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Abstract: General theoretic studies of collective action in common-pool resources 
(CPRs) dilemmas have been usually established on an assumption that actors all 
share symmetric access and position with regard to the commons. However, in real 
situations, most actors in a complex social-ecological system are heterogeneous in 
terms of their power, wealth, influence and so forth. The heterogeneity is also greatly 
attributed to diverse geographies, social hierarchies, skills, knowledge, and other 
features which are attached to those actors. Thus, analyses of internal and external 
asymmetric mechanisms are thus required to facilitate cooperation and achieve 
social optimum in CPR dilemmas. This paper uses surface water as an example to 
give a preliminary attempt to cope with the key issues mentioned above. We present 
an iterative N-Person Prisoner’s Dilemma (PD) game theoretic model to quantitatively 
address the equilibrium conditions for collective cooperation in water sharing 
interactions. With a modified PD game payoff matrix and a simple evolutionary 
approach, asymmetric mechanism and information effects are incorporated into the 
model simultaneously. Numerical simulations are carried out in Matlab environment. 
The results demonstrate asymmetric mechanism leads to individual variations in 
terms of motivation to cooperate amongst different upstream and downstream actors. 
Tail-end actor is the one with least motivation to cooperate and up-midstream actors 
are more willing to cooperate. Moreover, higher level of asymmetries would increase 
upstream actors’ incentives to cooperate yet downstream actors are barely affected 
by the asymmetric mechanism. “The shadow of the future” again is confirmed to 
increase the chances of universal cooperation, yet with the asymmetric mechanism, 
stronger motivation to cooperate is produced for downstream actors than upstream 
actors. The results also show greater level of information exchange relaxes overall 
equilibrium conditions, yet there is a negative effect on all actors’ incentive to 
cooperate with the increase of total number of actors. 
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Introduction 

General theoretic studies of collective action in common-pool resources (CPRs) 
dilemmas have been usually established on an assumption that players all share 
symmetric access and position with regard to the commons (Janssen et al. 2010, 
Janssen and Rollins 2012, Janssen, Anderies, and Cardenas 2011, Lindahl 2012, 
Ostrom, Gardner, and Walker 1994, Ostrom and Gardner 1993). However, in real 
situations, most players in a complex social-ecological system are heterogeneous in 
terms of their power, wealth, influence and so forth (Du, Cao, and Hu 2009). The 
heterogeneities are also greatly attributed to diverse geographies, social hierarchies, 
skills, knowledge, and other features which are attached to those actors (Janssen 
and Rollins 2012). Beyond this, it has been noticed that such asymmetries, to a great 
extent, account for essential dynamics of the collective behavior in governing the 
CPRs. To facilitate cooperation and achieve better social outcome in CPR dilemmas, 
analysis of the elements that constitute the asymmetries are required to improve our 
understandings of the internal and external asymmetric mechanisms under which 
particular regularities might hold. In this paper, we will use surface water as an 
example to give a preliminary attempt to address the key issue mentioned above.  
 
Surface water is a controversial CPR that flows across physical boundaries. In a river 
system, disparate users would be inevitably involved in conflicts of sharing water 
resources. Previous theoretical and experimental research suggests that 
asymmetries in terms of efficiency and equity would yield lower level of cooperation in 
CPR dilemmas (Tan 2008, Vandijk and Wilke 1995, Ahn et al. 2007). Yet various 
types of asymmetries exist among these actors in a complex water system. In 
particular, there has been lack of studies focusing on the asymmetric benefits and 
costs that are associated with the physical geographies of a river system. To put it 
more specifically, the relative upstream and downstream positions of actors have 
determined that their individual behaviors of conserving or appropriating water 
resources are by no means symmetrical to each other concerning their gains and 
losses. Knowledge of those spatial asymmetries would shed some light on how to 
design institutions that fit the characteristics of geographical contexts and further 
assist collective cooperation in coping with the CPR dilemma.  
 
On the other hand, as much as the underlying structure of CPR dilemma might be 
globally analogous, more studies have suggested that various social-ecological 
variables might be able to substantially change the results and predictions of theoretic 
models (Janssen et al. 2010, Ostrom, Walker, and Gardner 1992, Sally 1995). There 
are diverse perspectives to study those variables. In this paper, we will focus on 
social reciprocity which refers to the repeated interactions between stakeholders 
involved in a social dilemma and their network relations such as reputation (Krippner 
and Alvarez 2007, Granovetter 1985, Raub and Weesie 1990, Raub, Buskens, and 
van Assen 2011). The rationale of studying social reciprocity lies in the fact that 
complex CPRs systems become increasingly diverse in terms of social 
interdependence and connectivity; and currently, more scholars and decision makers 



are aware that the key approaches of coping with the CPR dilemma are, to a great 
extent, embedded in different scales of social networks and relations (Ostrom 2010a, 
b, c, Brondizio, Ostrom, and Young 2009, Young 2002). Therefore, we argue the 
effects of social reciprocity on collective action in CPR dilemmas warrants further 
study despite the volumes of previous literature which focus on behavior in economic 
exchange concerning the public good problem (Coleman 1988, Scott and Meyer 1994, 
Lindenberg 2001, 2006a, b, Coleman 1990, Raub, Buskens, and van Assen 2011, 
Axelrod and Hamilton 1981, Olson 1971, Granovetter 1985).  
 
Combining the effects of asymmetric payoffs and social reciprocity simultaneously, 
this paper presents an iterative N-person Prisoner’s Dilemma (PD) game theoretic 
model to quantitatively address the Nash Equilibrium conditions for collective 
cooperation in water sharing interactions. With a simple evolutionary approach, we 
allow every player in the game to respond to other players’ behavior based on the 
information one has received. We incorporate the asymmetries into the model by 
modifying the standard PD game payoff matrix. The results demonstrate that the 
degree of asymmetries between upstream and downstream players would not only 
affect overall equilibrium conditions, but also alter different individual players’ 
particularly the head-ender and the tail-ender’s motivation in establishing cooperation; 
furthermore, in general a higher level of information exchange within the river system 
and a higher probability of future interactions would have positive effects on universal 
cooperation, whereas a larger group size might have negative effects on it. Various 
players would also be affected by these parameters in different ways, which will be 
discussed in later sections of the paper.  

