
International Journal of the Commons
Vol. 7, no 2 August 2013, pp. 234–254
Publisher: Igitur publishing
URL:http://www.thecommonsjournal.org
URN:NBN:NL:UI:10-1-114926
Copyright: content is licensed under a Creative Commons Attribution 3.0 License
ISSN: 1875-0281

Preliminary steps toward a general theory of Internet-based
collective-action in digital information commons: Findings from a
study of open source software projects

Charles M. Schweik
University of Massachusetts, Amherst, USA
cschweik@pubpol.umass.edu

Robert English
University of Massachusetts, Amherst, USA
bobengl@gmail.com

Abstract: This paper presents some of the findings from a 5-year empirical study
of FOSS (free/libre and open source software) commons, completed in 2011.
FOSS projects are Internet-based common property regimes where the project
source code is developed over the Internet. The resulting software is generally
distributed with a license that provides users with the freedoms to access, use,
read, modify and redistribute the software. In this study we used three different
and very large datasets (approximately 107,000; 174,000 and 1400 cases,
respectively) with information on FOSS projects residing in Sourceforge.net,
one of the largest, if not the largest, FOSS repository in the world. We employ
various quantitative methods to uncover factors that lead some FOSS projects to
ongoing collaborative success, while others become abandoned. After presenting
some of our study’s results, we articulate the collaborative “story” of FOSS that
emerged. We close the paper by discussing some key findings that can contribute
to a general theory of Internet-based collective-action and FOSS-like forms of
digital online commons.

Keywords: Collaborative success and abandonment, common property regime,
digital information commons, free/libre software, open source software

http://www.thecommonsjournal.org
mailto: cschweik@pubpol.umass.edu
mailto: bobengl@gmail.com

Preliminary steps toward a general theory of Internet 235

Acknowledgments: Support for this work was provided by a grant from the U.S.
National Science Foundation (NSFIIS 0447623). The findings, recommendations
and opinions expressed are those of the authors and do not necessarily reflect
the views of the funding agency. We also acknowledge co-funding for this
publication from the European Commissions’ 7th Framework Programme, under
contract GENCOMMONS (European Research Council, grant agreement 284).
We are especially grateful to post-doctoral fellows Sandra Haire and Meng-
Shiou Shieh who provided statistical support. We also gratefully acknowledge
the comments received at the presentation of an earlier draft of this paper at the
1st Global Thematic IASC Conference on the Knowledge Commons [Université
catholique de Louvain (UCL), Louvain-la-Neuve, Belgium, from September 12th
to 14th, 2012.] and of three anonymous reviewers. Of course, any mistakes are
our responsibility alone.

1. Introduction
To emphasize the importance of digital information as a commons, let us start
with a question for readers’ reflection: What allowed people to construct websites
so rapidly and exponentially in the early years (1994–1999)?

We agree with publisher Tim O’Reilly (2003) on the answer: the early web
browsers like Mosaic, Netscape Navigator and Internet Explorer all provided
a “View Source” menu item, allowing web surfers to read the HTML logic of
the webpage they liked, copy it, and then create new derivative works based
on it. Moreover, we argue further that this period could be considered the most
successful distance-learning phenomenon in human history, driven by the fact
that the code was readable and open. Webpage growth from 1994 to 2000 is a
global-scale existence proof of the potential innovative power of open access,
digital information commons on the Internet.

Fast-forward to 2012 and scale down to the individual. Recently we witnessed
another example of this innovation phenomenon based on openness and learning
in a place we did not expect it – at home, where co-author Schweik was interacting
with his 11-year-old son Max as he used the family computer. Max is just starting
to learn a programming language called “Scratch” created at the MIT media lab
for children. Max had developed an initial program that displayed an object that
moved across the screen. But he became stuck on the problem of how to make it
“loop” and reappear on the left screen edge when it went off the right edge side
of the screen. Without asking for any help, he went to the MIT Scratch website,
viewed other Scratch animations published by other kids, and found one that had
the “edge-looping” behavior he envisioned. He then viewed and deciphered the
source code (since the MIT site makes the code available for others to read), he
interpreted that code, and figured out how to implement similar screen looping
logic in his animation. This 11-year-old’s activity was, at the individual level, an
incredible demonstration of the power of open source and open access to digital

236 Charles M. Schweik and Robert English

information on the Internet. Moreover, it is quite likely that this open learning
phenomenon is occurring not only in software, but in other knowledge sharing,
digital information situations.

In the cases above, the web page developer and Max are consumers and
learners of open code who then use that knowledge and implement it for their own
needs – what Eric von Hippel (2005) calls “user-centered innovation”. Indeed,
open knowledge commons can lead to learning and new innovation, but it could
be argued that this innovation can be accelerated if harnessed in collaborative,
co-production situations.

In the area of computer software development this kind of co-production has
existed since the beginning of the computing era (1950s, 1960s), when the free
sharing of readable software code and collaboration on new versions were the
norm. It was only in the late 1960s and 1970s that software became viewed as a
proprietary commodity by software development firms (Drahos and Braithwaite
2002; O’Reilly 2003). This is an early example of what Boyle (2003) refers to as
the “Second Enclosure Movement” where “… things that were formally thought
of as either common property or uncommodifiable are being covered with new,
or newly extended, property rights” (p. 37). A decade or more later, this enclosure
of software logic led Richard Stallman at MIT to come up with his brilliant push-
back using copyright law; an approach he coined “copyleft” (Stallman 1999).
Stallman created the General Public License (GPL) that gave the user the freedoms
to access, use, read, modify and redistribute his GNU operating system software.
Other open source software licenses followed shortly thereafter and differ from
free/libre licensed software in some respects,1 but for our purposes, we will treat
the labels free/libre and open source software as examples of the same general
class of software and will refer to them collectively as “FOSS”. Since Stallman’s
innovation in the 1980s, FOSS has continued to grow and is now widely and
globally deployed.

As a result of the open-source phenomenon, perhaps more than any other
category of Internet user, computer programmers and FOSS programmers in
particular have significant experience in online collaboration in the context of
digital information commons. The study of FOSS commons is important not
only because of its potential for learning and innovation, but because uncovering
underlying collaborative principles could enhance not only software co-production
but also collaboration in other digital commons contexts.

