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Abstract:
Globalization is an important feature affecting the robustness of small-scale social-ecological systems
(SESs). Understanding the way globalization affects those systems is crucial for adaptation. In this
paper we focus on analyzing how the increased displacement of resource users as a consequence of
globalization affects the robustness of SESs. We developed a stylized agent-based model representing a
dynamic population of agents moving and harvesting a renewable resource. The individual
characteristics and behavior of agents and governments determine the robustness or collapse of the
system. We analyzed several scenarios in which we vary the mobility of the agents (i.e., the extent to
which agents can move), the distribution of the resource richness and the amount of information
governments have regarding potential intruders. Our results showed that agent mobility significantly
affects the robustness of the SES. This response is non linear and very sensible to the type of spatial
distribution of the resource richness. The attractiveness of rich resource sites (local level) to agents
makes them vulnerable to rapid collapse with consequences to the global system. While medium
heterogeneous landscapes are very robust to mobility, highly heterogeneous landscapes (i.e.,
exponential distribution of resource richness) are not able to absorb such a disturbance; the system
stability as well as the resource and occupation levels drop as mobility increases. An increase in
enforcement is not sufficient for the robustness of such SESs. Results suggest the importance of global
governance to deal with governance of resource rich areas, not only for local governments because
those areas are more prone to invasions but for global sustainability itself.
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INTRODUCTION 
 
Long-lived small-scale social-ecological systems (SESs) are currently facing a great 
challenge in adapting to new disturbances due to globalization. Their long-term survival is 
based on the robustness of their institutions and their adaptation to historical external 
disturbances (Janssen et al. 2007). However, global social (e.g., global markets) and 
environmental changes (e.g., climate change) impact the robustness and vulnerability of 
SESs and threaten the continuity of many long-lived SESs (Young et al. 2006). For 
example, due to climate change, traditional irrigation systems face a change in the intensity 
and frequency of rainfall that they had originally adapted to. If they are not able to adapt to 
this new regime of perturbation the SES may collapse (Anderies et al. 2004). 
Understanding the vulnerabilities that long-lived SESs face due to globalization is crucial 
for communities to respond and adapt to global changes. 
 
One of the characteristics of our global era is the increased connectedness and accelerated 
flow of goods, trade, information, and people. All of this simultaneously causes positive 
and negative effects on systems. For example, this situation increases the diffusion of 
knowledge and technology (e.g., Ernst and Kim 2002), and facilitates the arrival of 
humanitarian aid, but, at the same time, increases the spread of diseases (e.g., flu) (e.g., 
Dollar 2001) and invasive species (e.g., Gren et al. 2011), and increases the vulnerability of 
local communities to the encroachment of new resource appropriators (i.e., intruders) 
(Pérez et al. 2011).  
 
In this paper, we analyzed how the displacement of resource users affects the robustness of 
SESs. Some documented examples of this widespread consequence of globalization include 
fisheries worldwide (Berkes et al. 2006, Cudney-Bueno and Basurto 2009), forests in south 
Asia that are being intensively harvested due to the recent introduction of the shrimp 
industry (Barbier and Cox 2002) or groundwater in southeast Spain, where traditional 
farmers have to share the scarce water resource with industrial agrarian companies recently 
settled in the area (Pedreño and Pérez 2008, Pérez et al. 2011). The driving forces that are 
behind this intrusion are related with the socio-political and physical accessibility to the 
resource and to its economic value (Pérez et al. 2011). The incursion of intruders may have 
positive consequences, such as the transmission of knowledge but also may have severe 
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consequences on traditional SESs, and even end in their inevitable collapse, due to, for 
example, an overexploitation of natural resources.  
 
We use an agent-based model to understand how mobility of agents affects the long-term 
resource and population levels and to explore specific conditions that increase the 
robustness of communities to face the incursion of new resource appropriators. Although 
the model was inspired by case studies of complex SESs, the model itself is highly stylized 
enabling us to focus on some key mechanisms of mobility and resource use. By mobility 
we refer to the extent to which agents can move. The model is a stylized representation of a 
dynamic population of agents moving and harvesting a renewable resource. The individual 
characteristics and behavior of agents and governments determine the sustainable use or 
overexploitation of the resource. We analyzed the robustness of the SES under several 
scenarios in which we vary the mobility of the agents, the landscape configuration and the 
amount of information governments have towards potential intruders. We hypothesized that 
higher mobility leads to less robustness of SESs, and that landscape configuration and the 
reputation of agents modulate those effects.  
 
 
METHODS 
 
Model description 
 
Our agent-based model is a stylized representation of a SES. A dynamic population of 
agents moves and harvests a renewable resource in a 50x50 landscape (Fig. 1). Each time 
step, agents move, harvest and store energy, may reproduce or die, and may imitate other 
agents’ attributes; also during the time step the resource grows and governments collect 
fines from cheaters and may imitate neighbors (Fig. 2).  
 
Agents move if they think the resource level won’t satisfy them. How far they can move is 
a parameter set by the modeler. Each agent has a different desired amount of resource to be 
harvested. Agents can change this attribute by imitating more satisfied agents in their same 
location. Agents store the energy obtained from harvesting not used for metabolism. 
Movement and reproduction also cost energy to agents. If the energy stored by an agent 
became 0, the agent will die. Reproduction is asexual, with each agent producing one 
offspring, which is a copy of its parent. Each location represents a government. 
Governments differ in their enforcement level that is determined by an attribute that 
increases the probabilities of detecting cheaters and the amount paid by cheaters. This 
attribute of governments may change if governments copy the enforcement level of 
neighbors with higher fitness (i.e., higher population level). Governments encourage agents 
to harvest a certain amount of resource in order not to deplete it. Agents may ignore 
sustainable practices and harvest more resource. If a government catches a cheater, the 
agent will have to pay a fine. Each simulation ends after 5000 time steps or when 
population or resource become 0. 
 
Below we provide a more detailed description of our model following the ODD (overview, 
design concepts and details) protocol for describing individual- and agent-based models 
(Grimm et al. 2006, Grimm and Railsback 2005, Grimm et al. 2010). The model is 
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implemented in NetLogo v.4.1 (Wilensky 1999; http://ccl.northwestern.edu/netlogo/). The 
model code is available at http://www.openabm.org/model/3175/version/1/view. Table 1 
shows the description of all parameter and variables included in this model.  
 
Purpose. The purpose of the model is to analyze how mobility affects the sustainability of 
SESs and to examine specific conditions that reduce the vulnerability of communities to the 
incursion of new resource appropriators.  
 
