the best fitting hyperplanes $G\left(s^{t}\right)$ for $1 S t \leq 8$. Wo seo that for this

Convergence of p^{t} to $\hat{q}\left(s^{*}\right)$.

This porticular oxample suggosts that tho theorems of this paper can probably be etrengthoned. Here ve note that the dynamic procesz described by p^{t+1} e $T\left(p^{t}\right)$ converges to a voter equilibriom which extracts all available information oven though the distributions of the $u n 1 n f o r m e d$ and informed voters vithin each subgroup are different.

6. Rosults: Roll Equilibrium

This section invostigates the propertios of full equilibria to the model of section 2 , i.e., of equilibria ($(s, b),(C, \sim)$ satisfying
 voters nood to be in equilibrim. Again, wo are concerned vith conditions onder which such equilibria correspond to what would happen onder the case of full information.

Definition 6. 1 Tho strategy pair $s \in$ is a foll information

$$
\begin{equation*}
M_{z}\left(s^{\prime}, \hat{b}\left(s^{\prime} \mid N\right)\right) \leq n_{z}(s, \hat{b}(s \mid N)) \tag{6.1}
\end{equation*}
$$

Note that equivalently, because of the symmetry of the game, we can wite the oquation of Definition 6.1 as

$$
\begin{equation*}
x_{k}\left(s^{\prime}, \hat{b}(s \cdot \mid N)\right) \leq 0 \tag{6.2}
\end{equation*}
$$

$$
\begin{equation*}
\mu\left(\hat{\mathbf{V}}_{k}\left(s^{\prime}\right)\right) \leq \mu\left(\hat{\mathbf{V}}_{k}\left(\varepsilon^{\prime}\right)\right) \tag{6.3}
\end{equation*}
$$

Thronghont this section, wo also make nother assuption.

Assumption 6.1 For all es with $s_{1} \not s_{2}, \mu\left(\hat{V}_{0}(s)\right)=0$.
Lemps 6.1 We sssume $\underset{i=1}{\bigcup_{i}} N_{i}=N$ and that Assumption 6.1 holds. If, for all * 8 S with $E_{k}^{*} \neq \frac{*}{k}$, any voter equilibrium based on s extracts all information, then if $((s, b),(C, \tilde{s}))$ is an equilibrime then either s is a full information oundidete equilibrium or $z_{z}=$

Proof Suppose ($(\mathrm{a}, \mathrm{b}),(\mathrm{C}, \mathrm{a}))$ is an equilibrion with $\mathrm{s}_{\mathrm{k}} \neq \mathrm{s}$, Thon, for the voters to satisfy (V1) and (V2) of the equilbrim definition, (b, s) mast be voter equilibrim with respect to s. But then, by essumption, (b, z) extrects all inforwation, so p(c,b)= $\mathbf{q}(s)$. But now, since candidate beliefs satisfy C2,

$$
\begin{gather*}
C^{k} e \arg \min \left[\|p(s, b)-\hat{p}(s \mid C)\| \|_{r}\right] \\
\quad=\arg \min \left[\|\hat{q}(s)-\hat{p}(s \mid C)\|_{r}\right] \tag{6.4}\\
C E N
\end{gather*}
$$

Now for all $1 \leq 1 \leq t, k \in \mathbb{K}\{0\}$,

$$
\begin{equation*}
\hat{q}_{i k}(s)=\mu_{i}\left(\hat{V}_{k}(s)\right) \tag{6.5}
\end{equation*}
$$

and

$$
\begin{array}{ll}
\left.\hat{p}_{i k}(s)=\hat{\mu}_{i}(s) \cap C\right) & \text { for } k \in \mathbb{\mu _ { i }}(N-C) \tag{6,6}
\end{array} \quad \text { for } k=0
$$

So clearly, if $\mathbf{C}=\mathrm{N}$, then $\hat{p}_{\mathrm{ik}}(\mathrm{s} \mid \mathrm{C})=\hat{q}_{\mathrm{ik}}(\mathrm{s})$, or $\hat{q}(\mathrm{~s})=\hat{\mathrm{p}}(\mathrm{s} \mid \mathrm{C})$. Bence, any $\mathbf{C}^{\mathbf{k}}$ solving (6.4) must satisfy $\hat{\mathbf{q}}(\mathrm{s})=\hat{\mathbf{p}}\left(\mathrm{s} \mid \mathrm{C}^{\mathbf{k}}\right)$. This monns, in particalar, that $\hat{q}_{10}(s)=\hat{p}_{10}\left(s \mid c^{k}\right)$, or

$$
\begin{equation*}
\left|\mu_{1}\left(\hat{v}_{0}(s)\right)-\mu_{i}\left(N-c^{k}\right)\right|=0 \tag{6.7}
\end{equation*}
$$