Scholars have recognized the importance of FOSS collaboration. Over the last
decade, a sizable amount of research has been conducted on FOSS (Aksulu and
Wade 2010). After their review of the literature, Crowston and colleagues (2012)
conclude that the body of research is biased toward well-established, successful
FOSS cases and largely ignores unsuccessful projects; and focuses less attention

1 (There are more subtle differences between “free/libre” software and “open source” software
that are not important for our discussion here. For more information see http://opensource.org/
faq#copyleft or http://open source.org more generally.)

http://opensource.org/faq#copyleft
http://opensource.org/faq#copyleft
http://open source.org

Preliminary steps toward a general theory of Internet 237

on projects in “initial or transition phases” or on the evolutionary nature of FOSS.
Moreover, we would add that to date there are no large-scale empirical studies
focusing on the socio-technical factors that lead FOSS projects toward ongoing
collaborative success or abandonment and more accurately portrays the active
population of FOSS projects.

In the original call for papers for the International Association for the Study
of the Commons’ 1st Thematic Conference on “the Knowledge Commons”, for
which this paper was initially written, it stated: “The motivating questions for
this conference is how best to devise and diffuse institutional and organizational
models that would maximize social benefits and returns from the knowledge
commons, by promoting broad access to and reuse of research resources, rather
than restricting it; and how this can be done while preserving reputational
benefits and essential ownership rights, as well as transparent and shared quality
standards”. Given that FOSS programmers have been collaborating over the net
on common property knowledge commons for multiple decades, understanding
how they do this in a carefully designed, systematic way, is vital for answering
this question.

In this paper, we summarize findings from a 5-year empirical study of
FOSS commons that attempted to close some of these gaps in our knowledge
(Schweik and English 2012). The central research question we asked is: What
factors lead some FOSS commons to ongoing collaborative success and others to
abandonment? In the work we will describe next, we analyze two large datasets
with information about a large number of FOSS projects, one representing
approximately 107,000 in 2006, and another representing roughly 174,000
projects in 2009. These projects are from the FOSS hosting site Sourceforge.net.
We complement the 2009 dataset with our own random-sample survey of over
1400 software Sourceforge developers. The project tested over 40 hypotheses
and research questions related to success and abandonment of FOSS commons,
including an analysis of project governance. In this paper, we briefly describe
methods used and summarize some of our key findings. We conclude with some
theoretical reflections that move toward a general theory of FOSS-like online
collective-action.

2. Foundational theory
2.1. FOSS as common property peer-production

Let us begin with a clarification about FOSS projects as a form of digital
information commons. Benkler (2006, 61–62) introduced the phrase “commons-
based peer-production” to describe circumstances where no centralization exists
and hierarchically-based assignments do not occur. Individual participants
select their tasks to work on. While these practices can occur in various digital
information settings, Benkler (2006, 63) puts forth FOSS as the “quintessential
instance” of commons-based peer production. It is here that we would add further
clarity for a readership specifically interested in commons issues. Individual

238 Charles M. Schweik and Robert English

FOSS projects could be more accurately referred to as “peer-production common
property” (Schweik 2005). In FOSS projects, explicit property rights exist that are
supported by the associated FOSS license. In any given project certain developers
have authority and access to the version control system that is used to manage
the current and future releases of the code, and these developers have significant
control over what enhancements get put into the next release. FOSS projects,
viewed as common property peer-production, raise questions about social
relations between developers on the team, as well as questions about management
and governance of these collaborations.

2.2. The guiding Institutional Analysis and Development Framework

Initially, our investigation required research on: (1) how to conceptualize and
measure the dependent variable “collaborative success or abandonment”, and
(2) what various factors might affect collaborative success or abandonment in
Internet-based common property settings. We used the Institutional Analysis and
Development (IAD) Framework – a framework well known to commons scholars
– to help guide us as we combed through relevant theoretical and empirical
literature (Figure 1).

Specifically, we reviewed theoretical and empirical research related to
software engineering and information systems development, distributed work and
virtual teams, social movements, collective action, and commons governance and
management, much of which describes natural resource commons settings, but
some of the more recent research focuses on the “new digital commons” (Hess and
Ostrom 2007; van Laerhoven and Ostrom 2007; Bollier 2008). As we reviewed
these literature, we developed theories about what factors might influence
whether a FOSS project continues to be worked on or becomes abandoned, and
we translated these theories into over 40 testable hypotheses, or sub-research
questions where no a priori hypothesis could be articulated.

The left side of Figure 1 provides a list of some of the factors we investigated,
organized into “categories” of project attributes: technological, community
and institutional. Technological attributes refer to aspects of the software
being developed, or the collaborative technologies used to coordinate work.
Community attributes captures the people doing the development, or the user
community using the software. We also lump financial and marketing efforts
into this sub-category of independent variables. Institutional attributes describe
generally the governance system that oversees a project. As institutional
analysts of the commons know, this captures various rules-in-use which may
be either formally articulated (e.g. put in writing) or could be simple unwritten
social norms that developers follow in their day-to-day activities. In the FOSS
context, one important constitutional level set of rules is the software license
used, such as the Free Software Foundation’s General Public License (GPL) and
its variants, or a wide variety of non-GPL compliant licenses (see OSI 2012 for
more detail).

Preliminary steps toward a general theory of Internet 239

On the right side of the IAD framework in Figure 1, we capture the “action
arena” (Ostrom 2005) that depicts one or more FOSS developers in any one point
in time reflecting on whether he or she should either continue to contribute to the
project or, alternatively, leave the project. Historically, FOSS was about volunteer
programmers donating their time and intellectual property and the motivations
for this behavior has been thoroughly researched (see, for example, David and
Shapiro 2008). Increasingly, however, some developers are paid to contribute by
their employer (Riehle 2007; Schweik and English 2012, Chapter 2). Regardless
of whether the developer is volunteer or paid, we assume from time to time there
is self reflection on whether the time spent contributing to the project is deemed

Technological attributes

Community attributes

Institutional attributes

. Software requirements and properties

. Modularity and granularity

. Versioning system

. Communication technologies

. Bug tracking

. Collaborative infrastructure used

. Competition

. User involvement

. Leadership

. Marketing strategies

. Operational level rules

. Collective-choice level rules

Continued collaboration
(success) FOSS Project

abandoned

Developer(s)
leaveDeveloper(s)

stay

FOSS developer:
Should I keep contributing or

should I leave the
project?