The Model 

The setup of the model is as follows. We adopt an iterative N-person PD game 
theoretic model of information effects to simulate the interactions among water users 
in a linear river system. A finite number of players (A1, A2 ⋯Ai ⋯An) are located 
along the river in a fixed sequence and are assumed to make binary actions between 
Cooperate (C) and Defect (D) simultaneously. The actions are made on a discrete 
time scale (t = 1,2,3⋯ ) with a continuing probability 0 < β < 1.  
 
We first integrate the features of asymmetries into the model by modifying the 
standard PD game payoff matrix. We introduce an asymmetric parameter α as 
indicated in Figure 1,  
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Figure 1. Asymmetric Payoff Matrix of Prisoner’s Dilemma Game 



where αi,ji = iφ

iφ+jφ
, αi,j

j = jφ

iφ+jφ
, αi,ji + αi,j

j = 1, 1 ≤ i < 𝑗 ≤ 𝑛, i, j ∈ ℤ+. Note that the 

asymmetric parameter α is adjusted by the relative geographical distribution of any 
two players i and j, as well as the exploitation parameter φ. The parameter φ 
represents the degree to which one player differentiates from another player in terms 
of utilities. More importantly, the essential feature of PD game (T > 𝑅 > 𝑃 > 𝑆) is still 
strictly satisfied for all α that have been introduced in the model.  
 
In consistent with the ecological characteristics of a river system, we assume that 
 φ > 0 based on two main reasons. Firstly, it is natural to consider the relative 

downstream player Aj could obtain more benefits than the upstream player Ai due 

to either player’s contribution to conserve the river system. Secondly, it is, however, 

also reasonable to consider the downstream player Aj could receive more damages 

than the upstream player Ai due to either player’s defection to pollute the river 
system. As i and j represent the relative position of any two players in the game, we 
can notice that the more distant the two players are, the larger difference it caused on 
their respective utilities. In addition, the larger the parameter φ is, the greater effects 
on utilities are produced given the spatial asymmetries among players. Accordingly, 
we can address the utility function for any player Ai as follows, 

𝑈𝑖𝑡 = 𝑓�𝑉𝑡 ,𝛼𝑖,𝑗𝑖 � = ∑ 2𝑅𝛼𝑖,𝑗𝑖
𝑉𝑡
𝑗 + ∑ 2𝑆𝛼𝑖,𝑗𝑖

𝑁−𝑉𝑡−𝐴𝑖
𝑗    𝑖𝑓 𝑠𝑖𝑡 = 𝐶           Eq. 1 

𝑈𝑖𝑡 = 𝑔�𝑉𝑡 ,𝛼𝑖,𝑗𝑖 � = ∑ 2𝑇𝛼𝑖,𝑗𝑖
𝑉𝑡
𝑗 + ∑ 2𝑃𝛼𝑖,𝑗𝑖

𝑁−𝑉𝑡−𝐴𝑖
𝑗    𝑖𝑓 𝑠𝑖𝑡 = 𝐷           Eq. 2 

where Uit denotes the utility of Ai at moment t, sit denotes the action of Ai at 
moment t. j ∈ Vt, Vt represents a set of players who choose C apart from the focal 
player Ai at moment t. Vt is a subset of the whole set N={A1, A2,⋯ , An} which is a 
profile of all players in the game. Since we assume the event continues with a 
probability 0 < 𝛽 < 1 in the indefinitely iterated game, therefore, the total utility Uı�  
that any player Ai could receive during the entire game is, 

𝑈𝚤� = ∑ 𝛽𝑡−1𝑈𝑖𝑡∞
𝑡=1                               Eq. 3 

where Uı�  is the exponentially discounted utility sum of Ai from t = 1 till the 
indefinite end of the game. 
 
After establishing the model, our next objective is to derive the conditions for Nash 
Equilibrium in which collective cooperation is selected. To achieve the objective, it 
involves two more procedures. One is to assign supergame strategy to all the players. 
Based on non-cooperative game theory, collective cooperation could be the outcome 
of individual rationality if cooperation for any player in all their interactions is the best 
strategy against each other (Nash 1951, Axelrod and Hamilton 1981). Yet there exist 
countless conditional cooperative supergame strategies as the game is indefinitely 
repeated. Also, the condition for universal cooperation varies with the supergame 



strategies that are adopted by each player in the game. In our model we only focus on 
a classic conditional supergame strategy “Tit for Tat” (TFT). It should be noted that 
TFT has different definitions in an N-person game based on how a player interprets 
“defection”. To simplify our analysis, we adopt a very strict definition, that is, any 
player Ai enters the game with C and cooperate against all the other players at each 
round if he has no information that any other player defected in previous rounds; but if 
Ai receives information that at least one player has defected in previous rounds, then 
Ai chooses D as his action in the next round. The TFT strategy allows every player to 
response to other players’ behavior in every event moment. We assume all players 
use strict TFT in the model.  
 
The other procedure to derive the necessary and sufficient conditions for cooperative 
Nash Equilibrium is to analyze the model in three different information scenarios. 
Information is one of the key elements of social reciprocity in the sense of generating 
reputation which might indirectly affect players’ long-term utilities. The three scenarios 
are defined based on assumptions regarding the information that is available to all the 
players, namely atomized interaction, perfectly embedded interactions and 
imperfectly embedded interactions. The effects of information on collective 
cooperation will be respectively examined in these three scenarios. 
 
Scenario One: Atomized Interactions 
We begin with the simplest scenario. Assuming that the information any actor Ai can 
possibly receive is only from the actors who are located adjacent to him (Ai+1 and 
Ai-1). This information is assumed to be received right after an action is committed by 
Ai+1 and Ai-1 at moment t. Under this specific assumption, interactions are atomized 
in the sense that an actor only gets information from nobody else but his contiguous 
actors. 
 
According to the definition of Nash Equilibrium, it is shown that either ALL-C (always 
play cooperation or any other strategy that never initiates a defection) or ALL-D 
(always play defection) is a best-response strategy should all other actors use strict 
TFT (Raub and Weesie 1990, Friedman 1977). Thus the conditions under which 
collective cooperation is established must satisfy, 

𝐸(𝑈𝚤� |𝐴𝐿𝐿 − 𝐷) ≤ 𝐸(𝑈𝚤� |𝐴𝐿𝐿 − 𝐶)                        Eq. 4 

that is, for any player Ai his expected payoffs of using ALL-C is always no smaller 
than his expected payoffs of using ALL-D. Solving the inequality, we then have the 
necessary and sufficient condition for universal cooperative Nash Equilibrium in 
atomized interactions. We refer to the Appendix for outlines of the proof. 