Entities, state variables, and scales. The entities of the model are agents moving and 
harvesting resources in a 50x50 torus landscape (i.e., when agents approach a border of the 
landscape, they reenter the system at the opposite border). Agents differ in their location, 
the amount of resources that they are willing to store, and their stock of energy. Agents may 
copy the desired storage level of more satisfied agents in their same location. Each patch 
has an amount of resource and is governed by a government-agent. In this version, few 
institutional arrangements are included. Government-agents differ in their enforcement 
level. Government-agents may imitate the enforcement level of neighboring government-
agents who have higher fitness (i.e., higher number of agents). Each cell has a logistic 
growth function for the resource. Each patch might have from 0 to n agents (Fig. 1). The 
model runs for a period of 3000 time steps. The values of the parameters used in the default 
model are showed in Table 1. 
 
Process overview and scheduling. Figure 2 shows the activity diagram of our model. Every 
time step, agents assess the available amount of resources in their patch. If this amount does 
not satisfy their desired harvest level (dH), agents may move to the nearest cell with the 
highest resource level. The dH is:  

 
!"! = !"# ∗ (1+ !!)	
  

Where met is the energy spent in the metabolism. Agents are assumed the desire a 
harvest level higher than the minimum required to meet their metabolism. The 
parameter Si is between 0 and 1 so that the agent will meet the strict metabolism 
value with Si =0, or a maximum of double the metabolism rate with Si =1.  

 
Besides movement due to dissatisfaction, agents can move to another random patch with a 
fixed probability (pm). Movement costs energy to the agent. Every time step an agent 
changes its location, its accumulated energy (Et) is reduced a certain amount (Cmov). Then 
agents decide how much resource to harvest, they harvest and they store energy. As the 
resource has a logistic growth, agents are encouraged by the government to harvest an 
amount near to the maximum sustainable yield (agMSY):  
 

!"#$!! =
!! ∗ !
8 !! 

Where Kj is the carrying capacity at patch j, r the growth rate of the resource, and nj 
the number of agents at the patch j.  

 
Agents may ignore sustainable practices and cheat and consequently harvest (H) the desired 
amount of resource (dH) when this amount is higher than the agMSY. Agents will cheat if 



4 
 

they expect to receive a significant benefit of cheating taking into account the expected 
penalty of being caught:  
 
 

Agents cheat if: !" ∗ !!! ∗ !!" > !"#$%!" 
Where Ta is the benefit threshold of agents, !!! is the probability of catching a 
cheater in patch j (see below) and Fij is the fee cheaters will pay if they are caught 
by the government. Fij is proportional to the enforcement level: 
 

 
!!"!(!"#! − !"#$%!) ∗ !! 	
  

Where agHi is the amount of resource harvested by agent i. The value of Fij is 0 if 
agent i is not caught or harvests an amount equal or less agMSYj. 

 
We selected as default value a moderate value of Ta (Table 1). Low values (Ta < 0.2) 
makes agents decide not cheat, thus in all circumstances the system reaches a stable 
threshold. On the contrary, high values (Ta > 0.5) makes agents decide to cheat and the 
system rapidly collapse. Agents do not have full knowledge of the probability of being 
caught (i.e., pc). The capacity of agents to predict pc increases the longer they stay in a 
certain patch, thus newcomers will more frequently predict an erroneous risk of cheating.  
 
The probability of governments to catch a cheater (pc) is proportional to their enforcement. 
We consider that the capacity of governments to detect a cheater decreases as the 
population increases since it require more effort to monitor all the agents. Hence, if the 
number of agents in a certain patch is 10 or less, pc is E; an increase of 10 agents reduces pc 
to 10%: 
 

!"  10(1− !) <   !! ≤ 10!;   !!! = !! ∗ 1−
! − 1
10  

Where nj is the number of agents at patch j, pcj is the probability of government at 
patch j to catch a cheater, Ej is the enforcement level at patch j, and i ∈{1,2,…,5}. 

 
In this version of the model, we do not include technological innovation, only learning the 
local context. Hence unsatisfied agents may copy the attributes (S) of the more satisfied 
agent in the same cell with the highest fitness (i.e., accumulated energy stored).  
 
The enforcement has a cost to governments. Although we don’t explicitly model the 
payment for enforcements by governments, we assume that some governments are more 
willing to invest in monitoring and sanctioning than others, and that governments do not 
have infinite resources for monitoring and sanctioning. The net enforcement cost is 
proportional to the number of agents in the cell but it is reduced by the income from 
penalties:  
 

!"#$%&#! = !"#$ ∗   !! − !!"

!!

!!!
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Where cost (=1) is the cost of enforcement, nj is the number of agents at patch j, and   
!!"

!!
!!! is the total revenue from penalties at patch j.	
  

 
The enforcement cost is accumulated each time step. If the accumulated cost of 
enforcement goes above a certain threshold (Tg), governments reduce 10% their 
enforcement level. With a fixed probability (Ig), governments will look to its neighbors and 
copy the enforcement value for the neighbor with highest fitness. The fitness of a 
government is the number of agents.  
 
The energy stored by agents each time steps (Et) is:  
 

!!!" = !!!!!" + !"#! − !!" −!"# − !!"# − !!"# 
Where, Hi is the amount of resource harvested by agent i in time step t, Fij is the 
punishment imposed to agent i by government of patch j, met is metabolism, Cmov is 
the cost of movement and Crep the cost of reproduction. 

 
If the energy stored by an agent becomes 0 or lower, the agent will die. With a birth rate 
(br), agents will reproduce. Birth rate depends on the stock of energy of agents: 
 

!" ∗
!!
100  

 
Offspring will reproduce the attributes of its parent. Parent and hatchling share the stock of 
energy from parent. Offspring will be allocated at the nearest patch (hrmax) with the highest 
resource level to avoid overpopulation in successful patches and to increase the spread of 
successful strategies.   
 
At the end of each time steps the resource grows accordingly to a logistic equation:  
 

!! − !! + ! ∗ !! ∗ (1−
!!
!!
)	
  

Where Rj is the resource level at patch j, Hj is the total resource harvested at patch j, 
r is the resource growth rate, and Kj is the carrying capacity of the resource at patch 
j. 

 
Initialization. Simulations are initialized with 5000 agents randomly allocated to cells on 
the landscape of 50x50 cells. Initially, each agent receives an amount of 10 units of energy. 
The storage rate of agents and the enforcement level of patches are uniformly distributed. 
Resource is initialized at half of its carrying capacity. Each simulation consists of 5000 
time steps to explore the long-term dynamics.  
 