Action arena

. Constitutional level rules

. Financing

. Group homogeneity/heterogeneity

. Social Capital

. Software utility

Figure 1: A simplified Institutional Analysis and Development Framework to support analysis
of FOSS common property regimes.

240 Charles M. Schweik and Robert English

valuable or not to the individual developer or his or her employer paying him or
her for contributing to the project. One trajectory over time is that all developers
“jump ship” and the FOSS project ultimately becomes abandoned (right bottom,
Figure 1). In instances where one or more developers decide to stay and continue
software maintenance or ongoing development (the “continued collaboration” box
at the bottom right of Figure 1), the project continues to be worked on an a new
period in the dynamic system begins, feeding back to the independent variables
where attributes over time change.

2.3. FOSS development trajectories

Our literature review also involved research on ways to measure success of FOSS
projects, but we ultimately settled on the concept of collaborative success and
project abandonment because of our interest in explaining collective action in this
context. But measuring collaborative success and abandonment in FOSS is tricky,
in part because of the longitudinal nature of these kinds of collaborations.

Figure 2 graphically describes common collaborative success and aban-
donment trajectories in FOSS settings, and also highlights a key temporal
juncture: the first public release of the software. As we considered collaborative
processes, we ultimately hypothesized that the factors that influence collective
action of FOSS developers were likely different in the time prior to a first software
release compared to the time after the first public release. For example, much of
the FOSS literature discusses end-user involvement and interaction (Dafermos

Stage: Initiation Growth

First public
release of software

Large
team

Of
Developers

Small
team

Time

2
3

1

1 Large team success case: starts small, grows into large team
(and large user base).

Abandonment trajectory: starts small, becomes abandoned

Small team (developer and user base) success case

(Adapted from Schweik and English 2012)

2

3

Figure 2: Key stages and trajectories in FOSS development.

Preliminary steps toward a general theory of Internet 241

2005; Fogel 2006), but that kind of involvement, by definition, would only occur
after a first public release of the code.

Historically, the poster child of FOSS success has been the Linux operating
system. In Figure 2, the dark bold Arrow 1 represents this kind of extreme
collaborative success story. Linux started out as a 1-developer project in 1991,
and over time, gained many developers (it now has perhaps 100s) and continues
to release new and enhanced versions. The dotted line Arrow 2 in Figure 2 depicts
the alternative trajectory. A project starts out with a small team, and over time
– either before or after a first release – eventually loses the developers it has
and becomes abandoned. However, the successful collaboration trajectory that
tends to be forgotten is depicted by the thinner grey Arrow 3 in Figure 2. In this
scenario, one or a small group of developers start the project and, over time, the
size of the development team remains fairly stable but this team continues to
work on the project. The example we like to use in this context is a small team
developing FOSS in an area such as bioinformatics. In these kinds of instances,
there is a small community of people who have the skills to develop such software,
and there is probably a relatively small body of possible users (e.g. researchers
in biology). But for our purposes, the trajectory of Arrow 3 is just as much a
collaborative success story as the trajectory of Arrow 1. Our collaborative success
dependent variable (described more fully below in Methods) will need to be able
to handle both kinds of success stories.

3. Methods
Let us turn to a discussion of our methods used to investigate collaborative success
and abandonment in FOSS commons. Given that we want to provide readers with
more information on the results of the work and provide a discussion of their
implications, we will only summarize key methods deployed here. Complete
detail on methods (and results) is presented in Schweik and English (2012).

Our empirical work began in 2005–2006, and at the time we investigated
ways to build a large database of FOSS projects for quantitative analysis that
was potentially representative of the (unknown) population of FOSS projects.
At the time, the dominant location on the web to find FOSS was the hosting site
Sourceforge.net (SF). It was, and arguably still is the largest free/libre or open
source software project-hosting site on the Internet (Deek and McHugh 2007,
152).2

It turned out that two different research groups – FLOSSmole (Howison et
al. 2006) and the Sourceforge Research Data Archive (SRDA, van Antwerp and
Madey 2008) were taking static “snapshots” of SF hosting data and making them
available for researchers to use. Over the course of our project, we ended up
using a FLOSSmole dataset representing 107,747 SF hosted projects in the year

2 Although there are other hosting platforms that are now rivaling SF such as github (https://github.
com/).

https://github.com/
https://github.com/

242 Charles M. Schweik and Robert English

2006, and later obtained an SRDA SF dataset of 174,333 projects representing
activity in 2009.3 While these datasets provided an excellent foundation and
covered many of the technological attributes of projects, they were missing data
on community and institutional aspects (recall Figure 1). Consequently, with the
help and support of the SF organization, we conducted a stratified random sample
of 50,000 (!) projects from the 2009 database and invited project administrators
to take an online survey of approximately 45 questions (one survey for Initiation
stage projects, and one for Growth stage projects) designed to fill in the missing
concepts. We estimated a sample of 50,000 was needed to ensure we would receive
enough responses from abandoned projects. In the end, we received 1403 usable
survey responses (683 surveys for Initiation Stage projects and 720 surveys for
Growth Stage projects) from SF developers in 2009, which we then merged with
our 2009 SF project metadata to create a database where all independent variables
we wanted to investigate were measured in one, or sometimes in multiple ways.