Bat, by Assumption 6.1, $\mu\left(\hat{v}_{0}(s)\right)=0$ for all s , so $\mu_{1}\left(\hat{V}_{0}(s)\right)=0$. Aiso $\mu_{i}\left(N-c^{k}\right)=\mu\left(N_{i}-c^{k}\right)$. So the above implies $\mu\left(N_{i}-c^{k}\right)=0$ for all i. It follows that

$$
\begin{align*}
0 & =\sum_{i=1}^{t} \mu\left(N_{i}-c^{\mathbf{k}}\right) 2 \mu\left({\left.\underset{i=1}{t}\left(N_{i}-c^{\mathbf{k}}\right)\right)}=\mu\left(\left(\bigcup_{i=1}^{t} N_{i}\right)-c^{\mathbf{k}}\right)=\mu\left(N-c^{\mathbf{k}}\right)\right.
\end{align*}
$$

or,

$$
\begin{equation*}
\mu\left(\mathbf{c}^{\mathbf{k}}\right)=\mu(N) \tag{6.9}
\end{equation*}
$$

Now assume that s is not a full information candidate
 that

$$
\begin{equation*}
M_{k}\left(s^{\prime}, \hat{b}\left(s^{\prime} \mid N\right)\right)>M_{k}(s, \hat{b}(s \mid N)) \tag{6.10}
\end{equation*}
$$

But now, using the fact that $\mu\left(C^{k}\right)=\mu(N)$, it is easy to whow that $u_{k}\left(s^{\prime}, \hat{b}\left(s^{\prime} \mid N\right)\right)=H_{k}\left(s^{\prime}, \hat{b}\left(s^{\prime} \mid c^{k}\right)\right)$ for all z^{\prime}. Honce, wo have

$$
\begin{equation*}
n_{k}\left(s^{\prime}, \hat{b} /\left(s^{\prime} \mid c^{\mathbf{k}}\right)\right)>n_{k}\left(s, \hat{b}\left(, \mid c^{\mathbf{k}}\right)\right) \tag{6.11}
\end{equation*}
$$

It follows that s does not satisfy (C1) of the oquilibrim definition, hence is not an equilibrimm.
Q.E.D.

Onfortuantely, the above Lemma leaves open the possibility that wo conld have equilibria where both candidates adopt the same policy positions, but where these policy positions are not at a full information candidate equilibrim. In this case, of conse, the informed voters vould abstain, but the uninformed voters aight still believo there is information in the polls, and vote in a vay sach that they cue off of the information provided to the pollster by other uninformed voters.

Any beliof by the candidates abont who tho concerned voters are would be consistent with observed data. So if tho candidates vere both positioned at fall information equilibrium of tho voters who they believed to be concerned voters, then this conld be an equilibrim as defined in Definition 2.1. Hovever, equilibrie of this sort ere quite unstable, becauso if oithor candidate makes a slight - iscalculation or an orror in his choice of strategy, then the beliefs of both oandidates will be inconsistent with the poll date which results from all voters adopting equilibrium strategies. To benish the above type of equilibria, we introduce a somevhat atronzer notion of equilibrim. This stronger version requires that candidate beliofs must be consistent not only with the information that is gonerated
ven the candidates adopt their oquilibrinm atrategies, but also pith the information that is generated when they make emall errors.

Definition An equilibrium ($(s, b),(C, \tilde{s})$) is said to bo informationglly atsble if there is a nolghborhood $N(s)$ of such that whenever
$s^{*} e N(s)$, and $\left(b^{*}, s^{*}\right)$ is a voter equilibrim besed on s^{*}, then the candidate beliofs C are consistent with the date $p\left(s^{*}, b^{*}\right)$.

Theorem 6. 1 Under the conditions of Lemma 6.1, if there is full information candidate equilibrim, there axists an informationally stable equilibrian. Further if $((s, b),(C, \tilde{s}))$ is an informationally stable equilibrim, s is fall information candidate equilibriom.

Proof To prove existence, we assume is a full information candidste equilibrium with $\boldsymbol{c}_{1}^{*}=\boldsymbol{s}_{2}^{*}$. By symetry it follows such an ${ }^{*}$ exists. Then we dofine $((x, b),(C, \tilde{s}))$ by setting $s=s, C=(N, N)$, and for all $a \in N$, set $b^{a}=0$, and $\operatorname{spp}\left(\tilde{s}^{\alpha}\right)=\{s\}$.