Model experiments 
 
The dynamics of the model are explored by a series of experiments in which we vary the 
mobility of agents, the landscape structure and the information governments have on 
potential intruders. We ran 200 iterations for each experiment. Early exploration of our 
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model revealed that around 200 simulations are necessary to reduce the variability of our 
statistics to an acceptable level. We used as indicators the average of occupied patches and 
resource levels, as well as other evolved parameters (storage and enforcement levels, 
number of agents’ movements, and proportion of cheaters in the population), over the 200 
iterations during the last 1000 time steps. We measured the robustness of the system as the 
capacity of each run to persist over the 5000 time steps. 
 
Mobility 
 
To analyze how the mobility of agents affects the emergent values of our indicators, we 
compared the emergent results when we ran the model for different move capacities of the 
agents. Move capacity (armax) is the size of the radius that defined the possible set of 
patches an agent can move to. We ran the model for an armax of 1, 5, and 25. One means 
that agents can move to the neighboring patches, while a move capacity of 25 means that 
agents can move to any patch of the system. 
 
Landscape structure 
 
We run our model for different landscape configurations, i.e. differences in the carrying 
capacity (K) of the resource between patches. Apart from the default model that does not 
include landscape heterogeneity (all patches are settled to the same K) we considered 3 
different statistical distributions of K: uniform, normal, and exponential. To do this, we first 
assigned a value to each cell according to a uniform, normal or exponential distribution. 
Then, we grouped the resulted values in 5 equal intervals.  Finally, we assigned to these 
categories of cells a specific value of very low, low, medium, high and very high K. To 
compare outcomes between landscapes configuration, these values were adjusted so the 
total amount of resource at K was the same for the four landscape configurations (Fig. 3). 
We imported those results from the R statistical package (R Development Core Team 2008) 
using the NetLogo extension r (Thiele and Grimm 2010).  
 
Reputation 
 
In one of the model experiments, we analyzed how the information governments have on 
potential intruders affects the outcomes of the model. For this, we added a parameter in the 
model (nrmarks) that indicates whether the agent cheated (nrmarks ≥ 1) or not (nrmarks = 
0) in previous time steps (Table 1). With high enforcement levels, governments have a 
greater probability of correctly “reading” this information; and by recognizing 
untrustworthy agents governments can better decide whether or not to let those agents in. In 
this version of the model, the option of governments to forgive the past unsustainable 
behaviors of potential intruders is not directly included.  Governments predict the expected 
probability of a potential intruder to cheat (Expch) according to past behavior (nrmarks):  
 

!"#!! = 1− !!!"#$"%&	
  
In this version of the model, we only included information about the last time step, 
so nrmarks takes values of zero if agent didn’t cheat or one if agent cheated last 
time step. 
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Agents will have more probabilities entering the selected patch as !"#!! ∗ !!   increases.   
 
Sensitivity analysis 
 
In the sensitivity analysis we varied the values of parameters from low to high values 
(Table 1) and run the simulations for the different distribution of the resource richness 
considered. We use as indicator the time steps the simulation are running, and the average 
occupied patches and resource level over the last 1000 time steps of the 200 runs. We 
compared these results with results of the default model. 
 
In the result section, we first describe the main dynamics of our default model (Table 1). 
Then, we analyzed how mobility, landscape structure and reputation of agents affect the 
outcomes of the model. We used as indicators, the resource level, the number of settlements 
(i.e., patches with agents), the enforcement level, and the robustness of the system. We 
measured robustness as the mean duration of the runs before collapse (i.e., number of time 
steps each simulation is running). We used the number of settlements as an indicator of the 
outcome of the simulation instead of population (i.e., number of agents) because its value is 
comparable among different resource richness distributions. Both variables are highly 
correlated. Finally, we show results of the sensitivity analysis. 
 
 
RESULTS 
 
Default model 
 
The temporal dynamic of the model shows the interrelationship of the population and the 
resource level (Fig. 4). Abundant resources cause the population to grow, which, 
subsequently, causes the resource level to decrease. The fluctuation of the resource level 
causes periods of frequent movements of the agents when the resource is scarce and periods 
of stability when the resource level is elevated (Fig. 5). Resource scarcity causes an 
increase in the proportion of cheaters in the population (Fig. 5). An increase in the 
enforcement level causes an increase in the resource level and the number of settlements 
through the decrease of cheaters in the population (Fig. 5)  
 
The system may reach a stable threshold or, on the contrary, collapse (simulations end 
when the population or the resource become zero). Eighty-five percent of the simulations of 
the default model collapsed. The mean duration of the collapsed runs was 3111 time steps 
(median = 3073, range=680-4973). The stable threshold is reached when the sum of the 
agents’ harvesting and sustainable harvesting are very close, thus ending in a low number 
of cheaters (around less than 20% of the population) and in a more stable system with less 
agent movement (Fig. 6). The most durable runs support higher number of settlements (i.e., 
occupied patches) and resource level (Fig. 6). The enforcement level of the system 
decreases due to a decrease in the enforcement level of the unoccupied patches, while 
settlements maintain a high value of enforcement level (around 0.6) (Fig. 6). The most 
robust systems (i.e., durable runs) are those in which the behavior of the agents is 
controlled, hence the storage level of agents do not reach high levels, though maintaining 
high values of enforcement (Fig. 6). 
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The results of the default situation show that the model leads to a variation of outcomes for 
a fixed parameter setting. In our analysis of the effect of parameter changes we will test 
whether the changes in outcomes are statistically significant with the default situation. 
 
Mobility and robustness of social-ecological systems 
 
Figure 7a shows the mean time steps that simulations are running (i.e., the system does not 
collapse) for the different move capacities of the agents and with the rest of the parameters 
settled as default (Table 1). The probability of the system collapsing is higher with a low 
move capacity (Table 2, Fig. 7). The mean value of the number of occupied patches (i.e., 
settlements) and resource level of the last 1000 time steps varies between move capacities 
of the agents. Lower occupation (i.e., number of settlements) and resource levels are 
obtained with a move capacity of 25 (Table 2, Fig. 7). With the same resource level, a 
move capacity of one or five is able to support higher occupation levels. Although the mean 
storage value of agents is similar for the 3 move capacities, the proportion of cheaters in the 
population is slightly higher with a move capacity of 25. The enforcement level is lower 
with a move capacity of 25 while the number of movements is higher (Table 2, Fig. 7). 
However, these results are very sensitive to the distribution of the resource richness (see 
below).  
 