With our datasets established, we turned to the issue of defining and
operationalizing our dependent variable – FOSS project collaborative success
or abandonment. We combined “use” and “popularity” measures (Crowston et
al. 2003; Weiss 2005) with measures of project life and death (Robles-Martinez
et al. 2003). Because we hypothesized that there might be different influential
factors early in the project compared to later in the project, we applied different
criteria for the “Initiation” (pre-first release) and “Growth” (post-first release)
stages depicted in Figure 2. Table 1 provides definitions of these classes as well
as classification results for the 2006 and 2009 datasets. These definitions meet
the criteria we described earlier related to trajectories depicted in Figure 2; they
capture success in instances where there are large or small development teams and
user communities. Given the importance of this measure, we spent over a year
figuring out measures of these concepts using SF project information, we classified
the 2006 dataset based on our operationalization scheme, and we validated the
classification by randomly sampling 300 projects and manually reviewing their
project pages to make sure they indeed were correctly classified. We published
a paper on this process (English and Schweik 2007) and Wiggins and Crowston
(2010) independently verified our results.

With our dependent and independent variable concepts defined and
operationalized, we turned to quantitative analysis. We approached this in three
stages.

First, in 2007, we used our 2006 classification data and the 2006 FLOSSMole
dataset to develop initial classification and regression tree-based models of FOSS

3 As we contemplated these datasets, we were aware that some of the projects on SF are ones that
were never meant to be ongoing projects nor had a goal of developing a community of users (e.g.
computer science students using SF to host a programming project for a class, for example). But
we expected this kind of “noise” in the SF data to fall out in statistical analysis given the number of
projects SF hosts.

Preliminary steps toward a general theory of Internet 243

success and abandonment for Initiation Stage projects and for Growth Stage
projects.

Second, after acquiring the 2009 SRDA dataset, in 2009 we administered
the SF Developer Survey described earlier. We then used contingency tables
to systematically analyze each survey question (and hence, almost all 40+
hypotheses).

Third, using the knowledge gained from the two previous steps, we once again
used classification and regression tree modeling and logistic regression to analyze
the 2009 SF survey and SRDA data combined in an effort to create multivariate
models of success and abandonment for both the Initiation and Growth Stages
capturing the concepts in Figure 1. In the section that follows, we summarize
some of the main results of each of these analytic stages. Readers interested in
more detail are encouraged to see Schweik and English (2012) Chapters 8, 10, 11
and 12.

4. Selected results: analysis of the 2006 FLoSSmole dataset
Our initial analysis of the FLOSSmole dataset of 2006 SF projects led to several
discoveries:

Table 1: FOSS collaborative success and abandonment classes, definitions and results for 2006
and 2009 SF datasets (For operationalization details, see Schweik and English 2012 Chapter 7)

Class Definition 2006 dataset
results (# of
projects/%s)

2009 dataset
results (# of
projects/%s)

SI: Success in initiation Developers have produced a first release See* See*
AI: Abandonment in
initiation

No First release produced, and the project
appears to be abandoned

37,320 (35) 67,126 (39)

SG: Success in growth Project has achieved three meaningful
releases of the software and the software is
deemed useful for at least a few users

15,782 (15) 24,899 (14)

AG: Abandoned in
growth

Project appears to be abandoned before
producing three releases of a useful
product, or has produced three or more
releases in <6 months and is abandoned

30,592 (28) 53,450 (31)

II: Indeterminate in
initiation

Project has yet to reveal a first public
release but shows significant developer
activity

13,342 (12) 16,806 (10)

IG: Indeterminate in
growth

Project has not yet produced three releases
but shows development activity, or has
produced three releases or more in <6
months and shows development activity

10,711 (10) 12,052 (7)

Total projects 107,747 174,333

*Successful initiation (SI) numbers are not listed because these successes are growth stage projects.
Including SI would double-count.

244 Charles M. Schweik and Robert English

1. The vast majority of FOSS projects in SF are small development teams
(1–3 people) with a long tail where a few projects have more than 20
developers.

This finding is not new; Krishnamurthy (2002) first reported it.
But given that much of the FOSS literature continues to analyze large
development team, high profile FOSS projects, we think this is an
important point to reiterate.

2. In both stages, projects (a) with a clearly defined vision; (b) building
software with clear utility; and (c) possessing leaders who lead by doing
(e.g. putting the time in) and also are good at articulating project goals tend
to be more successful than projects that do not possess these characteristics.

3. While important explanatory variables were similar between the Initiation
and Growth stage models, their influence differed between stages.

For example, the measures for “leadership by doing” and “well-
articulated goals” were more important in the Initiation stage projects
compared to the Growth stage projects. These results support our earlier
contention that factors contributing to success are different in the earlier
stage of the project compared to the later stage of the project.

4. Successful Growth Stage projects tend to have slightly larger development
teams compared to abandoned Growth Stage projects, and we have strong
statistical support for this.

This finding led us to include two questions our SF developer survey
regarding where these new developers came from, geographically. We
will revisit this point later.

5. Growth Stage projects with higher measures user community interest (e.g.
higher numbers of web-page visits, software downloads, bug reports and
forum posts) are more often classified as successful.

This finding lends support to the conventional wisdom of FOSS where
user communities are involved and interact with the development team.

5. Selected results: analysis of our SF developer survey
With the analysis of the 2006 SF data completed, we then designed and
implemented in 2009 the online survey to SF developers. Our ultimate goal was
to build a more complete multivariate model of FOSS success and abandonment,
which is why, at the same time, we collected a 2009 static time slice of SF
projects from the SRDA program at the University of Notre Dame (van Antwerp
and Madey 2008). But based on our theoretical and literature work, we had
over 40 hypotheses to test about individual factors, so before we undertook
multivariate modeling, we wanted to conduct univariate analysis first, examining
each hypothesized factor individually, using contingency tables. In this section,
we report some of the most important and interesting findings of this phase of
our analysis, highlighting a few of the forty-some factors we identified in our
literature and theoretical work.

Preliminary steps toward a general theory of Internet 245

1. Our 2009 survey results support our SF 2006 findings: a clearly defined
vision, the utility of the software and project leadership attributes are
associated with success in both stages.

Six different questions in our Initiation and Growth surveys
measured concepts related to the project having a clearly defined vision.
Contingency tables revealed highly statistically significant results to
support the hypothesis that projects with well-defined goals and plans are
more successful than projects reporting less well-defined goals and plans.
This is true for both Initiation and Growth stage projects. Contingency
table analysis of questions related to product utility and aspects of team
leadership revealed similar results.

