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In this paper I will argque* the following points:

1) Prescriptive and descriptive solutions to the free rider problem are
insufficient, when they either demand the establishment of institutions or
point to the existence of institutions which are able to prevent people from

taking a free ride, but fail to explain how these institutions can actually

develop during biotogical or cultural evolution .

——

2) That a certain behavior is good for the group or the society does not

necessarily mean that it has a chance to evolve and to become stabilized if it

e s e e e,

is potentially harmful to the individual who displays this behavior. This is
pos§1b1e only under certain conditions the study of which is an important

issue of modern theoretical population biology. Some of the relevant findings

will be described.

3} These findings have an enormous impact on the further lines of development
of theoretical as well as empirical research in the public goods/free rider
field. A conceptual framework for theoretical research as well as the design

of an experimental study under way will be presented.

*The theoretical argumentation in this paper reflects the viewpoints of the
first author. The experiment has been designed and is being conducted at the
Department of Psychology and Social Relations, Harvard University, in

cooperation with the other two authors.



The free rider problem is usually stated in such a way that the achievement
of a Pareto optimal allocation of resources in the acquisition of public goods
is fundamentally incompatible with purely individual incentives. This fact is
regarded as a problem because it is obviously bad for society as a whole and
the single producer/consumer. Solutions have to be found which will make
people reveal their true preferences, refrain from taking free rides, and
remain faithful members even of large groups in order to make a optimal or at
least better supply of public goods possible.

The problems as stated in this way has been attacked on theoretical as well as

~on empirical levels:

Theoretical approaches developed sophisticated sets of rules which should make
it advantageous for each consumer to state his true preferences - the probably
best known of these models are the ones by TLUARKE {1971), “TIDEMAN/TULLOCK
{1976) and GROVES/LEDYARD (1977}. These and other models have in common that
they do not make as the basis for the pricing mechanism the total number of
units of the public good divided by the number of people benefitted by this
public good, but instead the increment or the decrement a consumer wants to
see added or subtracted from the public good in question.

It is clear that these rules and mechanisms do not just fall down from heaven.
What these models are actually looking for is a "class of optimal government
rules " (GROVES/LEDYARD 1977; p.791), which are not likely to emerge
spontaneously in elementary encounters between people because otherwise there
would be no need for inventing them with so much intellectual sophistication.
So we have not only to ask whether these rules can make people refrain from
taking free rides - with all the effects this would have - but also how these

rules can be established - a point which the mentioned authors remain
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remarkably silent.

On the empirical level one has to deal with the undeniable fact that there
obviously exist large organizations which provide certain public goods to
members as well as non-members, even heyond that point in size where a single
actor's contribution can make a tangible difference the formation of groups is
possible. So the task is seen as identifying those forces which make that
possible. A1l given answers fall into three categories:

a) A clever combination of pubtic goods with private goods in a way that

ﬁﬂxrﬂévuyt:?making contributions to a public good can be rewarded with priviledged

access to certain private goods, and taking free rides can be penalized
by withdrawal of this access.

’ b) Group_ggzg; which encourage fidelity towards the group, equal share of
the burdens for public goods which the group has decided to acquire, and
denounce free riding.

c) Sheer force, applied by some centralized power within a group, or a

st —..

whole scciety.

[t is not difficult to see the common features not only in these three
categories, but in both the empirical and the theoretical field. It is the
search for institutions which ensure that people don't behave in the way the
Samuelson/Olson theorem states. But what are institutions other than stable
behavior patterns of groups of people? How satisfactory is an answer to the
free rider problem, as defined in the beginning, which actually tells that one
should {the theoretical level), or one has already (the empirical level)
established a behavior pattern which enables the supply of public goods and

the formation of large groups? Obviously not very much.

-



A solution to the free rider problem requires an explanation of how such an

anti-free-ride behavior pattern can be stabley established within a group.

The Samuelson/01son theorem clearly predicts that all these patterns are
unstable. If it is advantageous for everyone to take a free ride, and
therefore risky for everyone not to take one, why then stick to certain rules,
as sophisticated as they might be, if there are no individual incentives for
enforcing them?

So we are asking for a solution in evolutionary terms: how can
institutions/group behavior patterns evolve which can prevent its members from
' taking free rides? Not before we are able to answer this question, can a
description as well as a prescription of such an institution be accepted as a

satisfactory solution to the free rider problem.

We have been trained to assume that by nature as well as by culture our
motivation patterns are such that purely individual incentives are not the
only ones, and that caring for relatives, friends, the community, etc. is

built in our mind as a equivalently important goal.

Putting it in this way is a step in the right direction since it indicates

that even from the best institutions we can only expect that they will make a

non free rider behavior the dominant mode, but no human institution can be

designed to be absolutely free rider proof. Later on we will see more clearly

why this is so.

But otherwise this answer must inevitably lead to another question: how can
non individual incentives obtain such an important role in our motivational

endowment ? The vast majority of mammals have no or only a very rudimentary
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In fact, the search for models which can explain the development of soéia]
behavior with a non purely individual incéntive structure is the most
important branch in recent population biology theory. We have to take a close
look into these models.

The well known label of these recent developments is the evolution of
altruism. But this title certainly covers too much.