𝛾 ≤
𝛽�𝛼𝑖,𝑖−1𝑖 + 𝛼𝑖,𝑖+1𝑖 � + 𝛽2�𝛼𝑖,𝑖−2𝑖 + 𝛼𝑖,𝑖+2𝑖 � + ⋯+ 𝛽𝑛−𝑖−1�𝛼𝑖,2𝑖−𝑛+1𝑖 + 𝛼𝑖,𝑛−1𝑖 � + 𝛽𝑛−𝑖�𝛼𝑖,2𝑖−𝑛𝑖 + 𝛼𝑖,𝑛𝑖 �

∑ 𝛼𝑖,𝑗𝑖 + ∑ 𝛼𝑖,𝑗𝑖𝑛
𝑗=𝑖+1

𝑖−1
𝑗=1

  𝑖𝑓 𝑖 ≤ |
𝑛
2 | 

𝛾 ≤
𝛽�𝛼𝑖,𝑖−1𝑖 + 𝛼𝑖,𝑖+1𝑖 � + 𝛽2�𝛼𝑖,𝑖−2𝑖 + 𝛼𝑖,𝑖+2𝑖 � + ⋯+ 𝛽𝑖−2�𝛼𝑖,2𝑖 + 𝛼𝑖,2𝑖−2𝑖 � + 𝛽𝑖−1�𝛼𝑖,1𝑖 + 𝛼𝑖,2𝑖−1𝑖 �

∑ 𝛼𝑖,𝑗𝑖 + ∑ 𝛼𝑖,𝑗𝑖𝑛
𝑗=𝑖+1

𝑖−1
𝑗=1

  𝑖𝑓 𝑖 > |
𝑛
2

| 

It should be noted that in all the expressions αi,ji = 0 if j > 𝑛 𝑜𝑟 𝑗 < 1. We define γ as 



the costs of cooperation (T-R) divided by the costs of defection (T-P), γ = (T −
R)/(T − P), where 0<γ<1 and γ is an invariant under the given payoff matrix. Basically, 
γ is an indicator of any player Ai’s short-term incentive for defection.  
 
Scenario Two: Perfectly Embedded Interactions 
We then relax the first assumption by introducing a system which allows a player to 
obtain information from all the other actors rather than just his neighbors. It is also 
assumed that the information is perfectly embedded in the system. It implies that 
every actor receives full information about all the other actors’ behaviors immediately 
after an action is made.  
 
Similar procedure applies when we solve the inequality 4. Then the necessary and 
sufficient condition for cooperative Nash Equilibrium in perfectly embedded 
interactions is as follows.  

𝛾 ≤ 𝛽 
 
Scenario Three: Imperfectly Embedded Interactions 
Either atomized or perfectly embedded interactions represent a relatively extreme 
situation of information exchange. Lastly, we introduce a more realistic assumption 
under which information is partly or imperfectly informed to all the actors. In particular, 
for any player Ai, it is still assumed that information can be immediately received from 
his contiguous actors. Meanwhile, he can also obtain information about the behavior 
of any other actor Aj (i ≠ j), but only after a certain time lag πij, which increases with 
the distance between actors Ai and Aj. We have to apply more complex procedures to 
solve the inequality 4 as a new parameter πij is introduced. On the other hand, it is 
worth noting that scenario one and two could also be interpreted as two extreme 
cases of scenario three. That is, when πij→∞, the information among distant actors 
travels so slow that the case is the same as atomized interaction; when πij→0, the 
information travels so fast that everyone will immediately be aware of the history of all 
the other actors as in perfectly embedded interactions. The necessary and sufficient 
conditions for cooperative Nash Equilibrium in imperfectly embedded interactions are 
as follows.  
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Results 

The expressions of the equilibrium conditions are rather complex, yet there are still a 
few important regularities that should be noted. Firstly, all of the three equilibrium 
conditions are inequalities consisting of the “temptation to defect” on the left and a 
function on the right. For later reference, we define the right side function as 

fa(atomized interactions), fp (perfectly embedded interactions) and fim (imperfectly 

embedded interactions). The values of the three functions are denoted as Va, Vp and 

Vim respectively. Thus the equilibrium conditions could be translated into the 
following mathematical expressions.  
 

𝛾 ≤ 𝑉𝑎 = 𝑓𝑎(𝑛,𝛽,𝜑, 𝑖)                             Eq. 5 

𝛾 ≤ 𝑉𝑝 = 𝑓𝑝(𝛽)                                Eq. 6 

𝛾 ≤ 𝑉𝑖𝑚 = 𝑓𝑖𝑚(𝑛,𝛽,𝜑, 𝑖)                           Eq. 7 

Secondly, the equilibrium condition under the assumption of perfect information is 
only dependent on the discount parameter β regardless of the asymmetries among 
diverse players and the total number of players. Thirdly, the newly introduced 
parameter α, along with the discount parameter β and the total number of players n 
are all critical elements in both atomized and imperfectly embedded interactions.  

 
The goal of our analysis is to understand how asymmetric payoffs and information 
affect players’ behavior in collective cooperation based on the Nash Equilibrium 
conditions derived in the last section. However, as the four parameters n,β,φ and i 
affect the value of the functions concurrently, it is impracticable to establish explicit 
understandings of the effects of these independent parameters. In other words, we 
cannot intuitively predict how Va and Vim changes if either of the four parameters 
varies. To obtain a better insight into the functions, we performed numerical 
simulations in Matlab. The simulations were designed to examine Va and Vim under 
circumstances when parameters n varies from 3 to 20 at a 1 interval, β varies from 
0.01 to 0.99 at a 0.01 interval, φ varies from 0.1 to 3 at a 0.1 interval and i varies 
from 1 to n at a 1 interval.  



 
Figure 2. The trend of 𝑉𝑎 and 𝑉𝑖𝑚 as the total number of players n increases.  