2. Fine-scaled task granularity is associated with success in the Growth
Stage.

In his book The Wealth of Networks (2006), Yochai Benkler discusses
the concept of task granularity. The idea is that people – especially people
volunteering their time – will be more apt to participate if there are small
fine-scaled tasks they can sign up to work on, rather than taking on larger
tasks requiring more time and effort. In our survey we asked whether
projects had explicitly established fine-scale tasks for some people to
do. We found highly significant statistical support that suggests that SG
projects have higher numbers of fine-scaled tasks in place for potential
contributors compared to AG projects.

3. Financial backing is associated with Growth Stage success.
Our survey results suggest that financial support for a project is more

important in the Growth Stage than the Initiation Stage. Our Initiation
survey contingency table reveals weak support for the idea that financial
support helps a project get to a first release, but responses from the Growth
Stage project survey reveals highly statistically significant differences
between SG and AG projects. SG projects are more often associated with
financial backing of some sort.

4. Sociocultural Heterogeneity is not a barrier to success.
The results from the 2006 data analysis suggesting SG teams

grow, at least slightly, led us to investigate this phenomenon more in
our developer survey. We included a question about the geographic
location of new developers that joined the project. In our results, we
found that 99 out of the 190 multi-developer projects in the SG class or
about 52%, had collaborations across continents – North America and
Europe. This indicates that sociocultural heterogeneity is not a barrier
to success. We will return to this point in the discussion section that
follows.

5. The majority of FOSS projects in SF follow a “benevolent dictator” model
of governance. In addition, we have slight statistical evidence that suggests
larger SG projects have slightly more formalized systems of governance
than their smaller sized counterparts.

246 Charles M. Schweik and Robert English

Elinor Ostrom’s (1990) seminal work “Governing the Commons”
listed design principles found in long enduring natural resource commons
settings. One of these design principles suggested that decision-making
was democratic; that is participants in the commons have a say over its
direction. While this is likely true to a certain degree in FOSS commons,
what became apparent from our survey work is the vast majority of both
abandoned and successful FOSS projects have a benevolent dictator-
type governance structure where a leader is authorized and makes major
directional decisions for the project. This result is very likely a result of
the skewed nature of our large dataset toward small-team development
projects.

Related to the second point above, the literature that exists in FOSS
on governance suggests that programmers “just want to work” and resist
formalized rules meant to guide or control behavior. Eric Raymond, a
famous FOSS proponent once wrote (2001, 127, emphasis added): “The
real free-rider problem in OSS software are more a function of friction
costs in submitting patches [code fixes] than anything else… the number
of contributors (and, at second order, the success of) projects is strongly
and inversely correlated with the number of hoops each project makes a
contributing user go through.” In our data analysis, we find statistically
significant evidence supporting the argument that as SG projects get
larger, they move away from working under systems of social norms and
more toward formalized systems of governance.

6. A number of factors we thought might help distinguish between successful
and abandoned FOSS projects were found to have no statistical importance.

In the Initiation and Growth Stage survey data, these include:
modularity (a vast majority of both SI and AI projects report being
modular in design); project complexity (found both in AI and SI projects);
developer motivations [similar motivations were found in both AI and
SI projects, including von Hippel’s (2005) user-centered need – more
on this in the discussion section; trust among developers; socio-cultural,
motivational or asset heterogeneity across the development team].

6. Selected results: multivariate models based on our SF
developer survey combined with the 2009 SF dataset from
SRDA
Our third analytic effort returned us to multivariate modeling using a dataset
constructed by using the combined 2009 SRDA data and our Initiation and
Growth Stage developer survey data, respectively. Once again, for each stage, we
used classification and regression trees, as well as logistic regression.

Our Initiation Stage multivariate model had only moderate ability to
distinguish between success and abandonment. It correctly classified 488 out
of the 683 projects in the dataset (a 71% correct classification) with about a

Preliminary steps toward a general theory of Internet 247

30% improvement over chance.4 But what is quite interesting about the results
is that while this analysis uses completely separate data from our earlier 2006
data analysis, our results closely mimic what we reported earlier: key factors that
distinguish between successful and abandoned projects in the Initiation Stage are
leading through doing and hard work, as well as articulating clearly project goals
and a vision of the future.

The Growth Stage multivariate model, however, did quite well in differentiating
between successful and abandoned projects. Here, we correctly classified 448 out
of 500 projects – a 90% correct classification rate, and a 74% improvement over
chance. The most prominent variables in this model were (in descending order by
importance): downloads, bug tracker reports, leadership, and community.

We believe the downloads variable – a count of the total number of downloads
of the software recorded at the time our SF database was acquired – captures a
measure of the size of the external user community. In our data, the number of
downloads is an important variable helping to distinguish SG from AG projects,
suggesting that a larger user community is also associated with success in the
Growth Stage. In Schweik and English (2012) we provide strong statistical
evidence suggesting that both the size of the development team and the size of
the user community are not merely correlated with success, but are causal factors
for success.

Bug tracking reports captures, for each project, the number of errors or new
feature requests, often posted by the project’s user community. This variable, like
downloads, was high in the results of variables that help distinguish between SG
and AG projects. Like downloads, this variable provides another measure of user
community activity and provides evidence that growing the user community is a
causal factor in success.

The leadership variable we used in this model captures the same meaning
as it did earlier in our Initiation Stage analysis. Its strong presence in our model
suggests that elements of leadership, including hard work, planning, articulation
of goals and other aspects of project management are highly correlated with
success in the Growth Stage. We have strong evidence that leadership is a causal
factor for success in the Initiation Stage and therefore, the Growth Stage.

Lastly, a variable we call “community” – an index combining a number
of survey questions that get at the time the respondent spent helping users, the
number of nonfinancial contributions made by people not listed as formal project
developers, and questions related to other contributions made by these non-project
contributors – was found to also have substantial ability to help discriminate
between SG and AG projects. Again, this suggests an important role being played
by people not recognized as part of the formal development team in FOSS projects.