To show this \ddagger s su equilibrium, we verify each condition in turn.

V1: Since $\operatorname{supp}\left(\boldsymbol{s}^{\mathrm{a}}\right)=\left\{\mathrm{s}^{\mathrm{a}}\right\}$ for all a N , it follows that ve noed only find $b_{\alpha}=B_{a}$ to max $\left[u_{a}\left(s_{b}^{*}\right)\right]$. But $n_{\alpha}\left(s_{1}^{*}\right)=u_{a}\left(s_{2}^{*}\right)=n_{a}\left(s_{0}^{*}\right)$.

C1: Since ${ }^{*}$ is foll information candidate equilibrim with $v_{1}^{*}=$ it follows that for all se S with $s_{k}=$ that

$$
u_{\mathbf{k}}(s, \hat{b}(z \mid N)) \leq u_{k}\left(s^{*}, \hat{b}\left(s^{*} \mid N\right)\right)
$$

Since $c^{k}=N$, it follows that

$$
{ }^{*} k \arg \max _{s_{1} \in S_{k}}\left(s^{*}, \vec{b}\left(s^{*} \mid N\right)\right)
$$

V2: For all $1 \leq 1 \leq t$.

$$
p_{i}(s, b)=(1,0,0)=\left(\mu\left(\hat{v}_{0}(s)\right), \mu\left(\hat{v}_{1}(s)\right), \mu\left(\hat{v}_{2}(s)\right)\right)=\hat{p}(s \mid N)
$$

hence $\left\|p(s, b)-\hat{p}\left(\left.s\right|_{N}\right)\right\|_{r}=0$. So.
$\operatorname{supp}\left(\tilde{\mathrm{s}}^{\mathrm{a}}\right)=\{\mathrm{s}\}$ solves V2

C2: As above, for $c^{k}=N$,

$$
\left\|p(s, b)-\hat{p}\left(s \mid c^{k}\right)\right\|_{r}=0
$$

so $\mathbf{c}^{\mathbf{k}}=\mathrm{N}$ solves C_{2}.

Now to show that the equilibriom is inforeationally stable, vo let $N(s)$ be noighborhood of $s=s^{*}$, and pick $s^{\circ} s^{\prime} N(s)$ with $s_{k}^{\prime} \notin s_{k}^{\prime}$. By ascumption, wo know that the resulting voter equilibrium (b'. ©)
 $a \in \hat{V}_{k}\left(s^{\prime}\right) \Rightarrow b_{a}^{\prime}=k . \quad I .0, V_{k}\left(s^{\prime}, b^{\prime}\right)=\hat{V}_{k}\left(s^{\prime}\right)$. But then

$$
\begin{gathered}
p_{i k}\left(s^{\prime}, b^{\prime}\right)=\mu_{i}\left(V_{k}\left(s^{\prime}, b^{\prime}\right)\right)=\mu_{i}\left(\hat{V}_{k}\left(s^{\prime}\right)\right) \\
=\hat{p}_{i k}\left(s^{\prime} \mid N\right)
\end{gathered}
$$

Hence $\left\|\left\|_{p}\left(s^{\prime}, b^{\prime}\right)-\hat{p}\left(s^{\prime} \|_{N}\right)\right\|_{r}=0\right.$, so for $c^{k}=N$, conditions C is met. So $C^{k}=N$ is consistent with the data $p\left(s^{\prime} b^{\prime}\right)$. and it follows that the equilibrium is informationlly stable. This proves the first
assertion in the theoref.
Now asame that ($(s, b),(C, s))$ is an tiformationally stable equilibriun. From the provions lemana, ve know thet elther the conciusion is true, or $s_{1}=s_{2}$. So asome $s_{1}=n_{2}$. Lot $N(s)$ bo a neighborhood of s, and pick $s^{\prime} \in N(s)$ Tith $s_{1} \nmid s_{2}$ '. Then by
 all information. So $a \in \hat{V}_{k}\left(s^{\prime}\right) \Rightarrow b_{a}^{\prime}=E$ or $V_{k}\left(s^{\prime}, b^{\prime}\right)=\hat{V}_{k}\left(s^{\prime}\right)$. Further, by acspmption $6.1, \mu\left(\hat{V}_{0}\left(s^{\prime}\right)\right)=0$. Then, using an argument siailar to that in Leman 6.1, whave $\mu\left(N-C^{k}\right)=0$, or $\mu\left(C^{k}\right)=\mu(N)$. Bat now, if ($(a, b),(C, \tilde{a}))$ is an informetionally steble equilibrime it nust be an equilibrim. Thus, by C1,