We are looking for models which can explain how a behavior pattern or trait
which benefits others more than its bearer, nevertheless can evolve and spread
out under the conditions of Darwinian evolution. This implies that - unlike

. the usua) classification - the development of "reciprocal altruism"
(prototypical BOORMAN/LEYITT 1973) as well as of "kinship altruism"
(prototypical HAMIILTON 1964a, 1964b) should be excluded from the realm of
true altruism.

The first should correctly be named the development of cooperativeness;
cooperativness‘is only occasionally altruism if the initial cooperation by the
first actor is not responded to by an equally cooperative move by the other
actor, but by a move which harms the first actor.

As soon as cooperative behavior on a reciprocal basis is firmly established,
it cleary benefits all participants, and the only remaining problem is then
the deterrence of defections by effective methods of early detection and
retaliation as well as rewarding of faithfulness. It is obvious that as far
as public goods are concerned such a model cannot expiain the development of a
free ride avoidance behavior.

The key notion of kinship altruism is inclusive fitness, which means that for
a strategy of maximizing the fitness of one's own genes it can be advantageous
to forego own fecundity or even survival chances in favor of a relative

( child, parent, sibling etc. ), if k > 1/r, where r is the coefficient of



social organization, and the human history is a history of the gradual
development of more and more complex social institutions with their according

motivational internalizations.

So the free rider problem has to be properly reformulated: Given the
impeccable logic of the SAMUELSON/OLSDN theorem, how can a non free rider
behavior evolve .and get stabilized into group behavior patterns as described ?
This question rises on the descriptive level in the same way as on the
prescriptive level. Both levels are thus being brought togetﬁer in the

. evolutionary perspective.

It

The_usua1 answer to this question, whether given explicitiy or implicitly is
that since it is good for society/the human specieg, a general behavior of
avoiding the exploitation of free rider options must have developed, be it on
the level of the genetic endowment or of the basic cultural patterns. The
argument goes that surely individual incentives are not favored by biological
as well as cultural evolution, that our social behavior {as well as the one of
"higher" animals) is governed by a mixture of individual and collective

incentives.

In principal, however, one should expect that Darwinian Evolution precisely
does not favor the development of a non purely individual incentive structure
in the individual actors, because the more members of the group or the whole
society do not cheat, the higher the reward = selection pressure for cheating

obviously becomes.



relatedness between donor and recipient of this fitness transfer, and k the
ratio of gain of fitness to the recipient to the loss of fitness of the donor.
Clearly the object of selection is here not the individual but the kin, and
again we should not call this form of fitness transfer altruism. Furthermore
it is hard to see how the notion of inclusive fitness could be made

applicable for models of the development of social institutions.

So we have to start our considerations at the remaining category: group
selection of altruism. The basic idea here is (expressed for the haploid,

. monolocal case) that, if a population is scattered into clearly distinct
groups or demes, an allele 'a', which is more beneficial for the average
fitness of the group members than the 'A' allele, but which yields less
individual fitness to its bearer, nevertheless can outgrow the latter - if
cerfain conditons are fulfilled.

The refinement of the model and the specification of its parameters has been,
ever since the pioneer work by HALDANE (1932) and WYNNE-EDWARDS (1963), the
subject of an increasingly sophisticated branch of theoretical population
biology. Recent contributions - even more exciting - have furthermore
demonstrated the possibility of the evolution of altruism without two basic
features of classical group selection models, namely differential extinction
rates for the groups as a whole, and random genetic drift within these groups
with consequential fixation oflone allele.

These new approaches, however, are still using the concept of an at least
temporary separation of large populations into small scattered groups { demes,
founder populations ) which provide different internal selection milieus.

But even this assumption can be repltaced, so that we are now able to model the

development of altruism under conditions of Darwinian evolution in large



homogeneous pbpu1ations.

Before we start with the classical group selection model, a word about the
applicability of results of theoretical populétion genetics to problems of
economics or other social sciences.

The Darwinian theory of evolution deals with long run changes in phenotypes
due to the forces of natural selection. It is, however, impossible to
understand and predict the effects of natural selection on a given trait
without some idea of the mechanisms by which this trait is transmitted form

one generation to the next.

The problem is only that the genetic basis for evolutionary changes is in most
cases not known. Moreover, there is ample evidence that most traits have a
multilocal genetic basis which makes an analysis with the methods of classical
popd]ation genetics soon hopelessly complex.

So the main line of present research goes into an different direction, as
advocated by ESHEL {1982, p.214): " An alternative approach to the study of
this sort of traits attempts to avoid complications stemming from the specific
nature of one genetic structure or another. Instead, intuitively understood
criteria of phenotype optimization are suggested, with the basic assumption
that . . . the basic Darwinian relation between adaption and naturail selection
must lead to some sort of local optimization, at least as a workable
approximation. Thus instead of dealing with many technical unmeasurable, and
presumably insignificant details, it is preferable to ignore‘them in order to
obtain simple qualititative results.” Such models of phenotypic optimization
can be developed and tested independently from assumptions about the specific
nature of the transmission mechnism, whether it is the reproduction of genetic

material, or some cultural learning process.