Landscape configuration and the impact of mobility 
 
The sensitivity of the system to an increase in the mobility of the agents considerably 
decreases when low landscape heterogeneity (i.e., uniform and normal distributions) is 
included in the model. The stability of the system (collapse rate) increases from a 
homogeneous (default model) to a uniform or normal distribution of the resource richness. 
However, an exponential distribution of the resource ends in less stable systems (Table 3, 
Fig. 7). The level of the resource and the number of settlements increase from the default 
model to any of the three other landscape configurations considered (Table 3, Fig. 7).  
 
There are different sensitivities of resource distributions to mobility. The stability of the 
system and the value of the evolved parameters at the end of the simulations are higher for 
the normal distribution (Table 3, Fig. 7) and lower for the exponential landscape structure 
(Table 3, Fig. 7). For a normal and uniform distribution of the richness of the resource, an 
increase in mobility produces higher values of resource and occupation levels and more 
endurable runs (Table 3, Fig. 7). The exponential distribution of the richness of the resource 
is very sensitive to mobility, and high mobility produces lower values of resource and 
occupation levels and less endurable runs (Table 3, Fig. 7); while the highest values are 
obtained with an intermediate or low move capacity of the agents (Table 2, Fig. 7).  
 
These results can be explained by the difference in the occupation rate of patches. Very 
high k value (k > 3) had significantly lower levels of resource and occupation than patches 
with smaller k value (Table 4, Fig.8). Agents tend to move to patches with very high k, 
hence those patches have lower stability. On the contrary, patches with small values of k 
are more sustainable because they don’t attract many agents. As a result, patches with lower 
k compensate the effect of mobility on patches with very high k, making the system more 
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stable. Hence, landscape configuration with abundant patches with medium level of k give 
rise to higher resource and occupation levels. For low values of k (k < 3), the enforcement 
level of settlements is higher than unoccupied patches. This difference does not occur with 
higher values of k, i.e., there are no differences between the enforcement level of occupied 
and unoccupied patches. With k values of 3 and higher, even high levels of enforcement are 
not able to maintain a stable population and the number of cheaters in the population 
increases significantly. 
 
Agents’ reputation and the impact of mobility  
 
A longer duration of systems as well as higher resource and occupation levels are obtained 
when governments have information about the past behavior of potential intruders 
(reputation of agents) (Table 5, Fig. 9). The inclusion of reputation significantly reduces the 
number of movements by creating a barrier to untruthful agents. This higher control on the 
agents’ behavior is obtained because the average enforcement level of the system increases 
(Fig. 9). As a result, cheaters in the population decrease (especially with high move 
capacity of the agents) even with a higher storage value of agents (Table 5, Fig. 9).  
 
Sensitivity analysis 
 
We found that frequency of imitation of agents has no effect on our main results when 
landscape is homogeneous (Table 6). However, when we increase landscape heterogeneity, 
we found that an increase in the frequency of imitation of agents has a positive effect on the 
outcomes of the model. This effect is clearer for uniform and exponential distribution of the 
resource richness (Table 7). As expected, changes in the value of Ta (i.e., benefit threshold 
of agents) have a significant effect on the stability of the system. Lower values originate a 
decrease in the proportion of cheaters in the population; as a consequence the occupation 
and resource levels are higher than with the higher values (Tables 6 and 7). High values of 
Ta stabilized the system and lead to higher occupation and resource levels (Tables 6 and 7). 
An increase in the imitation rate of governments (Ig) does not have an effect on the 
outcomes on the model. A decrease in Ig increased the stability of the system and produced 
higher occupation and resource levels when landscape heterogeneity is null-medium 
(default and uniform distributions); while it didn’t affect the outcomes when the resource 
richness is normally or exponentially spatially distributed (Tables 6 and 7). Finally, 
changes in the value of the threshold of governments (Tg) have a significant effect on the 
outcomes of the model. As expected, higher values of Tg increased the stability of the 
system and produced higher occupation and resource levels and vice versa (Tables 6 and 7).  
 
 
DISCUSSION 
 
Understanding the effects of globalization to SESs is essential to increase their robustness 
in response to processes such as an increase in agent flow. In this paper we developed a 
stylized agent-based model to analyze, under a scenario of agent mobility, the conditions 
that lead to long-term sustainability of SESs and how vulnerabilities to the invasion of 
intruders might be predicted, hence prevented.  
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Our results showed that mobility significantly affects the robustness of SESs. This 
relationship is complex, with non-linear effects and high sensitivity to the resource richness 
distribution. In general, low mobility capacity of agents destabilizes the system by 
depleting the local resource. Low mobility increases the isolation of communities and 
makes the colonization of new areas more difficult. A small increase of the mobility 
capacity of the agents resulted in better long-term dynamics of the model for all landscape 
configurations except for highly heterogeneous landscapes (see below). Medium mobility 
capacity exemplifies a local system in which agents move short distances, or quit the 
activity for certain periods, to adapt to changes in the resource level. Some examples 
include nomadic or transhumant pastoralist (e.g., Tyler et al. 2007, Forbes et al. 2009) and 
rotation of crops and fields in traditional agricultural systems (e.g., Tengö and Belfrage 
2004).  
 
When mobility increases to very high levels, landscape configuration (i.e., when we 
spatially change the carrying capacity [richness] of the resource in our model) is a major 
factor explaining system outcomes. High mobility represents a globalized world in which 
people, information, technologies, companies, etc. flow freely. For resources with a low-
medium heterogeneous spatial distribution (uniform and normal distributions of resource 
richness) the average length of simulations suggests that high mobility tended to stabilize 
the system and better outcomes were obtained in terms of resource and occupation (i.e., 
number of settlements) levels. For homogeneous landscapes (default setting of our model) 
this relationship is non-linear since, although medium and high mobility stabilized the 
system, the resource and occupation levels in the system decreased from medium to high 
mobility. Lastly, resources with highly heterogeneous distribution (i.e., exponential 
distribution of the resource richness) were the most sensible to an increase in agents’ 
mobility. An increase in agent mobility (even from low to medium mobility) in highly 
heterogeneous landscapes destabilized the system and resource and occupation levels 
decreased. In this situation, both the enforcement level of governments and storage level of 
agents were not able to stabilize the system. This is what we found in many empirical cases, 
i.e., intruders focus specifically on very valuable areas (Pérez et al. 2011), for example, 
shrimp farms in the mangrove forests of Indonesia (Barbier and Cox 2002) or the problem 
of land grabbing in Africa and other parts of the world (Klopp 2000).  
 