 
We first examine the effects of parameter n, then for simplicity, our analysis in this 
paper will only focus on how the variations of β, φ and i affect Va and Vim when n 
equals to 20. It is worth noting that the larger Va and Vim are, the more likely the 
focal player could voluntarily cooperate in the game. Figure 2 indicates the trend of 
Va and Vim for the headend, tailend and midstream players as the total number of 
players n increases from 3 to 20 while φ equals to 0.4, 1 and 3. Each subplot in 
Figure 2 also compares the value of Va and Vim for the above mentioned three 
players when  β equals to 0.3 and 0.9. In general, the results demonstrate a 
descending trend of Va and Vim in most scenarios, which confirmed Olson’s 
influential argument about “the logic of collective action” which states that the larger a 
group is, the less likely they are to create social incentives that lead its members to 
provide collective goods (Olson 1971). Nonetheless, as shown in Figure 2 (c) and 
Figure 2(f), we also discovered that the headend player’s incentive to cooperate is 
hardly affected by group size when a high level of asymmetries (φ = 3) exists during 
the course of interactions. 



 
Figure 3. 𝑉𝑎 and 𝑉𝑖𝑚 for different upstream and downstream players as 𝛽 is fixed 

 
Figure 3 indicates the value of Va and Vim for different upstream and downstream 
players while β equals to 0.3, 0.6 and 0.9 in atomized and imperfectly embedded 
interactions respectively. Each sub-image in Figure 3 also compares how upstream 
and downstream players react to variations of the levels of asymmetric payoff 
mechanism. A few remarks can be drawn from this figure. 1) The value of Va and Vim 
increases with i at the beginning and then decreases after Va reaches its apex. 
Although the position of apex varies with φ and β, it implies relative up-midstream 
players are more likely to cooperate than the other players when other parameters 
are invariant; 2) The curves in each sub-image became more steep as φ increases. 
It shows that greater individual differences exist in games with higher level of 
asymmetries. 3) It is shown from the figure that Va and Vim reach their bottoms at 
the last point, which implies the tailend actor is meanwhile the one who has least 
motivation to cooperate. 
 
Figure 4 indicates the trend of Va and Vim for a particular player as φ increases 
when β equals to 0.3, 0.6 and 0.9 in atomized and imperfectly embedded 
interactions respectively. Figure 4 also compares the value of Va and Vim for five 
different upstream and downstream players when β is constant. A few important 
remarks can be also drawn from this figure. 1) In general, the value of Va and Vim 
for downstream players is smaller than upstream players which implies the former is 
less likely to cooperate than the latter. The tailend player is meanwhile the one who 



has least motivation to cooperate; 2) The values of Va and Vim for upstream players 
increase with φ, yet for downstream players they decrease slightly with φ and tend 
to stabilize though φ increases. It implies upstream players are sensitive to the 
degree of asymmetries and more likely to cooperate when higher level of 
asymmetries became manifest. Nevertheless the asymmetries have little effect on 
downstream players in terms of their motivation for cooperation. 

 

 

Figure 4. The trend of 𝑉𝑎 and 𝑉𝑖𝑚 for five particular players as 𝜑 increases 

 
Figure 5 indicates the value of Va and Vim for a particular player as β increases 
while φ equals to 0.4, 1 and 3. Figure 5 also compares the value of Va and Vim for 
five different upstream and downstream players when  φ is constant. The value of β 
is generally referred as “the shadow of the future” which indicates the possibility of 
future interactions between all involved players. Hence, the larger β is the more 
likely the game will continue. According to Figure 5 we can draw the following 
remarks. 1) For a particular player, the value of Va increases with β when the 
degree of asymmetries is constant. It suggests that a player is more likely to 
cooperate when “the shadow of the future” is significant; 2) the slope of the curves for 
downstream players became more steep than upstream players when β is relatively 
large; the situation is reversed when β is relatively small. It implies that downstream 
players’ motivation for cooperation increase faster than upstream players when there 
is a greater possibility that future interactions will remain to happen. To the contrary, 



upstream players are more motivated to cooperate than downstream players even 
when there is greater chance that the game could end soon. 

 

Figure 5. The value of 𝑉𝑎 and 𝑉𝑖𝑚 for five particular players as 𝛽 increases 

 



Figure 6. A comparison of equilibrium conditions for universal cooperation under three 
scenarios 

After analyzing the effects of each parameter individually, in Figure 6 we display the 
equilibrium conditions for all three scenarios in a single three dimensional graph. The 
X, Y and Z axis represent β, φ and V respectively. This figure examines information 
effects on collective cooperation by comparing the equilibrium conditions. The 
equilibrium condition in perfectly embedded interactions is only dependent on β and 
thus is a flat surface on the graph regardless of spatial asymmetries. The flat surface 
is above the other two curved surfaces which the latter represent imperfectly 
embedded and atomized interactions. Meanwhile, the asymmetric payoff mechanism 
has slightly changed the shape of the curved surfaces, and yet importantly, it does not 
change the fact that the conditions for universal cooperation become less restrict 
when information becomes better exchanged in the model. The result once again 
reveals the significance of information on collective action in dilemma situations. 
To sum up, the results suggest significant individual variations in terms of motivation 
to cooperate amongst different upstream and downstream players. With the increase 
of total number of actors, there is a negative effect on all actors’ willingness to 
cooperate. More specifically, with the asymmetric payoff mechanism in the linear 
system, we have a counter intuitive conclusion that the tailend player becomes the 
one with least motivation to cooperate and the up-midstream players are the ones 
who are most willingly to cooperate. Moreover, our numerical simulation shows that 
greater level of asymmetries would increase upstream players’ incentives to 
cooperate yet downstream players are barely affected by the degree of asymmetries 
pertaining to the conditions for their cooperation. With regard to the effects of “the 
shadow of the future”, it is suggested that greater probability of future interactions 
would increase all players’ willingness to cooperate, yet with the asymmetric payoff 
mechanism, stronger motivation to cooperate is produced for downstream players 
than upstream players. Last but not least, it is shown that greater levels of information 
exchange relaxes the overall equilibrium conditions for universal cooperation among 
multiple heterogeneous actors, yet  

Discussions 

Successful management of complex common-pool resources (CPRs) systems 
requires high levels of cooperation. As human society becomes increasingly 
interdependent and hierarchical, such successes, to a great extent, are attributed to 
mechanisms which enable various stakeholders to cooperate when they are 
heterogeneous with regard to their social-ecological statuses. In this paper we 
investigate the effects of asymmetric payoff mechanism and information effects 
simultaneously. We establish a quantitative model of iterative N-person Prisoner’s 
Dilemma game and study the game from an evolutionary perspective. Under different 
information scenarios, our analysis produces mathematical equilibrium condition for 
universal cooperation in each scenario and shows the dynamics of interactions 
between multiple players who obtain asymmetric payoffs during the course of the 
game.  