State-of-the-art models of the group selection theory can be found in WILSON
(1975, 1973), GILPIN (1975} or BOORMAN/LEVITT7(1980). I will here refer to the
BOORMAN/LEVITT model. GILPIN assumes permanently separated demes with
migration, which makes his approach more complicated; WILSON, on the other
hand, mixes group selection with kin selection ideas (MAYNARD-SMITH 1976).
Given is a infinite population, divided into demes except for recolbnization,
a biallelic locus ('A','a’), where 'a' is favoured by group selection, and }A'
by individual ( "Mendelian" ) selection. Phenotyp A ,the altruist, is

borne by all 'aa's, and the nonattruist N by all 'AA's. It is assumed that the
. individual selection pressure is that strong that any deme population reaching
carrying capacity in one period of time will have lost heterozygosity at the
{'A','a"') locus, so we will never have to deal with a phenotype borne by Aa.
As usual, time is periodized in this model into discrete periods. Within each
per{od the following sequence of events occurs: 1) extinction, 2) growth,

3) recolonization. At the beginning of each period, one can distinguish five
classes of demes, two in the class of completely occupied/carrying capacity
demes, and three in the class of founder populations, i.e. just recently
recolonized demes. The models works with the simplest form of all concéivab1e

founder populations, comprising one female and one male. So we have:

1) N/N
CI1) AN
1) A/A

and the carrying capacity demes

IV) all homozygous for 'AA's
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V) all homozygous for ‘'aa's

Further assumptions are

- growth of newly founded populations is that fast, that a population
reaches carrying capacity {N = K) within one time period, if it escapes
extinction at the beginning of this period. |

- if a deme is emptied by extinction at the beginning of a period, it
remains empty for the whole period and is recolonized at the end of it by a
random sample from the gene pool of carrying capacity demes.

. = the founder populations are subject to differential extinction
probabilities 0 { E;{y (i =1,2,3 ), where group selection favours the

‘a' gene: Ey > Es >E3 .

- in addition to this differential extinction acting on founder populations
thefe exists a uniform extinction capacity 0< € < 1 which acts on carrying
capacity populations at the beginning of each time‘period. In the event of
extinction, recolonization takes place in the same way as described extinct
founder populations.

- all parameters specifying the individual selection are expressed in the
parameter 'u' such that mixed founder populations of class Il ( N/A ) grow to
a carrying capacity population of class V with probablity u and to class IV
with probability (1 - u}, while founder populations of class I or III gfow to
class IV or V respectively. From the definition of altruism it is required

that 0 < ‘u' < {1 -u) <, or simpy w172 .
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The dynamics of this model can be analyzed with the following system of

difference equations

("f(n £ 1) = X(n) i ()

-
]

with the I.C.J - { 31(0), XZIO), {3(0), 54(0), Js(O)] at time n = 0
0 ‘J,-(l and Z-J" = 1(i=1,23,45) of the ith class.

and !-F- the transition matrix according to the listed assumptions.

The system has two obvious equilibrium points, the one when only N - phenoypes

exist, the other one when only A - phenotypes exist, and the extinction rates

fulfil the conditions

)

1
¥A= (E,O,O,(1~E1),0) (2)
b ]+E-E1

which represents an 'A' - fixation, or

- 1
X | = ] ‘ E [ D, 0, E, 09 ( ] = E3 )) (3)
| + - 3

for the 'a' fixation.

More interesting for our argumentation, of course, is the analysis of an

internal equilibrium point, i.e. when all classes are occupied, which then
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entitles us to speak about a polymorphic equilibrium.

BOORMAN/LEVITT can show that a necessary and sufficient condition for this is

either
Ey + 1 - 2E, 1 - (4)
-2 e U <: S
or
1-E Ex +1 - 2E (5)
1 2
TR B
2(1 - E2} 2(1 - Ep)

. Both conditions are obviously mutually exclusive.
By considering two distinct cases, depending on whether
T-5) S (2§ - E3)72 (6)

it can be show that only in the convex case (1 - E)) > (2 - By - E3)

a stable polymorphic equilibrium 1is possible.

0 .5 1 altruist frequency
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while in the concave case (1 - E,)< (2 - Ey - E3) any internal

equilibrium will be unstable. This means that only condition (5) will allow
for an stable polymorphic equilibrium. BOORMAN/LEVITT can furthermore show
that an internal equilibrium if it exists at all, will be globally stable,
which means that the edge points which represent pure 'a’ or pure 'A' fixation
will then be unstable.

This is the first of the two important results which we can obtain from the
analysis of the BOORMAN/LEAVITT model. A globally stable polymorphism ofl
altruists/nonaltruists is possible if and only if the differenti;1 extinction
. function Ei =f{i) 1i=1,2,3, is strictly convex.

The second result can be obtained by a different approach to the problem of
stable polymorphism. BOCRMAN/LEVITT obtain their inequalities (4) and (5) by
an analysis of the system X1n +1)= BP(n)E[_'He will demonstrate an
alternative path to alternative (5), the necessary and sufficient condition
for a globally stable polymorphic equilibrium.

Let us assume a infinite number of players in a population, each player
playing constantly strategy A, the altruist strategy. If the payoff values of
this game are survival chances, and if this game is played an infinite.number
of times, a small group of N - players can successfully invade this population
if and only if their chances to survive are strictly greater than the survival
chances of the A - players. Equivalently, a small group of A - players can
invade an infinite large population of N - players, if and only if'their
survival chances are strictly greater than the ones of the N - players. If we
assume that the initial numbers of invading players is so small that a random

mating of two invading players never occurs, we can state these conditions
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more formally:

A can invade a pure N - player population if

(O - Eu > (1 - €y (7)

and N can invade a pure A - player population, if

(-0 -u) > (0 -Ej) (8)

We know from the assumptions of the mode!