These system level results are a consequence of patch level processes. Richer areas 
attracted agents that collapsed the local patch but originated a rapid feedback of 
colonization-depletion-migration that made those areas very unstable and their recovery 
very difficult. Poorer areas were more sustainable because they didn’t attract many agents. 
As a consequence, the resulting agents’ distribution was opposite to the expected ideal free 
distribution (Fretwell 1972) and rich areas ended with less resource levels due to the less 
sustainable behavior of agents even with higher level of enforcement. For highly 
heterogeneous systems, rich patches collapsed rapidly and the system was unable to absorb 
such a disturbance. 
 
How can we improve the robustness of SESs in a globalized world? The ability to define 
and enforce boundary rules is key for the long-term sustainability of SESs (Ostrom 1990). 
In our model, the information governments had on the past behavior of potential intruders 
significantly reduced the impact of agent mobility. Hence, small investment in surveillance 
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and enforcement might significantly reduce the impact of intruders by limiting the access of 
untruthful agents. However, in our model, high enforcement’s value did not guarantee the 
preservation of rich areas. This result has implications to the global governance of natural 
resources: How can areas rich in resources be preserved from resource depletion? In which 
areas should efforts be focus to conserve natural resources? Accordingly to our results, it 
becomes important for global governance to deal with governance of resource rich areas, 
not only for local governments because those areas are more prone to intruders invasions, 
for example through land grabbing, but for global sustainability itself.  
 
In governing SESs, governments face a tradeoff between short-term benefits (e.g., intruders 
originate an increases in taxes) versus long-term resource and population maintenance. In 
our model, governments reaching for short-term benefits reduced the long-term variability 
of the local system and with consequences to the global system especially for low 
heterogeneous distribution of resource richness. In our model, heterogeneity avoided the 
spreading of unsustainable governance. Short-term benefits, like the fitness used in this 
model (i.e., the number of inhabitants [agents]) caused governments to be unable to 
preserve the SES. Other government fitness, such as, satisfaction of agents, equality 
between agents, or sustainable use of natural resources, might increase the long-term 
outcomes of SESs. Future developments of our model may test differences in results using 
different government fitness. Other inclusions to our model might be: 1) temporal 
variability of the resource. Climate change increases uncertainty in resources levels and 
originates periods of resource scarcity in spatio-temporal scales. This increases migration 
(Warner 2010, Janssen, 2010); 2) include other attributes of agents that might have 
significant effects on agent mobility, such us wealth (Katz and Stark 1986) and risk 
aversion (Stark and Levhari 1982).  
 
 
CONCLUSION 
 
The model presented here is a stylized representation of an SES used to test how 
globalization, in particular the increased movement of agents, affects the robustness of 
SESs. As hypothesized, an increase in agent mobility (i.e. how far an agent can move) 
significantly impacted the robustness of SES. However, this relationship was complex, with 
non-linear responses and high sensitivity to the type of spatial distribution of the resource 
richness. The attractiveness of rich areas made them very sensitive to agent mobility. Some 
empirical examples are productive lands in Africa subject to land grabbing, oil reserves, or 
mangrove forest exploited by shrimp farms. The local instability of rich areas (patch level 
process) had catastrophic consequences on global scales (system level) when rich areas 
were scarce and exponentially distributed. Governments reaching for short-term benefits 
(for example increasing tax benefits by intruders) were unable to sustain the local SES and 
destabilized the global system, especially when the heterogeneity in the resource richness 
distribution is low. These results have consequences for global governance of natural 
resources, suggesting that dealing with governance of resource rich areas is essential, not 
only for the local consequences of invasions but for global sustainability itself.  
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Table 1. Variables and parameter definitions of the model and parameters’ values of the 
default setting. 

 

Parameter Description Default 
value 

agMSY Harvest level encouraged by governments - 

armax 
Maximum distance around the patch where agent is 
located in which agent can set its potential 
destination 

5 

br Birth rate of agents 0.03 
Cmov Cost of mobility - 
Crep Cost of reproduction - 
Cost Cost of enforcement - 
dH Desired harvest level of agents - 
Et Accumulated energy of agents - 
E Enforcement level - 
H Total resource harvested at each patch - 

hrmax 
Radius around patches as potential destinations for 
offsprings’ settles 5 

Ia 
Probability of agents coping the attributes of other 
agents in the same patch 0.5 

Ig 
Probability of governments imitating the 
enforcement rate of neighboring patches 0.5 

k Carrying capacity of resource 100 
met Metabolism of agents 0.3 
n Number of agents in patch - 
netCost Net enforcement cost - 

nrmarks Number of marks of potential intruders governments 
can read  0 

P Punishment imposed to cheaters by each government - 
pc Probability of each government to catch a cheater - 
pm Probability of random movement of agents 0.2 
R Resource level of each patch - 
r Growth rate of resource 0.075 
S Storage level of agents - 
Ta Factor that determines the benefit threshold of agents 0.3 

Tg 
Accumulated enforcement cost threshold. Beyond 
this threshold governments reduce their enforcement 
level by 10% 

3000 
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Table 2. Peer comparison (Student's t-test) of the average value of evolved parameters over 
the last 1000 time steps of 200 runs for different move capacities of the agents and 
landscape structure.  

  1 versus 5 5 versus 25 1 versus 25 
  t df p t df p t df p 

Default 

Steps -7.51 331.83 *** -0.23 357.07 n.s. -8.26 271.65 *** 
Settlements -0.47 397.04 n.s. 4.02 336.12 *** 3.59 345.90 *** 
Resource -0.28 396.91 n.s. 3.37 349.73 *** 3.17 359.90 ** 
Enforcement -0.68 396.36 n.s. 3.12 357.10 ** 2.46 369.03 * 
Cheaters -0.91 372.29 n.s. -1.07 384.53 n.s. -1.98 336.17 * 
Movements -0.82 363.33 n.s. -2.90 280.87 ** -3.47 243.66 *** 
Storage -1.41 391.52 n.s. 0.53 395.09 n.s. -0.78 380.85 n.s. 