4 See Schweik and English (2012, 258–266) for a full explanation of the model results we are de-
scribing. Also, for interested readers, we have made all our data and statistical scripts available at
http://www.umass.edu/opensource/schweik/supplementary.html.

http://www.umass.edu/opensource/schweik/supplementary.html

248 Charles M. Schweik and Robert English

7. Discussion: the FoSS story that has emerged
Our results show that important factors associated with success and abandonment
differ between the two longitudinal stages. Moreover, the 5 years of work that we
have only been able to summarize here produced fairly parsimonious models of
success and abandonment for these two stages – especially for the Growth or post-
first release Stage – that have fairly strong explanatory power. This work provides
empirical evidence based on large datasets that describes how FOSS collaboration
works. So what have we learned?

Importantly, we learned from our developer survey that Eric von Hippel’s
(2005) concept user-centered need is a major motivator for FOSS developers,
regardless of whether their projects achieve collaborative success or not. Across
the board, a vast majority of our respondents reported that they either initiated or
participated in a FOSS development project because they, or the organization they
work for, are users of the software they work on.

That being said, FOSS commons often begin with one or more people who are
motivated to start a project to fill a particular software need that they have. These
projects usually start small in terms of development teams,5 perhaps one or two
people, who begin working on a software project.

During this pre-release period – what we call the Initiation Stage – the most
important factors that lead a FOSS project to success – defined in this stage as
a first public release of code – center around the attributes of the designated or
defacto leader/developer of the project (who often may be the only developer
on the project). Our analysis suggests that leaders who devote significant time
and effort in the project are more likely to produce a first release. Other aspects
of leadership that are influential in this stage include having a plan for current
and future software architecture and functionality, having established goals, and
continually providing good project documentation and maintaining a high quality
web presence. These factors are important in the Initiation Stage because some
projects get contributions from volunteers before the first release (the projects
are visible on SF even when they have yet to produce a first release), and these
attributes help to lay the foundation for later success in the Growth Stage.

Once a project achieves success and produces a first release, the story gets
more complicated. We found in our data that about 15–20% of the successful
growth projects are examples of Arrow 3 depicted in Figure 2. These projects
are of interest only to small audiences and have small numbers of downloads as
a result. However, our data reveal that most successful Growth Stage projects
have over 1000 downloads and are of interest to 200 or more users.6 The story

5 Although there are examples of closed-source projects that get re-licensed and converted to open
source projects – something West and O’Mahony (2005) refer to as “sponsored spinouts”. The web
browser Netscape, that eventually evolved into Mozilla and Firefox, is a high-profile example of this
scenario.
6 This is an estimate based on the 1000 downloads metric.

Preliminary steps toward a general theory of Internet 249

that our analysis uncovers is that once a project moves into the Growth Stage, the
leadership skills of the project’s development team, and the utility of the software
itself begin to attract users. We have strong statistical support that often, at least
one additional development team member joins the project and helps cause its
continued success.

These FOSS commons tend to be governed by a benevolent dictator who
manages the project as a form of common property. One or possibly a few leaders
in the project tend to have authority over the version control system and determine
what goes into the next release. Under this system of governance, the existing
developers, users and potentially new development team members continue to
make contributions and improvements to the software and related materials (e.g.
documentation) and, in the successful collaborative instances, a virtuous circle
is created. New versions are released, projects can continue to gain users, some
of whom contribute back to the project (recall the importance of the community
variables in the Growth Stage that we described earlier) and successful work
continues. However, in other cases, particularly ones where some project
developers have prior FOSS experience, our data suggest that these developers
see the writing on the wall when the project is not achieving what it set out to
achieve and eventually abandon the project.

Over the last year we have given several talks with software developers in the
audience where we have described the “virtuous circle” story that has emerged
from our data. After these talks we have had developers come up and confirm
that the story we just told summarizes their own experiences. To these people,
our findings may seem obvious. But we should remind readers that the story just
described is grounded on careful, systematic quantitative data analysis and sizable
datasets. The fact that the findings align well with what these practitioners have
seen in their experience, provides us with an additional level of confidence in our
results.

8. Conclusion: toward a general theory of Internet-based
collective-action in digital information commons
In this paper we have tried to summarize a 5-year research project looking at
factors leading to collaborative success or abandonment in one form of online
digital information commons called free/libre and open source software or FOSS,
a difficult task given all that we have to say. As we noted earlier, readers should
care about FOSS as an online peer-production commons or, more accurately,
an online peer-production common property regime, in part because computer
programmers have been actively working in online collaboration for much longer
than most of us. The collaborative principles found across successful FOSS
projects can tell us much about how similar practices might be applied in other
digital commons situations.

In the previous section, we described the basic story about how these projects
work and evolve. Now, in conclusion, we will try and step back and close with

250 Charles M. Schweik and Robert English

five important theoretical insights our study revealed that undoubtedly has
implications for other FOSS-like digital information commons collaborations.
These points should be of interest to anyone interested in digital information
commons and online collective-action.

8.1. Motivations to contribute – A “Theory of Compound Incentives”

As we have stated, across both successful and abandoned projects, von Hippel’s
“user-centered need” is an important motivator for participation. In the early
days of FOSS the vast majority of discussions focused on the volunteer nature
of FOSS-collaboration. More recently, firms have joined in and encouraged
employees to contribute. So von Hippel’s user-centered need now captures the
incentives of both volunteer developers and, in many instances, the motivations
of firms. In addition, our research revealed that some developers participate in
FOSS because of the enjoyment of using their skills for “serious leisure” (Stebbins
2001) or for the learning they gain by reading and editing other peoples’ code
(recall our opening story of Max, the 11-year-old programmer). In contrast to
earlier FOSS work on motivations, we found in our survey data that the idea of
showing off or demonstrating programming skill to the community was much
less a motivator, and this is probably because the vast majority of the projects
are small teams.