D -Enu+ (-1 -u) > 01 -Ey)
and that { altruism criterium ! ) 0 u < 1/2

50 (1 - Ez)u > (1 - E])/Z (9} |

1-E
! (10)

or u :>

2{1 - E9)

Likewise we know from the assumptions of the model and our condition (8)

O -Bu+(0-6)0-u)> (- E) (1)
and since 1/2<( 1 - u )< 1, we are able to write
(1-Ep MY -u)>(1-E5)/2

or E3 +1 - 265 (12)
u < 201 - Ep )

Both conditions together yield BOORMAN/LEVITT's condition for a globally

stable polymorphism, which we can thus restate in the following way that a
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globally stable polymorphism is possible if and only if both a pure N -
population can be invaded by a small group of A - players, and a pure A -
population by a small group of N - players. This inablity of pure populations
to resist invasion by players of the opposite strategy can be equivalently
expressed as a impregnability of a certain mixed strategy - which is then
equivalent to the concept of a stable poiymorphism. This necessary and
sufficient criterium must be equivalent to the criterium of the convexity of
the differential extinction function, which we can from now justifiedly call
fitness transfer function.

. We may add that this double criterium does not preclude the possibilty of

periodic solutions .
11

With this result we can now go on to the important‘findings made available
through the COHEN/ESHEL (1976) and the MATESSI/JAYAKAR (1976) models. I will
use as my point of departure the COHEN/ESHEL model, but will sometimes use
MATESSI/JAYAKAR's notations. The purpose of these models is to show how even
without genetic drift ( = a chance of fixation even for a recessive gene) and
without the basic concept of group selection ( = differential extinction rates
for whole demes ) genuine altruism can evolve. They still let this happen in

small founder populations - for reasons which soon will become clearer.

Assumed is a infinite large haploid population of two types, the altruist A
and the non-altruist E. Individuals mate randomly in the large population at

the end of life cycle, but all other activities take place place in smaill
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groups of individuals with a finite number of members. Reproduction occurs at

discrete and non overlaping generations, and so three stages of the life cycle

can be distinguished:
stage 1: small groups of individuals colonize empty habitats;
stage 2:  selection occurs in the form of differential
viability/fecundity of individuals { Mendelian selection)
within the .group. |
stage 3: individuals disperse and mate at random in the large
population.
- If we furthermore assume that the initial size of every colony is fixed and
equals N, and that the individuals of the two different types A and E have
equal chances of being included in each colony, we can describe the

probability distribution for A and E types with the well known formula

N
a{m, N - m) = ( )pqu'm
m

p and q =1 - p being the relative frequencies of the A and E type,
respectively, in the entire population, and 'a' being the expected

proportion of founding population containing exactly m A's and (N - n)E's.

Altruism, is defined:

- the presence of A's in a founder population increases the average rate of

reproduction 1in the colony,

- the individual reproduction rate of an A individual is smaller than the one

of an E individual
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h(p) and g{p) being the average numbers of A's and E's emerging from a single
colony at the end of one period, p being the initial frequency of the A's.
After one period the relative frequency of A's in the entire population
{denoted as p]) is

Py = hip)/{(h(p) + g{p)) = f(p)
We know that h(0) = g{1) = 0 and therefore f(0) = 0 and f{1) = 1 with
p=0and p =1 the two obvious equilibrium points of the system.
Since we regard discrete time periods, the stability criterium for p = 0 is
£(00<1 , and for p = 1 itis £

' - h{p)Lh' '
o fipy - (PN(R) + g(p)] - M(pIN'(p) + g'(p)] an

[h(p) + g(p)1?

which yields f'(0) = h'(0)/q(0)

with the stability condition h* (03 (0}

and | £'(1) = -g*(1)/h{1)

with the stability condition -g" (1)< n(1)

Since (18)

N
- N
h'(p)= > ( ) (m) [épm']qu'm+(N - m)pqu‘m'?]
& "in) §o

and Mo \ f (19)
1 jDa(m)mequN-m_}(N _ m)pqu-m-i‘_ >(' h'(p)
|



TIEE A e T T TR R R M S AR e S0 L e = Lokt G T i e Viat Sl N L EX 7 S T T P e PP e PV

-17 -

If we denote with Py(m), (m=1,2,...N) and Pp(m), { m=0,1,...N - 1)
v ~

the total value by which an A and an E, respectively, reproduces himself in a
colony with m A's, w can state these two characteristics as

a)

m§Da(m) + (N -m)ﬁ’b(m)}tm -1 Palm- 1)+ (N -m n}bbtm'- 1)

or: 9_5 (m) > C_P(m - 1) (13, 13b)

(m) the average growth rate in a colony containing m A's, and the sharp

_inequality

 Pamy > N Poio)

clearly gDa(O} and Ejb(N) have no meaning.
vy Y

b) - bED a(m) <:‘ bgﬁb(m) for ail m {(14a)
If we assume a fixed ratio of reproduction rates between A's and E's, we can

replace {Z2a) by:

Dpim) = )Mjba(m) with 3 > 1 (14b)