Uniform 

Steps -4.79 783.15 *** -25.60 399.00 *** -43.54 599.00 *** 
Settlements -7.76 587.60 *** -37.92 412.63 *** -93.17 678.85 *** 
Resource -6.55 624.01 *** -40.49 429.27 *** -85.75 732.81 *** 
Enforcement -43.66 634.21 *** 7.07 349.94 *** -41.64 644.41 *** 
Cheaters -9.19 201.11 *** 10.90 151.32 *** 2.55 606.92 * 
Movements -5.19 235.22 *** 9.18 151.06 *** 6.61 599.90 *** 
Storage -18.02 631.94 *** -20.72 259.73 *** -37.56 781.43 *** 

Normal 

Steps -7.64 314.67 *** -2.63 199.13 ** -10.71 184.05 *** 
Settlements -8.19 75.55 *** -5.74 215.55 *** -12.42 47.13 *** 
Resource -5.45 66.30 *** -6.18 226.74 *** -8.83 47.34 *** 
Enforcement 11.90 71.40 *** 0.54 357.46 n.s. 11.26 98.16 *** 
Cheaters 6.62 48.30 *** 3.86 260.15 *** 7.35 46.41 *** 
Movements 4.95 46.32 *** 0.57 391.90 n.s. 5.00 46.32 *** 
Storage 17.74 78.96 *** -17.91 388.00 *** 5.79 73.48 *** 

Exponential 

Steps 5.68 554.61 *** 3.30 843.78 ** 9.75 509.46 *** 
Settlements -3.07 527.03 ** 0.51 862.49 n.s. -2.84 482.27 ** 
Resource -0.99 425.25 n.s. -0.41 900.61 n.s. -1.38 393.62 n.s. 
Enforcement -17.96 223.19 *** 16.47 267.41 *** -12.62 219.45 *** 
Cheaters -5.81 206.13 *** 7.79 141.42 *** 2.06 292.72 * 
Movements -3.10 224.20 ** 4.74 143.62 *** 1.71 282.50 n.s. 
Storage -11.12 293.50 *** 19.67 333.97 *** 1.48 295.16 n.s. 
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Table 3. Peer comparison of landscape structure with different move capacities of the 
agents. Results of the Student's t-test of the average value of evolved parameters over the 
last 1000 time steps of 200 runs are shown. 
 

  1 5 25 
  t df p t df p t df p 

Default versus Uniform 

Time steps 6.23 394.13 *** 9.68 596.04 *** -29.57 199.00 *** 
Settlements -3.92 246.45 *** 0.96 377.50 n.s. 49.15 206.61 *** 
Resource -3.94 248.37 *** 0.21 353.65 n.s. 43.28 211.81 *** 
Enforcement -1.36 328.30 n.s. 20.45 202.29 *** 32.896 207.53 *** 
Cheaters 1.95 459.24 n.s. 8.64 273.54 *** -2.0447 199.65 * 
Movements 1.33 467.92 n.s. 4.51 326.79 *** -4.86 199.02 *** 
Storage -0.93 333.08 n.s. 7.86 254.08 *** 16.585 217.61 *** 

Default versus Normal 

Time steps -15.52 275.79 *** -18.01 280.30 *** -29.56 199.06 *** 
Settlements -14.01 167.66 *** -23.04 282.84 *** -51.56 208.16 *** 
Resource -12.85 120.93 *** 22.48 295.98 *** -47.18 214.80 *** 
Enforcement -23.52 216.21 *** -18.82 203.24 *** -31.53 215.84 *** 
Cheaters -6.03 64.23 *** 1.34 229.65 n.s. 3.50 202.78 *** 
Movements -2.76 70.32 ** 3.76 202.01 *** 4.97 199.65 *** 
Storage -21.91 206.14 *** -8.19 253.58 *** -16.30 238.14 *** 

Default versus Exponential 

Time steps -3.14 386.47 ** 10.72 597.56 *** 18.62 796.81 *** 
Settlements 2.03 362.92 * 0.05 385.78 n.s. -5.01 530.57 *** 
Resource 1.66 377.40 n.s. 1.26 331.51 n.s. -3.48 435.97 *** 
Enforcement -0.38 397.11 n.s. -17.28 222.41 *** -21.86 238.37 *** 
Cheaters -2.10 362.22 * -6.67 197.73 *** 1.91 270.12 n.s. 
Movements -1.72 349.35 n.s. -3.80 211.74 *** 3.48 219.06 *** 
Storage -1.21 388.85 n.s. -11.12 296.48 *** 0.96 283.76 n.s. 

Uniform 
versus 

Exponential 

Time steps -10.78 473.04 *** 0.68 797.12 n.s. 39.54 599.00 *** 
Settlements -2.03 291.23 * 1.27 797.51 n.s. 47.50 627.00 *** 
Resource -2.39 279.74 * 2.02 792.94 * 51.79 663.95 *** 
Enforcement -1.78 316.21 n.s. 10.48 155.37 *** 29.40 225.26 *** 
Cheaters 0.71 334.66 n.s. 0.809 252.66 n.s. 0.04 610.29 n.s. 
Movements -0.82 321.49 n.s. -0.23 225.35 n.s. -5.84 600.30 *** 
Storage -2.27 296.36 * -6.396 220.09 *** 36.10 782.36 *** 

Uniform versus Normal 

Time steps -30.24 759.96 *** -23.70 469.26 *** 1.00 199.00 n.s. 
Settlements -23.76 59.61 *** -29.83 598.00 *** -12.34 394.61 *** 
Resource -19.53 54.18 *** -31.225 583.84 *** -15.42 393.66 *** 
Enforcement -43.22 607.94 *** 11.776 344.00 *** 4.19 359.35 *** 
Cheaters -5.21 57.01 *** 11.11 161.39 *** 13.91 265.13 *** 
Movements -2.08 61.23 * 9.308 152.77 *** 2.77 212.21 ** 
Storage -30.43 110.15 *** -0.608 337.19 n.s. -0.32 352.63 n.s. 

Exponential versus Normal 

Time steps -13.55 302.99 *** -25.37 473.65 *** -39.54 599.06 *** 
Settlements -18.44 112.46 *** -30.80 597.67 *** -50.18 632.53 *** 
Resource -15.49 91.71 *** -34.91 565.74 *** -56.83 677.61 *** 
Enforcement -21.96 214.80 *** -4.23 165.61 *** -24.39 280.44 *** 
Cheaters -4.30 82.32 *** 8.31 127.89 *** 3.41 661.37 *** 
Movements -1.25 101.84 n.s. 6.75 122.68 *** 6.26 636.87 *** 
Storage -18.38 229.34 *** 5.95 223.81 *** -33.03 771.62 *** 
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Table 4. Peer comparison of patches with different k values in a uniform distribution. 
Results of the Student's t-test of the average value of evolved parameters over the last 1000 
time steps of 200 runs are shown. 
 