$$
\left.n_{k}\left(2, \hat{b}(s) c^{\mathbf{k}}\right)\right) 2 k_{k}\left(x^{2} \cdot \hat{b}\left(\cdot \cdot \mid c^{\mathbf{k}}\right)\right)
$$

for $11 \mathrm{~s}^{\prime}$ with $\xi_{k}^{\prime}=r_{k}$. But ance $\mu\left(C^{k}\right)=\mu(N)$, it follows that for
$11 \mathrm{~s}, \mu_{k}\left(\mathrm{~s}, \hat{\mathrm{~b}}\left(\mathrm{~s} \mid \mathrm{C}^{k}\right)\right)=\mathrm{M}_{\mathbf{k}}(\mathrm{s}, \hat{\mathrm{b}}(\mathrm{s} \mid \mathrm{N}))$. Hence

$$
M_{1}(s, \hat{b}(s \mid N)) \geq M_{1}\left(s^{\prime}, \hat{b}\left(s^{\prime} \mid N\right)\right)
$$

 is a full information candidate equilibrium.

Grandmont, J. M., "Intermediate Preferences", Econometrica, 46 (1978) 317-330.

Kramer, G., "Extension of a Dynamical Model of Political Equilibrium", mimeo, California Institute of Technology, (1980).

McKelvey, R. D., and P. C. Ordeshook, ${ }^{\text {It Elections with Limited Infor- }}$ mation: A Fulfilled Expectations Model Using Contemporaneous Poll and Endorsement Data as Information Sources"', Social Science Working Paper $\# 434$, California Institute of Technology, (July, 1982).
McKelvey, R. D., and P. C. Ordeshook, "Rational Expectations in Elections: Some Experimental Results based on a Multidimensional Model", Public Choice (forthcoming, 1983).

RECENT SOCIAL SCIENCE WORKIMG PAPERS

51t. Grether, David M.: Schwarts, Alam; aod Hilde. Lowia l. Uucerteinty and Shoppias bebavior: As Experimeatal Analyaie." Merct 1984.
512. Quirk, Jeaed P. and Teraoova, Eatsuaki. "The Vianer'. Curse and Cont Zatimatios Dien in Pioner Projecto." Eevised April 1984.
313. Aates, Iobert L. Datrarian Politice and Development." April 1984.
314. Schofield, morman. Clanification Thooren for soooth focial Choice. Febreary 194.
315. Pege. Talbot. ©o the Meanige of the Preponderance Teat In Judicial legulation of Cbenical Easard." February 1984. Lay end Copsequtert Iradrat. forthcomias.
516. Salant, Stephee U. Litigation of Eettlement peands questiomed by myeoice Defendante." March 1984.

S17. Eovebeh, Villies. On the Erieteece of Courmot Equilibrium." March 19et.
 Luaseli. Froduct quality, Informational Eficieacy asd legulatieae is Experinestal Martete." March 1994.
319. Sougcer. 3. Morgas. Votert, Aboat mat Freecet: A Enviev Cosey." March 1904.
520. Graets, Michael and Vilde, lowio. Ma Model of Taz Compliance Uoder Budget-Constraied Auditera." Narck 1984.
321. Lien. De-Eaiaat Bonald. EProfitable Ipeculation and Liacar Exceas Demed." Nurch 1984.

S22. Joece. W. T. "mposible Choicee." March list.
523. Bante. Jeffrey © Price-Conveged Iaformation ve. Obmerved losider Eehoviot: a mote on hational Expectationg Converseece." March 1984.
524. Mang, Jeffrey 8. Esophinticated Votiat Outcomee and Agenda Cootrol." April l984.
525. Leidenum, Jenaifer atd Yilde, Lovie L. Mgequeatial Equilibrium Detection and Eeportias Policiea in Model of Tan Evacion." April 1984.

```
526. Btrmed II. Jamec F. "Taxation of Incoee From Capital: &
    Tbeor*tica! Leappraioal." Februery 1984.
527. To te Anmounced.
528. To Be Anmounced.
529. McIelvey, lichard D. aed Ordeahook, Peter C. Eslectione Vitb
```



```
530. To Se Ammounced.
531. Caia, Druce E. and McCue, Eat. GThe Efficacy of leglatration
    Drives." Jupe 1984.
```


[^0]: Actually the only information which is required of the informed voters by the equilibrium definition is s. Since it does not make sense to assume that they have less information evadiable to them then the uninformed voters, fe assome that informod voters aliso heve information on $p(s, b), p(s \mid N)$, and μ_{i}, bot chose to ignore it bocause of the precedence of s.