We can now desc¢ribe the entire population by the following dynamic system

N _
N (”“- ‘ (15)
(CHPIRTI Y SO R
i tmo
n=1 vy
N-1
\ N
g{p) = (N - m)( C;’b(m]pqu -m
m=0 N-mj
N

NS N
glp) = AN Pl - ™ b (m) - An(p) (16)
Aii_a (N - ;\ ? a
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and if we furthermore assume N to be suffiently large* so that the existence
of one A is compatible with setting p = 0, or likewise that the existence of
one E is compatible with setting p = 1 then the stability criterium for p = 0

becomes
h'(0) = P, (1
g(0) =‘79b(0)N

or a“)\fbw)
Similarily for p = 1}

~g' (1) =>\\>Da(u - T =P - 1
h(1} =\f>a(N)N

or \]D b(” - 1)4' DD a(N)

From these two stability criteria we can argue, that a necessary condition for

a globally stable polymorphism is that both edge-equilibria are unstable, i.e.

y a1 > :)Db(m (20a)
and j)a“ﬂ (}0 b(N = 1) (20b)

If we recall the assumption  ,(g) =  .(m), then we can rewrite these

two conditions as

f._b_,_m,_ \ @a(u)_ {20c)

v
]ob{O) > \)Oa(N—'”

we may add that :X,is not necessarily a constant which, for purposes of

simplicity, we have treated it thus far. We can then interpret this important

condition:

for appropriate values of ?\ a stable plymorphism is possible if the relative

- W W e ke SR R MR N A e M SR W R MR U R R M e A SR S M M RS A v Lk SE S e SR A e e e AR AR N S M AR A Ee A e ew e R A e e e e e W

*A necessary condition not made explicit by CCHEM/ESHEL nor MATESSI/JAYAKAR.
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benefit a founder population of non altruists receives from a single altruist
exceeds the relative damage a founder population of altruists suffers from a
single non altruist.

A second look into the 1nequa1ityj;>a(u) :> GDb(N - 1), the precondition

for a stable monomorphic altruist equi]ibriunﬁfclearly demonstrates how little
the likelihpod for such a equilibrium is.
He can express this inequality as
Fa0) SO a8 well as .g)b{")_____ S N @azn)

f":m-n Pyt
7 1 (21c)
BT 7

" and gﬁa(N)

In real 1ife situations  , can beyond a certain N only be a decreasing

fuﬁction, so if we let N increase
L)

Tim W) \<\ 1 ' (22)

N—>oo a

But by definition )\:>1 , s0 N cannot grow without bounderies. But

condition (21c) can only be met if and only if j;>bis not only a monotone
decreasing function, but decreases even faster than f;ba- which is hardly

imaginable in any real life situation.

It is easy to see that in order to make a unique and globally stable

equilibrium POSSib1E.‘§Datm), (m=1,2,....N) must be a monotone decreasing

function, and gb p(m), (m=0,1,....N - 1) must be a monotone increasing

function.
[f we recall the first formal condition of altruism (13a,13b)

mika(m) + (N - m]Jbe{m);;?. (m - 1)j;>a(m -~ 1)+ (N -m+ 15‘¢§b(m - 1)

o

EE)(m) ;} Qj(m - 1)
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we can easily see thatlgiven these two properties of the‘ﬁba(m) and the

§D p{m) function, clearly ‘3? (m) must be convex. This function ;P(m)

can be interpreted as the average fitness transfer function, i.e. the fitness
received by the members { altruists and non altruists alike ) of a founder
poputations from the presence of m altruists in this population.

If <I> {m} s linear or concave, at least one edge {(p =0 or p = 1) is

stable, but no stable polymorphism is possible.

The model here, based on COHEN/ESHEL (1976) and MATESSI/JAYAKAR (1976), still
| shares with the classical group selection models the idea that altruism can
develope only in small founder populations, since only in very small groups
can the altruists increase in numbers so rapidly that they can compensate with
increased fitness transfer for their individual handicap vis-a-vis the non
altruists. In another version of the group selection approach, which assumes
a population permanently divided in small founder colonies and has therefore
to allow some migration between colonies, a suffiently low migration rate is
also essential for the evolution of attruism (GILPIN 1975)
This assumption of at least temporary dispersal into smal) founder demes can
easily be replaced by the notion of some phenotypic assortment of encounters,
which we can define as any deviation from encounter randomness which is not
based on kinship. Altruists might tend to congregate. This idea can be refined
even more by the idea of an active search of altruists for companions or the
like. Formally one Can grasp this in the concept of some internal viscosity of

large continous poputations. Theoretical and empirical studies on the evolution
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of cooperativeness have demonstrated the importance of this internal viscosity
concept (AXELROD/HAMILTON 1981, ESHEL/CAVALLI-SFORZA 1982, BOORMANN/LEVITT
1980, ch. 2 - 5). I expect the same for our subject, the evolution of
altruism. It is clear, however, that replacing the notion of founder
populations with the idea of the internal viscosity of the large population
eliminates the very possibility of a grdup selection approach, for which the

idea of differential group extinction is essential.
v

In order to interprete these findings of population biology I wish first to
mention two things:

1) The notion of a stable polymorphism of different players pursuing
dif%erent pure strategies can without any problems be substituted for by the
concept of an equitibrium of a mixed strateqy applied uniformly by all the
players in the game { under the requirement that every player faces the same
payoff matrix - as it was the case in the models presented above).