But what was most striking in our analysis (see Schweik and English 2012
for more detail) is that no particular motivation seemed to be aligned with either
success or abandonment. But what we did discover in our contingency table
analysis was that the higher number of different motivations reported by an
individual respondent, the higher the success rates in both Initiation and Growth.
This suggests that projects may be more successful if their developers have
multiple reasons to contribute to the project (e.g. they need the software and they
are paid to contribute).

8.2. FOSS Project Governance

Our findings suggest that a large majority of FOSS projects are governed
simply through agreed upon social norms. This is the case because many of
these projects involve very small teams. Programmers we interviewed often did
not even recognize that they had rules for collaboration in place, and this was
largely because many of the operational-level rules were embedded in the online
software version control system that they use to store their current release and
code they are working on for their future release. However, we also uncovered
statistical evidence suggesting that to some degree projects move toward more
formalized governance structures and operational rule systems as development
teams get larger. In some cases, formalization means that very informal rules
governing collaboration get slightly more formalized. Programmers appear to
still seek systems of governance that minimize “friction”, as Eric Raymond
(2001) suggests.

Preliminary steps toward a general theory of Internet 251

A limitation in our study on the point of FOSS governance is that we explicitly
tried to build a dataset that was a realistic representation of the population of
FOSS projects, and undoubtedly, the vast majority of FOSS projects involve very
small teams. Small teams need less formalized coordination. We hypothesize that
had we sampled from the long tail of projects where large teams exist, we would
most likely see higher levels of formalized governance structures.7

8.3. OSS and Group Size

In Schweik and English (2012, 74–76) we discuss three different theoretical
perspectives about group size and collective-action. First, we make a connection
between two famous theories proposed around the same time but in different
fields: economist Mancur Olson (1965, 35) argued that “the larger the group, the
less likely it will further its common interests”. In a totally separate discipline,
software engineering scholar Frederick Brooks ([1975] 1995, 25) theorized
that that “adding manpower to a late [software] project makes it later”. Both of
these scholars made similar propositions: larger project teams will have more
difficulties than smaller ones.

However, 30 years or more later, reflecting on collaboration related to the
FOSS operating system Linux, self-proclaimed FOSS advocate Eric Raymond
proposed “Linus’ Law” that states: “Given enough eyeballs, all bugs are shallow”
(Raymond 2001). In other words, in FOSS, larger development teams and active
user communities help, rather than hurt.

In our data, we found that successful Growth Stage projects grow, albeit
by a small number of programmers, but we also find strong evidence that the
user community matters and is important. Our analysis lends strong support to
Linus’ Law over the Olson/Brooks theories in the context of online digital FOSS
commons.

8.4. Face-to-Face meetings and Social Capital

In this paper we only touched on issues of social capital and FOSS commons,
but we did in fact study it. One of the most interesting “non-findings” from our
survey was that face-to-face meetings between multi-developer teams were not
necessary conditions for achieving success. Many of our survey respondents
working in projects classified as successful had rarely if ever met face-to-face
with one or more developers on their team. But let us be clear; we are not
saying that face-to-face does not matter or is not important in building social
capital. It undoubtedly is. What we are saying is that some FOSS projects
where collaborators are geographically distant can get around this by using

7 Incidentally, in Chapters 5 and 7 of Schweik and English (2012) we build upon Ostrom’s (2005)
rule categories and analyze seven FOSS projects that all are connected via an overarching nonprofit
foundation called OSGeo. In that work, we are attempting to move toward further systematic and
comparative study of FOSS governance structures.

252 Charles M. Schweik and Robert English

technologies such as Skype for virtual collaboration. It is not the same as
meeting and having a beer together, but our findings suggest that having that
beer with other collaborators is not a necessary condition for creating high
levels of trust (which we found to be the case in most projects) and achieving
collaborative success.

8.5. SF and Google as “power-law” intellectual matchmaking hubs

This question of team members and distance lead us to what we think is one of the
most interesting and important findings of our study. In our analysis of the 2006
data, we discovered that SG projects tend to gain a developer, but at the same
time, the vast majority of projects remain small teams (2–4 developers). In our
2009 SG survey, recall we asked questions about whether the project had gained
a developer, and if so, whether that developer was co-located, geographically, or
whether he or she was in the same city, same state, same country, same continent,
or on a different continent. We discovered that of the multi-developer projects,
more than 50% of them had a developer on a different continent.

This provides strong statistical evidence suggesting what may be a very
important phenomenon that is important not only to FOSS but for any other
digital information commons effort trying to mobilize collective-action. In fact,
we have evidence that might very well explain underpinnings of collective action
in, say, Wikipedia.

What we think we have learned is this: The vast majority of FOSS
commons are not about creating and mobilizing large teams of developers
(users, perhaps more so, developers not as much). What is happening is an
“intellectual matchmaking” phenomenon, that is driven by the fact that SF acts
a key “power-law” hub (Karpf 2010, 12) for FOSS software, coupled perhaps
with search engines like Google. These are locations on the Internet-based
where people go, looking to solve a user-centered need and are looking for a
FOSS solution. The ease of which they can now find one or two or three other
people working on a solution lead them into the virtuous circle we described
earlier. They find a project of interest, engage, perhaps first as an end user,
but over time, interact via the Internet and build social capital with the FOSS
team, perhaps demonstrate an interest, a passion, and skills to contribute, and
eventually are brought in as an additional developer. The story of FOSS-based
collective action in our data is that it is not necessarily about growing large
development teams; rather it is about people over sometimes large geographic
areas discovering each other, and connecting with two or three other people
with very similar user-centered needs, interests, passions and abilities.
This power-law intellectual match-making phenomenon we just described
undoubtedly occurs in other digital commons situations outside of FOSS. This
could provide the foundation of a general theory of Internet-based collective
action in digital information commons.

Preliminary steps toward a general theory of Internet 253

Literature cited
Aksulu, A. and M. Wade. 2010. A Comprehensive Review and Synthesis of

Open Source Research. Journal of the Association for Information Systems
11(11/12):577–656.

Benkler, Y. 2006. The Wealth of Networks: How Social Production Transforms
Markets and Freedom. New Haven, CT: Yale University Press.

Bollier, D. 2008. Viral Spiral: How the Commoners Built a Digital Republic of
Their Own. New York: New Press.