 
 1 versus 2 2 versus 3 3 versus 4 4 versus 5 

 t df p t df p t df p t df p 
Settlements 0.45 398.00 n.s. 1.43 397.48 n.s. 2.78 391.22 ** 4.27 350.62 *** 
Resource 0.56 398.00 n.s. 1.37 397.81 n.s. 2.80 391.29 ** 4.41 345.46 *** 
Enforcement 0.70 283.33 n.s. 2.09 282.86 * 3.68 283.74 *** 5.27 256.82 *** 
Settlements’ 
enforcement 0.91 269.36 n.s. -0.61 275.47 n.s. 0.73 242.57 n.s. -0.91 245.93 n.s. 

Unoccupied 
patches’ 
enforcement 

0.71 206.57 n.s. -4.88 229.53 *** 0.35 185.86 n.s. -1.19 201.38 n.s. 

Cheaters 1.97 274.81 n.s. 1.17 283.73 n.s. -2.09 283.67 * -2.66 276.03 ** 
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Table 5. Peer comparison between results of the default model and when reputation is 
included for different move capacities of the agents. Results of the Student's t-test of the 
average value of evolved parameters over the last 1000 time steps of 200 runs are shown. 
 

 1 5 25 
 t df p t df p t df p 

Time steps -23.52 200.26 *** -23.07 199.39 *** -28.42 199.00 *** 
Settlements -27.89 238.32 *** -25.54 255.83 *** -55.02 201.18 *** 
Resource -26.05 288.46 *** -25.26 278.85 *** -51.72 200.98 *** 
Enforcement -16.56 215.06 *** -15.93 209.65 *** 28.26 219.61 *** 
Cheaters -0.62 371.93 n.s. 0.60 336.15 n.s. 5.22 199.22 *** 
Movements 2.81 265.61 ** 1.71 281.60 n.s. 5.16 199.00 *** 
Storage -22.96 287.19 *** 18.01 261.09 *** -14.80 210.03 *** 
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Table 6. Results of the sensitivity analysis. Average number of settlements and resource level over the last 1000 time steps of 200 runs 
and average duration of the runs for different parameter and initial conditions combinations and comparison (Student's t-test) with the 
default model. 
 
 

 Time steps Settlements Resource level 
Parameter Mean Sd t df p Mean Sd t df p Mean Sd t df p 
Default model 3416 1030 - - - 0.14 0.31 - - - 0.15 0.29 - - - 
K = default; Ia= 0.2 3227 1247 -1.25 155.18 n.s. 0.12 0.27 0.29 178.96 n.s. 0.17 0.29 0.43 173.62 n.s. 

K = default; Ia= 0.7 3550 1011 0.77 198.01 n.s. 0.15 0.32 0.27 197.82 n.s. 0.16 0.30 0.25 197.88 n.s. 

K = default; Ta= 0.1 5000 0.00 14.94 99.00 *** 1.00 0.00 35.20 99.00 *** 0.85 0.00 27.32 99.00 *** 
K = default; Ta= 0.5 3361 1902.25 0.19 155.94 n.s. 0.37 0.38 5.96 174.32 *** 0.33 0.33 4.54 188.66 *** 
K = default; Ig= 0.2 3944 1143.35 3.30 195.16 ** 0.23 0.36 2.10 193.09 * 0.29 0.32 3.34 195.42 ** 
K = default; Ig= 0.7 3415 1019.95 -0.17 197.99 n.s. 0.14 0.30 -0.01 197.82 n.s. 0.15 0.28 0.04 197.93 n.s. 
K = default; Tg= 1000 945 173.25 -22.97 104.37 *** 0.01 0.01 4.30 99.20 *** 0.00 0.00 -5.20 99.00 *** 
K = default; Tg= 5000 4316 1039.57 5.01 91.07 *** 0.47 0.46 4.45 66.52 *** 0.44 0.37 4.80 73.16 *** 
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Table 7. Results of the sensitivity analysis for different landscape structures. Average number of settlements and resource level over 
the last 1000 time steps of 200 runs and average duration of the runs for different parameter and comparison (Student's t-test) with the 
default settings for the different landscape structures. 

 Time steps Settlements Resource level 
Parameter Mean Sd t df p Mean Sd t df p Mean Sd t df p 
Default settings but with 
k = normal 4907 495.34 - - - 0.85 0.17 - - - 0.71 0.15 - - - 

K = normal; Ia= 0.2 4934 257.58 -0.67 299.29 n.s. 0.84 0.21 0.70 378.45 n.s. 0.70 0.19 0.40 381.07 n.s. 
K = normal; Ia= 0.7 4909 601.97 -0.03 383.77 n.s. 0.88 0.15 -1.80 393.11 n.s. 0.74 0.13 -2.34 390.72 * 
K = normal; Ta= 0.1 5000 0.00 -2.65 199.00 ** 0.94 0.02 -6.81 210.48 *** 0.85 0.01 -12.97 200.76 *** 
K = normal; Ta= 0.5 606 767.30 51.00 141.50 *** 0.02 0.12 49.67 267.42 *** 0.02 0.09 48.90 291.73 *** 
K = normal; Ig= 0.2 4867 745.60 0.49 144.03 n.s. 0.87 0.17 -0.88 196.43 n.s. 0.73 0.15 -1.25 201.13 n.s. 
K = normal; Ig= 0.7 4970 190.20 -1.58 284.02 n.s. 0.88 0.14 -1.58 229.23 n.s. 0.74 0.13 -1.98 227.22 * 
K = normal; Tg= 1000 729 238.74 107.47 286.72 *** 0.00 0.00 71.33 199.00 *** 0.00 0.00 64.58 199.00 *** 
K = normal; Tg= 5000 4936 523.20 -0.56 396.81 n.s. 0.93 0.12 -5.20 352.92 *** 0.80 0.10 -6.82 343.27 *** 
Default settings but with 
k = uniform 4154 1337.04 - - - 0.47 0.35 - - - 0.34 0.29 - - - 