 
In general, our model reveals how individual heterogeneity affects cooperative 
behavior of stakeholders who are embedded in different social-economic categories. 
This paper is a preliminary theoretical attempt to connect asymmetric mechanisms 
with various stakeholders’ collective action in sharing limited surface water resources. 
In this paper, we would not, and do not intend to conclude with a deterministic 
argument about the causal relationship between individual asymmetries and 
collective cooperation in water governance. A lot more theoretical models and 
empirical case studies remain to be conducted. However, we do expect to shed a light 
on the significance of economic asymmetries among various stakeholders. With the 
increase of global changes and diversification of individual interests, it is critical that 
players with heterogeneous attributes are coordinated by varied institutions which are 
suitable for the characteristics of these players. Likewise, successful reform of water 
resources management should be made base on better knowledge of the 
asymmetries that are embedded in complex water systems.  
 
In addition, the implications of asymmetries and social reciprocity are not only 
restricted to water resources, for many complex CPR systems, it has been also 
occurred to researchers that mismatches between the essential features of a CPR 
system and its institutional context are accountable for negative externalities and 
inefficient governance of the CPRs. Therefore, successful CPR management 
requires a higher level of fit, not only between the physical geographies of the natural 
resources systems and the institutions with which they interact, but also between the 
associated institutions and heterogeneous social norms, economies, politics and 
culture that are attached to the system at various scales (Moss 2012, Johnson et al. 
2012, Young 2002). Addressing the problem of fit itself is accompanied with both 
theoretical and empirical challenges. Yet regardless of the complexity and challenges, 
recent research has reached a consensus that more subtle understandings of the 
dynamics of human-nature interactions and substantial mechanism of fit rather than 
deterministic approaches are required to better address misfits in CPRs management 
(Moss 2012, Johnson et al. 2012, Folke et al. 2007, Folke et al. 2005). To design 
certain institutional arrangements that are better suitable for the physical and 
social-economic characteristics of a CPR system, scholars, practitioners and decision 
makers need to better understand the dynamics of interactions occur in the system 
and grasp the internal and external mechanisms under which particular social 
phenomena might take place. The asymmetries embedded in stakeholders at various 
levels are important elements that make up these critical mechanisms of collective 
action in governing limited CPRs, and thus merits further investigation in future 
studies.  
 
There are a number of approaches that could enrich the study we initiated. Firstly, 
researchers could investigate variations of the presented model by introducing 
alternative games, supergame strategies and information conditions. As a result, 
more subtle nuances of the effects of asymmetries and social embeddedness could 



be examined and further understood in theory. Secondly, there is still a wide gap 
between the predictions we generated from theoretical models and empirical cases in 
real situations. Arguably, we can offer some possible explanations for the results of 
the model. For instance, pertaining to motivation for cooperation, the results suggest 
upstream players are more sensitive to the asymmetries and downstream players are 
more sensitive to the probability of future interactions. An intuitive justification for the 
outcome might be that downstream players as the explorer need a more secure 
environment of long term interactions to cooperate since they bare relative larger 
risks once their cooperation is defected; whereas upstream players are more concern 
about the inequalities therefore would show up nice gestures to win cooperation from 
downstream players because they would not lose too much even if their trust is 
defected. Nevertheless, it would substantially complement our research if laboratory 
experiments and empirical cases studies could be carried out to test and adjust the 
theories produced by the models. Last but not least, there remains a significant 
research gap in asymmetries and social embeddedness that warrants further studies 
despite the volumes of previous literature. For example, many forms of asymmetries 
such as access to information, access to resources, eco-political influences still need 
further exploration. In addition, it is also of significant importance to extend the study 
on asymmetries from surface water system to other CPR systems in which distinctive 
social-ecological network structure would function.  

Appendix 

The appendix summarizes the proofs and calculating procedures of the three 
theorems discussed above. Followed by the deduction in section 3, the critical step to 
derive the equilibrium conditions is to solve the following inequality for any player Ai 
under the three different scenarios (Wang, Ng, and Buskens 2012). 

𝐸(𝑈𝚤� |𝐴𝐿𝐿 − 𝐷) ≤ 𝐸(𝑈𝚤� |𝐴𝐿𝐿 − 𝐶)                                               
   A. 1 

One established formula will be used in following deductions. 

𝑆 = 𝑎1 + 𝛽𝑎1 + 𝛽2𝑎1 + ⋯ = 𝑎1
1−𝛽

                                                   

A. 2 

Where a1 is an invariant real number and 0 < 𝛽 < 1 
With the asymmetric payoff settings, obviously each player will receive different utility 
in each round. Focusing on the right side of the inequality, however, C will be chosen 
by all of the players throughout the game as no player will ever initiate a defection 
according to their supergame strategy (ALL-C or TFT). Hence for any player Ai, 
based on the utility function in section 2, his expected payoff of using ALL-C against 
all the other players who stick with TFT will be identical as presented in A.3 under all 
three assumptions regardless of their information situations. 

𝐸(𝑈𝚤� |𝐴𝐿𝐿 − 𝐶) = 2𝑅
1−𝛽

�∑ 𝛼𝑖,𝑗𝑖𝑖−1
𝑗=1 + ∑ 𝛼𝑖,𝑗𝑖𝑛

𝑗=𝑖+1 �                                      



  A. 3 

Yet player Ai will receive different expected payoff if he uses ALL-D as his 
supergame strategy under different assumptions; because, other players who use 
TFT will response to defection in different ways based on the information they receive. 
Different responses will further affect the utility that Ai could receive in each event 
moment. Therefore, we will compute the expected payoff of Ai when he uses ALL-D 
under all the three different assumptions respectively. Then we will derive the 
equilibrium conditions by putting E(Uı� |ALL − C) and E(Uı� |ALL − D) back to the 

inequality A.1. Please note in all the following calculations that αi,ji = 0 if j > 𝑛 𝑜𝑟 𝑗 <

1. Some situations in which j > 𝑛 𝑜𝑟 𝑗 < 1 may occur in order to keep the 
expressions of theorems more consistent and in a more regular pattern.  