By this we are replacing the impregnability of a polymorphism of actors by the
impregnabilty of a mixed strategy - this is the essence of MAYNARD-SMITH's
(1973, 1974, 1976) well known concept of a Evolutionary Stable Strategy (ESS).
An ESS is defined as a strategy which, if adopted uniformly by a population,

cannot be invaded by an initially rare mutant adopting another strategy.

The formal requirements for a strategy to be an ESS is, if £y (1) denotes

the benefit for I yielded by an "encounter" {(which stands for all sorts of
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interactions) with J, the I is ESS, if for all alternative strategies J

By > By (23)

or E(D) = Ef(9)  and  Eg(1) > Egqgy (24)

Back to our altruism evolution model, where a stable polymorphism is
characterized such that there is a M. for which the fitness transfer
function-ggkms)-has its maximum, so that

Pimg -1y < Pimg) > Prmg + 1) (25)
If (I?(m) is convex between N and 0, thislmaximum is unique.
“In éerms of MAYNARD-SMITH's concept this ;@ (m.) can be translated as an
{mixed)} ESS, which requires to play with relative frequency p = me / N the
altruist strategy and with relative frequency q = (N - m.)/ N the non
a1truist strategy.

2} Secondly, we can easily separate these ideas of a stable

polymorphism and a mixed ESS from the original basis in genetics.

One has only to set up a learning model which is endowed with both the
altruist and the non altruist strategy, but can optimize the relative

frequency with which the one or the other can be applied.

The conclusions which we can draw from all this are the following:

We were not only able to specify the conditions under which the evolution of
altruism qua group selection can occur, we were able to redefine all
collective parameters, referring to the ecological, spatial and other
structural properties of the population as a whole, as parameters of

individual behavior strategies. For reasons already mentioned, we focused on
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the conditions for survival and development of a stable polymorphism of
altruism/non altruism. We could then replace the convexity of differential
group extinction function with the convexity of the individual benefit
transfer function, replacing the requirement regarding the disperse structure
of the relevant populations with ideas qf non-random assortment, low
migration, and active search by altruists for other altruists (briefly: the
concept of internal viscosity of a population), and finally replacing the idea
of the impregnability of a stable polymorphism in a population with the jdea

of a mixed ESS.

And these redefinitions are not just a conceptual convenience, since group
selection can not account for a development of altruism in Yarge continuous
populations. There is broad evidence from empirical studies which limits the
relevance of group selection as a driving force of evolution even more, beyond
this crucial point. (MAYNARD-SMITH 1976, WADE 1978, BOORMAN/LEVITT 1980)

The models presented here do not only convincingly suggest to conceive the
development of altruism in terms of evolution of individual behavior
rationality, they give us an important hint how to do this.

I mean the ineguality:

P >l>j’a (N) (20¢)

which connects the two elementary f1tness transfer functions

af{m} and p(m) with the parameter t which describe the

individual disadvantage of an altruist vis-a-vis a non altruist.

We have hitherto regarded as a constant, but this of course does not need

to be so; in fact, we have to consider it as the other important function in
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any model of evolutionary altruism, besides the benefit-transfer function.
Optimizing the average fitness or - for those social scientists who frown upon
this very word - the average welfare in a society which is created by the
existence of altruists, means maximizing the benefit transfer function and
minimizing the ’>& function, as we now can call it.

The understanding of such an optimization process will provide us with the key
to understand how human societies are, and.in fact were able to solve the free
rider problem. And the essence of this approach is that we have transformed
the free rider problem from the level of insitutitions to the level of

- evolutionary stable strategies of individuals.

OLSON himself has stated his theorem in the cautious form that in groups

where a single individual is ready to pay for the public good himself alone if
necessary, the group will normally provide it, and that in a group in which a
single person's contribution will not make a noticable difference in the
amount of the'public good provided to the group, no supply of the public good
will occur at all. For the size range between his theorem does not allow
predictions. Supply can occur or not. OLSON points to the theory of games in

order to clarify this problem (OLSON 1971, 43), and indeed this is also the

conceptual framework, to which our previous findings lead us.

The free rider situation can be represented by a N - person prisoner's
dilemma, preferably in compound form (HAMBURGER 1973), i.e. it is assumed
that each player plays the same strategy simultaneously against all other N -

1 players , so that for each player the N - person game can be analytically
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partitioned into (N - 1) 2 - person prisoner's dilemmas like:

2. player

cooperate defect
cooperate Ay Ag By Cy !
}
|
|
— - )
. 1.player :

with C.> A; > Dy > B; (i =1,2); A=Ay, By =By,

C; =Cp, Dy =Dp; and AD (B +C)/2.

If we ask in this context how the 9? function under the restraint of j~ can
be maximized, we know that the §§ function cannot be a linear payoff function,
if we want to see a stable polymorphism possible. One of the consequences of
that is that the?? function can not be dependent on a single move, but on a
strategy over time.

. Strategy sﬁal] mean a decision rule which is a function from the previous
history ( the whole history or only the last 1,2,3..... moves) of the game
into the next move, i.e. derives from the relevant chain of already made moves
and their payoffs the next move or moves.