K = uniform; Ia= 0.2 3396 1554.19 5.23 389.31 *** 0.23 0.33 7.22 397.11 *** 0.17 0.27 6.22 395.88 *** 
K = uniform; Ia= 0.7 4275 1485.20 -0.86 393.68 n.s. 0.61 0.37 -3.82 396.32 *** 0.48 0.31 -4.62 395.92 *** 
K = uniform; Ta= 0.1 5000 0.00 -8.95 199.00 *** 0.79 0.02 -13.00 200.72 *** 0.88 0.00 -26.41 199.11 *** 
K = uniform; Ta= 0.5 468 37.12 38.96 199.61 *** 0.00 0.00 19.20 199.00 *** 0.00 0.00 16.85 199.00 *** 
K = uniform; Ig= 0.2 4118 1649.11 0.19 165.86 n.s. 0.60 0.38 -2.89 182.75 *** 0.47 0.31 -3.56 182.58 *** 
K = uniform; Ig= 0.7 4121 1540.41 0.18 175.26 n.s. 0.53 0.39 -1.28 178.69 n.s. 0.41 0.32 -1.87 178.81 n.s. 
K = uniform; Tg= 1000 627 38.83 37.29 199.34 *** 0.00 0.00 19.20 199.00 *** 0.00 0.00 16.85 199.00 *** 
K = uniform; Tg= 5000 4569 1295.92 -3.16 397.61 ** 0.84 0.28 -11.77 382.81 *** 0.70 0.24 -13.66 384.33 *** 
Default settings but with 
k = exponential 3936 1414.08 - - - 0.41 0.40 - - - 0.27 0.29 - - - 

K = exponential; Ia= 0.2 3885 1183.85 0.39 386.06 n.s. 0.28 0.36 3.42 394.66 *** 0.19 0.26 2.93 394.79 ** 
K = exponential; Ia= 0.7 4106 1541.15 -1.15 395.09 n.s. 0.51 0.39 -2.55 397.69 * 0.34 0.28 -2.40 397.93 * 
K = exponential; Ta= 0.1 4950 500.00 -9.07 276.24 *** 0.87 0.12 -15.26 258.67 *** 0.84 0.09 -25.97 260.17 *** 
K = exponential; Ta= 0.5 450 462.90 31.64 268.64 *** 0.01 0.1 13.37 242.25 *** 0.01 0.08 11.90 251.67 *** 
K = exponential; Ig= 0.2 4086 1511.43 -0.91 272.18 n.s. 0.48 0.39 -1.66 287.80 n.s. 0.32 0.28 -1.54 292.28 n.s. 
K = exponential; Ig= 0.7 3850 1640.34 0.45 174.27 n.s. 0.42 0.39 -0.18 200.72 n.s. 0.28 0.29 -0.32 198.26 n.s. 
K = exponential; Tg= 1000 798 681.78 28.27 286.78 *** 0.00 0 14.49 199.00 *** 0.00 0.07 12.53 222.72 *** 
K = exponential; Tg= 5000 4580 1269.39 -4.79 393.45 *** 0.78 0.29 -10.60 365.68 *** 0.54 0.23 -10.62 376.37 *** 
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Fig. 1. Example of views of the default model at time step zero and 5000. A) Resource: 
Initially all the patches are settled to half of the carrying capacity. Darker green means 
higher resource level; B) Government agent. Each patch represents a government agent 
with a different enforcement level. Darker blue means higher enforcement level. Initially 
the enforcement level is uniformly distributed. At the end of the simulation, group of 
patches with similar enforcement level appear as a results of governments imitating other 
governments of higher fitness (i.e. population level); C) Population. Darker pink means 
higher density of agents. Initially 5000 agents are randomly allocated. Red dots are agent, 
blue dots are agents that have moved, and yellow dots are offspring. The views are from 
different runs of the default model.  
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Fig. 2. Activity diagram. For a legend of parameters and variables see Table 1. 
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Fig. 3. Landscape structure. Graphs show the number of patches in the system for each 
carrying capacity of the resource (k). In read is the mean and in blue the standard deviation 
for 200 runs. The right size of the figure shows the resource view of the model at time step 
zero for each landscape structure.  
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Fig. 4. Percentage of resource level (green lines) and occupied patches (pink lines) in two 
typical runs of a non-collapsed (solid lines) and collapsed (dotted lines) simulations. A 
resource level of 100% means that all patches reached their carrying capacity. The first 
2000 time steps are omitted. 
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Fig. 5. Relationship between the average enforcement level of the system and resource 
level of the system (A), number of settlements (B), and percentage of cheaters in the 
population (C) and between resource level and number of agents’ movements (D) and 
percentage of cheaters (E). Each dots represents the average value of the system in each 
time steps of the 200 runs. The first 2000 time steps are omitted.  
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Fig. 6. Average value of the evolved parameters of the default model during the last 20% 
steps of each run. A: proportion of occupied patches (i.e. settlements); B: resource level; C: 
proportion of cheaters in the population; D: proportion of agents that moved; E: mean 
storage level of agents; F: enforcement level; G: enforcement level of settlements; H: 
enforcement level of patches. Results from the Pearson´s correlation between the duration 
of the runs and the evolving parameters are shown.  
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Fig. 7. Mean of the duration of the runs (A) and value of evolved parameters (B-I) for 
different move capacities of the agents and landscape configuration. Lines represent the 
standard deviation. Black bars: default landscape; from left (light bars) to right (dark bars): 
uniform, normal, exponential. 
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Fig. 8. Percentage of occupied patches (A), resource level (B), enforcement level (C) of 
occupied (dark blue) and unoccupied (light blue) patches, and percentage of cheaters (D) in 
patches with each value of K. Simulations are for a uniform distribution and with the rest of 
parameters settled as the default model. Lines represent the standard deviation. 
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Fig. 9. Mean of the duration of the runs and value of evolved parameters for different move 
capacities of the agents when reputation of the agents is included. Gray bars represent the 
default model. Lines represent the standard deviation.  
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Appendix1. Video of the first 1000 time steps of the model using the default settings (see 
Table 1).  
 
In the video agents (red dots) as well as agents that have moved each time steps (blue dots) 
and offspring (yellow dots) can be seen. At the beginning of the video, the evolution of the 
resource is showed. Agents harvest resource and resource growth accordingly to a logistic 
growth function. In the video darker green patches represent higher level of resource. At 
time step 100, the evolution of the enforcement level is shown. Governments (patches) may 
copy the enforcement level of other patches with higher fitness (i.e. higher population 
level). In the video darker blue represent higher enforcement level. At time step 200, the 
evolution of the population is shown. Agents move if they consider that the available 
amount of resources of their patch will not satisfy them. They move to the closest cell with 
the higher resource level. In the video, darker pink patches represent higher population 
level. At time step 300, the video show the resource again until the end of the simulation.   
In the video there are seven graphs representing: the population and resource levels, the 
number of settlements (i.e. occupied patches), the percentage of agents moving, the 
percentage of cheaters in the population, the mean storage level of agents, and the mean 
enforcement level of the system and of the settlements. 
 
https://dl.dropbox.com/u/11065899/MOVIE1.mp4 
 