Assumption One: Atomized interactions 

In this scenario, it is assumed that any player Ai could only receive information from 
his contiguous players Ai−1 and Ai+1. The information is expected to be received 
right after an action is committed. It implies that if Ai initiates a defection in the game 
at moment 1, then Ai−1 and Ai+1 will be aware of the defection and start to defect at 
moment 2. Players Ai−2 and Ai+2 will realize the defection of Ai−1 and Ai+1, and 
then start to defect at moment 3, and so forth. In general, once a defection emerges, 
it will diffuse through contiguity in a linear atomized network towards both upstream 
and downstream directions. Considering the relative geographical location of Ai will 
affect the equilibrium condition, the calculation will be carried out in two situations in 
which Ai is located either in relative upstream (i ≤ | n 2⁄ |) or downstream (i > | n 2⁄ |) 
of a river. 
(1) If  𝑖 ≤ |𝑛 2⁄ |, then it takes longer time for the defection diffuses towards relative 

downstream players than upstream players. Apparently, player 𝐴𝑛 will be the last 
one who realizes another player had defected in an earlier round. 𝐴𝑛 will start to 
defect at moment 𝑛 − 𝑖 + 1, and since then all players will defect afterwards. 
Therefore, we can divide the total expected utility of 𝐴𝑖  into two parts on the 
basis of whether cooperative behavior still exists in the interactions.  

𝐸(𝑈𝚤� |𝐴𝐿𝐿 − 𝐷) = ∑ 𝛽𝑡−1𝑈𝑖𝑡 =∞
𝑡=1 ∑ 𝛽𝑡−1𝑈𝑖𝑡  + ∑ 𝛽𝑡−1𝑈𝑖𝑡∞

𝑡=𝑛−𝑖+1
𝑛−𝑖
𝑡=1                          

  A. 4 

For part one, 

∑ 𝛽𝑡−1𝑈𝑖𝑡 =𝑛−𝑖
𝑡=1 2𝑇�∑ 𝛼𝑖,𝑗𝑖𝑖−1

𝑗=1 + ∑ 𝛼𝑖,𝑗𝑖𝑛
𝑗=𝑖+1 � + 𝛽�2𝑇�∑ 𝛼𝑖,𝑗𝑖𝑖−2

𝑗=1 + ∑ 𝛼𝑖,𝑗𝑖𝑛
𝑗=𝑖+2 � + 2𝑃�∑ 𝛼𝑖,𝑗𝑖𝑖−1

𝑗=𝑖−1 + ∑ 𝛼𝑖,𝑗𝑖𝑖+1
𝑗=𝑖+1 �� +

𝛽2�2𝑇�∑ 𝛼𝑖,𝑗𝑖𝑖−3
𝑗=1 + ∑ 𝛼𝑖,𝑗𝑖𝑛

𝑗=𝑖+3 �  + 2𝑃�∑ 𝛼𝑖,𝑗𝑖𝑖−1
𝑗=𝑖−2 + ∑ 𝛼𝑖,𝑗𝑖𝑖+2

𝑗=𝑖+1 �� + ⋯+ 𝛽𝑛−𝑖−2�2𝑇�∑ 𝛼𝑖,𝑗𝑖2𝑖−𝑛+1
𝑗=1 + ∑ 𝛼𝑖,𝑗𝑖𝑛

𝑗=𝑛−1 � +

2𝑃�∑ 𝛼𝑖,𝑗𝑖𝑖−1
𝑗=2𝑖−𝑛+2 + ∑ 𝛼𝑖,𝑗𝑖𝑛−2

𝑗=𝑖+1 �� + 𝛽𝑛−𝑖−1�2𝑇�∑ 𝛼𝑖,𝑗𝑖2𝑖−𝑛
𝑗=1 + ∑ 𝛼𝑖,𝑗𝑖𝑛

𝑗=𝑛 � + 2𝑃�∑ 𝛼𝑖,𝑗𝑖𝑖−1
𝑗=2𝑖−𝑛+1 + ∑ 𝛼𝑖,𝑗𝑖𝑛−1

𝑗=𝑖+1 ��  

Times β on each side of the equation and with some simple algorithm we will have  



(1 − 𝛽)∑ 𝛽𝑡−1𝑈𝑖𝑡 =𝑛−𝑖
𝑡=1 2𝑇�∑ 𝛼𝑖,𝑗𝑖𝑖−1

𝑗=1 + ∑ 𝛼𝑖,𝑗𝑖𝑛
𝑗=𝑖+1 � + 2(𝑃 − 𝑇)�𝛽�𝛼𝑖,𝑖−1𝑖 + 𝛼𝑖,𝑖+1𝑖 � + 𝛽2�𝛼𝑖,𝑖−2𝑖 + 𝛼𝑖,𝑖+2𝑖 � + ⋯+

𝛽𝑛−𝑖−1�𝛼𝑖,2𝑖−𝑛+1𝑖 + 𝛼𝑖,𝑛−1𝑖 �� − 𝛽𝑛−𝑖�2𝑇�∑ 𝛼𝑖,𝑗𝑖2𝑖−𝑛
𝑗=1 + ∑ 𝛼𝑖,𝑗𝑖𝑛

𝑗=𝑛 � + 2𝑃�∑ 𝛼𝑖,𝑗𝑖𝑖−1
𝑗=2𝑖−𝑛+1 + ∑ 𝛼𝑖,𝑗𝑖𝑛−1

𝑗=𝑖+1 ��                                                                 
A. 5 

For part two, 

∑ 𝛽𝑡−1𝑈𝑖𝑡∞
𝑡=𝑛−𝑖+1 =

𝛽𝑛−𝑖2𝑃�∑ 𝛼𝑖,𝑗
𝑖𝑖−1

𝑗=2𝑖−𝑛 +∑ 𝛼𝑖,𝑗
𝑖𝑛

𝑗=𝑖+1 �

1−𝛽
                                           

   A. 6 

Combining A.5, A6 and put them back to A.1 with A.3, we will have  

𝑇−𝑅
𝑇−𝑃

≤ 𝛽�𝛼𝑖,𝑖−1
𝑖 +𝛼𝑖,𝑖+1

𝑖 �+𝛽2�𝛼𝑖,𝑖−2
𝑖 +𝛼𝑖,𝑖+2

𝑖 �+⋯+𝛽𝑛−𝑖−1�𝛼𝑖,2𝑖−𝑛+1
𝑖 +𝛼𝑖,𝑛−1

𝑖 �+𝛽𝑛−𝑖�𝛼2𝑖−𝑛
𝑖 +𝛼𝑖,𝑛

𝑖 �
∑ 𝛼𝑖,𝑗

𝑖 +∑ 𝛼𝑖,𝑗
𝑖𝑛

𝑗=𝑖+1
𝑖−1
𝑗=1

                       

    A. 7 

(2) If  𝑖 > | n 2⁄ |, then it takes longer time for the defection to diffuse towards relative 
upstream players than downstream players. In this case, player 𝐴1 will be the last 
player who realizes another player had defected in an earlier round. Player 𝐴1 
will start to defect at moment 𝑖, and since then all players will defect afterwards. 
Likewise, we divide the total expected utility of 𝐴1 into the following two parts.  