It is well known that the time of the game, expressed in the number of moves,

in the context of the prisoner's dilemma, must not be predetermined and known
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to the players in advance if cooperation between the players shall remain a
rational option at all (LUCE/RAIFFA 1957, 97 - 102). The only way for, say,
the first player to enforce cooperation (moves: cooperate - cooperate) and to
prevent (cooperate - defect) is the threat of retaliation (defect - defect) or
even (defect - cooperate)., If the number of moves is fixed, say N, and known
to the players in advance, then at the N-th move each player must defect,
since for a possible defection of the other player he has no chance of
retaliation any more. So the N-th move must be a (defect - defect) move. But
then there will be no chance of a retaliation for the {N - 1)-th move, so the
_rational choice for this move must also be (defect - defect) and so forth all
the way down to the first move. Therefore the number of moves must be
undetermined. But how then to compute the payoff of a strategy which consists
of an indefinite, maybe even an infinite number of moves.

The familiar solution to this question is introducing a discount, preferably a
constant one, so that for example the present value of a strategy of permanent
mutual defections for each player would be:

v D+wh+wiD+wi+ ....... (26)

H

S D/ (Y - ow)

In a series of excellent articles, from which I will draw also at some further
points, AXELROD (AXELROD 1980a,1980b,1981; AXELRDD/HAMILTON 1981) has
described the two possible interpretation of this discount parameter 'w'. The
standard interpretation is that future consumption is not as valuable as
present consumption,

The other interpretation is that future moves will eventually not occur,
because the players won't meet for another encounter any more. It is very easy
to see in this interpretation the dicount parameter as an parameter for the

internal viscosity of the population, in which this game takes place.We can
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then easily let N, the number of players be infinite. AXELROD (1981) can prove

several theorems, three of which I will use here for my further argumentation:
1) If the viscosity parameter is sufficiently high, there is no best
strategy independently of the strategy used by the other player. The
proof for this is important enough to be presented here (slightly
amplified).
Proof: Suppose X is a best strategy independently of the other player's
strategy. That means for every other strategies X' and Y the value of
strategy X played against Y must be higher than the value of X' played
against Y : V(X/Y);> V(X'/Y). Let us define a strategy to be nice, if it
never defects first. Let us now consider first the case that A is nice.
Let X' = ALL D, a strategy of permanent defection, and Y be ALL C, a

. strategy always to cooperate. Then Y(X/Y) = A/(1 - w) which is smaller

than ¥(X'/Y) = C/{1 - w). So there is a strategy X' which does better
against some strategy Y than any nice strategy.
Suppose X is not a nice strategy. Then let X' = ALL C and let Y be a
strategy which éiways cooperate as long as the other player cooperates,
but defects forever as soon as the other player defects the first time.
If X is not a nice strategy, it will at some point defect aﬁ first, say
after n moves. Then V(X/Y)ég [A + w""A + wh(C + wC + wDY1/{1 - w).
V(X/Y) is maximal if n = oo , then ¥V = R / (1 - w). V(X/Y) is minimal
when n = 1, then V = C + wB/(1-w). But V(X'/Y) = A/{) - ¥). In this case
ViX/Y)< ¥(X'/Y) whenever w > (C - A)/(C - D). So there is for every not
nice strategy X a strategy X' and a strategy Y such that
VIX/Y) < V{X'/Y), provided w is sufficiently large. So there is no
strategy which is strictly better than any other strategy, regardless of

the strategy used by the other player. gq.e.d.
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AXELROD favours therefore an evolutionary approach for finding Optimal-
strategies in the sense of MAYNARD-SMITH's ESS (actually AXELROD narroﬁs the
original definition of ESS to the inequality Vi{1)™> Vj(J), and calls it a
collectively stable strategy).Such a collectively stable strategy is in
NASH equlibrium with itself. An optimal strategy is then a strategy which
cannot be invaded.
Pursuing this evolutionary approach AXELROD can furthermore prove:
2) Any strategy which is the first one to cooperate - either at the
first move or later - can be invaded only if w <: (C - A)/(C - D).
3} Small clusters of players using nice strategies can invade

ALL D strategy.

In order to make these findings useful for our own problem we have to take a
secdnd look into the viscosity parameter 'w', which we have treated as a
constant so far. Now in an infinite population thefe will be people which I
wil) hopefully meet time and again, but there will be a large number of
people, for whom the chances of a second encounter with me are arbitrarily
small. So 'w' is in fact not some constant nor a simple variable, but stands
for a probability distribution which ranges from some maximum value close to

gne to almost zero.

Yery tentatively I will now state four conjectures:
1) Nice strategies, which are altruist strategies, can in small clusters
invade non altruist strategies. But in an infinite population they are
not able to crowd the non altruist out completely, because there is
always a segment of the set of players, for which the viscosity parameter
is small enough to allow a non altruist to invade the altruist strategy.
So in a infinite population, in which clustering is permitted, any ESS

must be a mixed one.
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2) If we define a average welfare function for such a population, in
which the ESS is mixed, this function must be convex.

3) There may be no best altruist strategy, but perhaps it is possible
to find properties of a class of best altruist strategies which do
equally better against all other altruist strategies, but are not able to
dominate each other.

4) The evolution of altruism depends on the development of strategies
which can invade non altruist strategies in minimal clusters, can prevai)
against non altruist strategies at minimal viscosity, and will for a
given encounter probability distribution minimize the proportion of the

average welfare which fails to the non altruists.
VI

Three line of éxperimental research which are impoftant for our subject, can
be distinguished.