Boyle, J. 2003. The Second Enclosure Movement and the Construction of the
Public Domain. Law and Contemporary Problems 66(1–2):33–74.

Brooks, F. [1975] 1995. The Mythical Man-Month: Essays on Software
Engineering. Anniversary Edition. Reading, MA: Addison-Wesley.

Crowston, K., H. Annabi and J. Howison. 2003. Defining Open Source Project
Success. Paper Presented at the Twenty-Fourth International Conference on
Information Systems, Seattle, WA, December 14–17.

Crowston, K., K. Wei, J. Howison and A. Wiggins. 2012. Free/Libre Open Source
Software: What We Know and What We Do Not Know. ACM Computing
Surveys 44(2):1–35.

Deek, F. P. and J. McHugh. 2007. Open Source Technology and Policy. New York:
Cambridge University Press.

Dafermos, G. 2005. Management and Virtual Decentralized Networks: The Linux
Project. First Monday Special Issue No. 2. October 3.

David, P. A. and J. S. Shapiro. 2008. Community-Based Production of Open-
Source Software: What Do We Know about the Developers Who Participate?
Information Economics and Policy 20(4):364–398.

Drahos, P. and J. Braithwaite. 2002. Information Feudalism: Who Owns the
Knowledge Economy? New York: The New Press.

English, R. and C. M. Schweik. 2007. Identifying Success and Tragedy of FLOSS
Commons: A Preliminary Classification of Sourceforge.net Projects. Upgrade:
The European Journal of the Informatics Professional 8(6):54–59.

Hess, C. and E. Ostrom, eds. 2007. Understanding Knowledge as a Commons:
From Theory to Practice. Cambridge, MA: MIT Press.

Howison, J., M. Conklin and K. Crowston. 2006. FLOSSmole: a Collaborative
Repository for FLOSS Research Data and Analyses. International Journal of
Information Technology and Web Engineering 1(3):17–26.

Fogel, K. 2006. Producing Open Source Software: How to Run a Successful Free
Software Project. Sebastopol, CA: O’Reilly Media.

Karpf, D. 2010. What can Wikipedia Tell Us About Open Source Politics? In
Proceedings of JITP 2010: The Politics of Open Source, eds. Stuart Shulman
and Charles M. Schweik, 2–30. Amherst, MA: University of Massachusetts.
http://scholarworks.umasss.edu/jitpc2010/1/.

Krishnamurthy, S. 2002. Cave or Community? An Empirical Examination of 100
Mature Open Source Projects. First Monday 7(6).

http://scholarworks.umasss.edu/jitpc2010/1/

254 Charles M. Schweik and Robert English

MIT Media Lab. 2012. About Scratch. http://info.scratch.mit.edu/About_Scratch.
(accessed July 25, 2012).

Olson, M. 1965. The Logic of Collective Action.
O’Reilly, T. 2003. The Open Source Paradigm Shift. http://tim.oreilly.com/

articles/paradigmshift_0504.html. (accessed July 25, 2012).
OSI. 2012. http://opensource.org/licenses/category. (accessed July 26, 2012).
Ostrom, E. 1990. Governing the Commons: The Evolution of Institutions for

Collective Action. Cambridge: Cambridge University Press.
Ostrom, E. 2005. Understanding Institutional Diversity. Princeton, NJ: Princeton

University Press.
Raymond, E. S. 2001. The Cathedral and the Bazaar: Musings on Linux and

Open Source by an Accidental Revolutionary. Sebastopol, CA: O’Reilly.
Riehle, D. 2007. The Economic Motivation of Open Source Software: Stakeholder

Perspectives. IEEE Computer 40(40):25–32.
Robles-Martinezm G., J. M. Gonzalez-Barahona, J. Centeno-Gonzalez, V.

Matellan-Olivera and L. Rodero-Merino. 2003. Studying the Evolution of
Libre Software Projects Using Publicly Available Data. Paper Presented at the
International Conference on Software Engineering, May 3–11.

Schweik, C. M. 2005. An Institutional Analysis Approach to Studying Libre
Software Commons. Upgrade: The European Journal for the Informatics
Professional 6(3):17–27.

Schweik, C. M. and R. English. 2012. Internet Success: A Study of Open Source
Software Commons. Cambridge, MA: MIT Press.

Stallman, R. 1999. The GNU Operating System and the Free Software Movement.
In Open Sources: Voices from the Open Source Revolution, eds. Chris DeBona,
Sam Ockman and Mark Stone, 53–70. Sebastopol, CA: O’Reilly Media.

Stebbins, R. A. 2001. Serious Leisure. Society 38(4):53–57.
van Antwerp, M. and G. Madey. 2008. Advances in the Sourceforge Research

Data Archive. Paper Presented at the Fourth int. Conference on Open Source
Systems, Milan, Italy, 7 September 2008.

van Laerhoven, F. and E. Ostrom. 2007. Traditions and Trends in the Study of the
Commons. International Journal of the Commons 1(1):3–28.

Von Hippel, E. 2005. Democratizing Innovation. Cambridge, MA: MIT Press.
Weiss, D. 2005. Measuring Success of Open Source Projects Using Web Search

Engines. Paper Presented at the First International Conference on Open Source
Systems, Genova, Italy, July 11–15.

West, J. and S. O’Mahony. 2005. Contrasting Community Building in Sponsored
and Community Founded Open Source Projects. Paper Presented at the Thirty-
eighth Hawaii International Conference on System Sciences, Big Island,
January 3–6.

Wiggins, A. and K. Crowston. 2010. Reclassifying Success and Tragedy in FLOSS
Projects. In Proceedings of the Sixth International Conference on Open Source
Software, eds. P. Ågerfalk, C. Boldyreff, J. González-Barahona, G. Madey and
J. Noll, 294–313. Berlin: Springer, Berlin.

http://info.scratch.mit.edu/About_Scratch
http://tim.oreilly.com/articles/paradigmshift_0504.html
http://tim.oreilly.com/articles/paradigmshift_0504.html
http://opensource.org/licenses/category