𝐸(𝑈𝚤� |𝐴𝐿𝐿 − 𝐷) = ∑ 𝛽𝑡−1𝑈𝑖𝑡 =∞
𝑡=1 ∑ 𝛽𝑡−1𝑈𝑖𝑡  + ∑ 𝛽𝑡−1𝑈𝑖𝑡∞

𝑡=𝑖
𝑖−1
𝑡=1                              

   A. 8 

Without repeating a similar calculation as in A.5 and A.6, we will have the following 
equilibrium condition.  

𝑇−𝑅
𝑇−𝑃

≤ 𝛽�𝛼𝑖,𝑖−1
𝑖 +𝛼𝑖,𝑖+1

𝑖 �+𝛽2�𝛼𝑖,𝑖−2
𝑖 +𝛼𝑖,𝑖+2

𝑖 �+⋯+𝛽𝑖−2�𝛼𝑖,2
𝑖 +𝛼𝑖,2𝑖−2

𝑖 �+𝛽𝑖−1�𝛼𝑖,1
𝑖 +𝛼𝑖,2𝑖−1

𝑖 �
∑ 𝛼𝑖,𝑗

𝑖 +∑ 𝛼𝑖,𝑗
𝑖𝑛

𝑗=𝑖+1
𝑖−1
𝑗=1

                          

   A. 9 

Assumption Two: Perfectly Embedded Interactions 

In this scenario, it is assumed that any player Ai could receive information from all of 
the other players right after an action is committed. It implies that if Ai initiates a 
defection in the game at moment 1, then all the other players will be aware of the 
defection immediately and start to defect at moment 2. Hence, it is easy to calculate 
the expected utility of Ai when he uses ALL-D against all the other players who use 
TFT under a perfect information scenario.  

𝐸(𝑈𝚤� |𝐴𝐿𝐿 − 𝐷) = ∑ 𝛽𝑡−1𝑈𝑖𝑡 =∞
𝑡=1 2𝑇�∑ 𝛼𝑖,𝑗𝑖𝑖−1

𝑗=1 + ∑ 𝛼𝑖,𝑗𝑖𝑛
𝑗=𝑖+1 � +

2𝑃𝛽�∑ 𝛼𝑖,𝑗
𝑖𝑖−1

𝑗=1 +∑ 𝛼𝑖,𝑗
𝑖𝑛

𝑗=𝑖+1 �

1−𝛽
           

  A. 10 

Put A.10 and A.3 back to A.1 we will have 



𝑇−𝑅
𝑇−𝑃

≤ 𝛽                                                                           

  A. 11 

Assumption Three: Imperfectly Embedded Interactions 

In this scenario, it is assumed that any player Ai could receive information from all of 
the other players, but only after a certain time lag πij which is dependent on the 

geographical distance between any of the two players Ai and Aj. It is still assumed 

that Ai could only receive information from his contiguous players Ai−1 and Ai+1 
immediately. This assumption implies that if Ai initiates a defection in the game at 
moment 1, then all the other players will be aware of the defection sooner or later and 
start to defect upon their receipt of the defective information. Clearly, the longer time it 
takes for information to transfer, far fewer players could have been notified that the 
defection was made in earlier rounds, and vice versa. Moreover, Assumption One & 
Two could also be interpreted as two extreme cases of Assumption Three. That is, 
when πij→∞, the information among distant players travels so slow that the case will 
be the same as atomized interaction; when πij→0, the information travels so fast that 
everyone will immediately be aware of the history of all the other players as in 
perfectly embedded interactions. 
Although information might travel at a different speed under Assumption Three, to find 
an equilibrium condition, we only need to concentrate on a scenario in which player 
Ai could gain maximum expected utility if he uses ALL-D against all of the other 
players who use TFT. Obviously, this scenario should allow information travel as 
slowly as possible given the constraints of Assumption Three; because, it will give Ai 
the most short-term benefits before the whole game turns into a situation with 
universal defection. More specifically, it implies that if Ai initiates a defection at 
moment 1, then Ai−1 and Ai+1 will be aware of the defection and start to defect at 
moment 2 as they are Ai’s neighbors; besides that, players Ai−2 and Ai+2 will also 
receive the information and start to defect at moment 2 as information is better 
embedded in this scenario than in atomized interactions and they are geographically 
closer to Ai than other players. Yet Ai−2 and Ai+2 are the only two more players 
who can receive the defective information so that Ai is ensure to gain maximum 
benefits by using ALL-D in Assumption Three. 
The deduction of the equilibrium condition in Assumption Three is more complicated 
than the other two scenarios. Four different scenes will occur considering the relative 
geographical location of Ai and the unequal number of players who are located on 
both upstream and downstream directions of Ai. The results will have subtle 
differences. We will only present one deduction process in which Ai is located in 
relative upstream (i ≤ | n 2⁄ |) and the total amount of downstream players is an even 
number (n − i = 2m, m ∈ ℤ+).  
When (i ≤ | n 2⁄ |) and (n − i = 2m, m ∈ ℤ+), player An will be the last one who 
realizes another player had defected in an earlier round. Player An will start to defect 
at moment (n − i) 2⁄ + 1, and since then all players will defect afterwards. Therefore, 



we can divide the total expected utility of Ai  into two parts on the basis of whether 
cooperative behavior still exists in the interactions. 