1) The relatively small number of studies which directly try to verify the
SAMUELSON/OLSON theorem, testing according hypotheses on the influence of
group size, distribution of assets, effect of provision points and the like,
on the actual contribution of the group to a public good (BOHM 1971;
MARWELL/AMES 1979, 1980; SWEENEY 1973). While providing some relevant detafl
findings, the relevance of these studies is limited by their flawed
theoretical framework: they expect manifest free rider behaviour, and take its

absence as an empirical disconfirmation of the theorem.

2) The “Social Loafing" research (HARKINS/PETTY 1982; KERR/BRUUN 1981, 1983;
LATANE/WILLIAMS/HARKINS 15979; WILLIAMS/HARKINS/LATANE 1981) These studies
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focus on the effect of perceived dispensability and identifiabitity of the
individual contribution on efforts and achievements in group problem solving
tasks. While some of the experimental findings are extremely important - for
example the exceptional role of identifiability as a prereguisite for
effective san;tions against free riding - the conceptual framework does not
pay any attention to rational choice nor to evolutionary approaches, but

instead interpretes these findings in the 1ight of psychologicatl theories of

small range.

.3} The vast body of experimental Prisoner's Dilemma studies (recent studies
with a good bibliography are CALDWELL 1976; KOOMORITA/SWEENEY/KRAWITZ 1980).
Closely related is the research on "Social Dilemmas"{DAWES 1980; KOOMORITA/
LAPWORTH 1982) The focus of the experimental Prisoner's Dilemma studies is on
what‘kind of strategies people actually épp]y. A special version is the
simulation of tournaments, competing strategies are confronted with each other

in order to assess their relative strength {AXELROD 1980a, 1980b).

We can assume that , through 1ife experiences, through internalized cultural
patterns, or even through some anthropological endowments,people have some
implicit knowledge about such strategies and how to use them in accordance to
the environment and have certain subjective expectations concerning the
strategies of other players. These expectations can be modelled as subjective
probability distributions over the possible strategies employed by other

players. In the experimental study we are conducting right now we investigate

two aspects of these implicit expectations.
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Secondly we are investigating how the actual content and the reliability of
information about other players shape the single actor's subjective
expectations. The content simply refers to the actual contributions each
player is likely to make for the acquisition of the public good. The higher
the contributions of other players, the closer to the optimum point the single
actor's contributions should be. Reliablity of information can be defined as
the relative level of information within a group which is available to single
member, and can be mesasured as the ratio between the information, which is
actual available to a member and the information about the group, which could
-at most be made available to him. We consider only information on the

willingness of other members to contribute to the public good.

So our second hypothesis is that the lower the relative level of information
is fbr a decision maker, the less confident he will be that none of the other
players will téke a free ride, and therefore will have to make a contribution
further away from the optimum point: either to accept a disproporticnally high
share of the total costs, or to tontribute nothing. On the other hand, the

higher the relative level of informaticn for one actor, the closer will be his

contributicon to the optimum point.

In order to test this hypotheses we have designed a simple computer simulation
program. Our subjects are communicating with four virtual partners about the
sharing of the costs of a public good, so that we are simutating the

communication in a five member group. We have devised two different structures
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The basic idea is the following:

If we assume equal interests in the supply of some public good and equal
initial assets among the players, then the optimum point for the supply of
this good is the same for each player, and equals that supply where the
marginal utility of this public good equals the marginal price per player. The
more likely it is that one or even more of the players might take a free ride,
the more must a rational player's contribution for the purchase of the public
good deviate from this optimal point - either the contribution must be higher
in order to compensate for the loss of the free rider's contribution, or it
.must drop to the level of a non contribution as well, if the marginal uitility

of the public good never exceeds the marginal price.

Two important related aspects of the develpoment of the subjective
expeétations are the player's own risk aversiveness and the player's
assumptions about the other players’ aversiveness..we want to make use‘of the
well known fact, recently thoroughly studied by KAHNEMANN/TVERSKY (1978, 1979,
1981), that in terms of the conventional expected utility theory, people tend
to be risk averse if the issue is how to realize a possible gain, and tend to
be risk taking if the issue is how to avoid a possible loss.

Clearly, if no player can be forced to refrain from taking a free ride, going

closer to the optimality point in one's own contribution is risky.

So our first hypothesis is that in how-to-avoid-a-possible-loss situation
people will tend to make contributions closer to the optimum point than in a
how-to-realize-a-possible-gain situation. This hypothesis refers to two
mechanisms: the risk taking behaviour of the actor himself, and the
unconscious or conscious expectations that the other players may behave in the

same way.
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for this communication,

a ring structure, and a star structure.

- These structures‘aIIOw three different positions: one of the equivalent
positions in the ring structure, one of the equivalent peripheral positions in
the star structure, and finally the central position in the star. In our
simulation each player can communicate only with his immediate neighbours, so
in 5 peripheral position in the star you have just one communication partner,
in the ring twb, and in the peripheral in the star‘position four, with

relative information levels of 1/4, 1/2 and 1, respectively.

A third focus in our experiment is on whether experiencing other partners'
defections in the past has an impact upon later decisions. We hypothesize that
information about former defections in the group will make players more likely
to make contributions further away from the optimum point.

Further details of therexperimenta1 design will be presented at the meeting,

together with first results, which will hopefully be available by then.
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