𝐸(𝑈𝚤� |𝐴𝐿𝐿 − 𝐷) = ∑ 𝛽𝑡−1𝑈𝑖𝑡 =∞
𝑡=1 ∑ 𝛽𝑡−1𝑈𝑖𝑡  + ∑ 𝛽𝑡−1𝑈𝑖𝑡∞

𝑡=𝑛−𝑖2 +1

𝑛−𝑖
2
𝑡=1                           

  A. 12 

For part one, 

∑ 𝛽𝑡−1𝑈𝑖𝑡 =(𝑛−𝑖) 2⁄
𝑡=1 2𝑇�∑ 𝛼𝑖,𝑗𝑖𝑖−1

𝑗=1 + ∑ 𝛼𝑖,𝑗𝑖𝑛
𝑗=𝑖+1 � + 𝛽�2𝑇�∑ 𝛼𝑖,𝑗𝑖𝑖−3

𝑗=1 + ∑ 𝛼𝑖,𝑗𝑖𝑛
𝑗=𝑖+3 � + 2𝑃�∑ 𝛼𝑖,𝑗𝑖𝑖−1

𝑗=𝑖−2 + ∑ 𝛼𝑖,𝑗𝑖𝑖+2
𝑗=𝑖+1 �� +

𝛽2�2𝑇�∑ 𝛼𝑖,𝑗𝑖𝑖−5
𝑗=1 + ∑ 𝛼𝑖,𝑗𝑖𝑛

𝑗=𝑖+5 �  + 2𝑃�∑ 𝛼𝑖,𝑗𝑖𝑖−1
𝑗=𝑖−4 + ∑ 𝛼𝑖,𝑗𝑖𝑖+4

𝑗=𝑖+1 �� + ⋯+ 𝛽(𝑛−𝑖) 2⁄ −2�2𝑇�∑ 𝛼𝑖,𝑗𝑖2𝑖−𝑛+3
𝑗=1 + ∑ 𝛼𝑖,𝑗𝑖𝑛

𝑗=𝑛−3 � +

2𝑃�∑ 𝛼𝑖,𝑗𝑖𝑖−1
𝑗=2𝑖−𝑛+4 + ∑ 𝛼𝑖,𝑗𝑖𝑛−4

𝑗=𝑖+1 �� + 𝛽(𝑛−𝑖) 2⁄ −1�2𝑇�∑ 𝛼𝑖,𝑗𝑖2𝑖−𝑛+1
𝑗=1 + ∑ 𝛼𝑖,𝑗𝑖𝑛

𝑗=𝑛−1 � + 2𝑃�∑ 𝛼𝑖,𝑗𝑖𝑖−1
𝑗=2𝑖−𝑛+2 + ∑ 𝛼𝑖,𝑗𝑖𝑛−2

𝑗=𝑖+1 ��  

Times β on each side of the equation and with some simple algorithm we will have  

(1 − 𝛽)∑ 𝛽𝑡−1𝑈𝑖𝑡 =(𝑛−𝑖) 2⁄
𝑡=1 2𝑇�∑ 𝛼𝑖,𝑗𝑖𝑖−1

𝑗=1 + ∑ 𝛼𝑖,𝑗𝑖𝑛
𝑗=𝑖+1 � + 2(𝑃 − 𝑇)�𝛽�𝛼𝑖,𝑖−2𝑖 + 𝛼𝑖,𝑖−1𝑖 + 𝛼𝑖,𝑖+1𝑖 + 𝛼𝑖,𝑖+2𝑖 � +

𝛽2�𝛼𝑖,𝑖−4𝑖 + 𝛼𝑖,𝑖−3𝑖 + 𝛼𝑖,𝑖+3𝑖 + 𝛼𝑖,𝑖+4𝑖 � + ⋯+ 𝛽(𝑛−𝑖) 2⁄ −1�𝛼𝑖,2𝑖−𝑛+2𝑖 + 𝛼𝑖,2𝑖−𝑛+3𝑖 + 𝛼𝑖,𝑛−3𝑖 + 𝛼𝑖,𝑛−2𝑖 �� −

𝛽(𝑛−𝑖) 2⁄ �2𝑇�∑ 𝛼𝑖,𝑗𝑖2𝑖−𝑛+1
𝑗=1 + ∑ 𝛼𝑖,𝑗𝑖𝑛

𝑗=𝑛−1 � + 2𝑃�∑ 𝛼𝑖,𝑗𝑖𝑖−1
𝑗=2𝑖−𝑛+2 + ∑ 𝛼𝑖,𝑗𝑖𝑛−2

𝑗=𝑖+1 ��                                                                
A. 13 

For part two, 

∑ 𝛽𝑡−1𝑈𝑖𝑡∞
𝑡=𝑛−𝑖2 +1

=
𝛽(𝑛−𝑖) 2⁄ 2𝑃�∑ 𝛼𝑖,𝑗

𝑖𝑖−1
𝑗=2𝑖−𝑛 +∑ 𝛼𝑖,𝑗

𝑖𝑛
𝑗=𝑖+1 �

1−𝛽
                                         

  A. 14 

Combining A.13 and A.14 and put them back to A.1 with A.3, we will have  
𝑇−𝑅
𝑇−𝑃

≤

𝛽�𝛼𝑖,𝑖−2
𝑖 +𝛼𝑖,𝑖−1

𝑖 +𝛼𝑖,𝑖+1
𝑖 +𝛼𝑖,𝑖+2

𝑖 �+𝛽2�𝛼𝑖,𝑖−4
𝑖 +𝛼𝑖,𝑖−3

𝑖 +𝛼𝑖,𝑖+3
𝑖 +𝛼𝑖,𝑖+4

𝑖 �+⋯+𝛽
𝑛−𝑖
2 −1�𝛼𝑖,2𝑖−𝑛+2

𝑖 +𝛼𝑖,2𝑖−𝑛+3
𝑖 +𝛼𝑖,𝑛−3

𝑖 +𝛼𝑖,𝑛−2
𝑖 �+𝛽

𝑛−𝑖
2 �𝛼𝑖,2𝑖−𝑛

𝑖 +𝛼𝑖,2𝑖−𝑛+1
𝑖 +𝛼𝑖,𝑛−1

𝑖 +𝛼𝑖,𝑛
𝑖 �

∑ 𝛼𝑖,𝑗
𝑖 +∑ 𝛼𝑖,𝑗

𝑖𝑛
𝑗=𝑖+1

𝑖−1
𝑗=1

  

There are three other scenarios which in mathematical languages are 
 i ≤ |n 2⁄ |and n − i = 2m − 1, m ∈ ℤ+ ,  i > |n 2⁄ |and i = 2m − 1, m ∈ ℤ+ and 
 i > |n 2⁄ |and i = 2m, m ∈ ℤ+. The calculations of the other three scenarios are 
basically the similar. We will not repeat the calculations and please refer the results to 
section 3.  
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