
Overcoming Risks in Hidden Dependencies within the Cloud

Eric Chang

Yale University

Abstract
In order to address reliability and availability of cloud

services, redundancy-based techniques utilizing more

than one cloud provider have been recently proposed.

Unfortunately these approaches fail to recognize the ef-

fects related to common dependencies hidden by in-

dependent redundant services, potentially invalidating

these efforts. We propose a novel system to address this

pitfall by recommending cloud consumers the most suit-

able redundant services based on the consumers’ require-

ments. We call this system a cloud reliability recom-

mender (CRR). At the heart of a CRR, we leverage fault

tree analysis techniques to 1) discover hidden common

dependencies in order to generate correlation matrices;

2) calculate the failure probabilities of alternative ser-

vices; and, 3) enable cloud consumers to specify criteria

to optimize their utility, recommending the most suitable

services for them. In this paper, we describe the CRR,

the aforementioned process, and discuss the challenges

inherent to CRR design and practicality.

1 Introduction

Background and target problem. Using the cloud

or having services in the cloud have become popular

business cliches as increasingly more companies move

their computations and data away from personally owned

resources onto third-party resources called the cloud.

Cloud consumers or application service providers enjoy

the simplicity that comes with leveraging the cloud, but

unfortunately the cloud also serves to obscure what hap-

pens inside. These concerns have led into investigations

on the availability and reliability of cloud services [5].

Based on such intuition, redundancy-based techniques

have been proposed to guarantee the availability and re-

liability of cloud services [6, 8, 25]. Nevertheless, cloud

service characteristics, non-transparent layering of ser-

vices and infrastructures, potentially hide some pitfalls

which might invalidate these availability and reliability

enhancement techniques [10, 14, 20, 21, 24]. Concretely,

alternative redundant services which appear independent

might actually share deep, hidden dependencies which

may lead to unexpected correlated failures. An applica-

tion provider deploying their services into the cloud, or

a cloud consumer, might be oblivious to such dependen-

cies when attempting to construct a fault tolerant cloud

deployment resulting in costly and ineffective attempts

to produce a reliable infrastructure [7, 22].
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Figure 1: A typical example of illustrating our target

problem.

Even now, many cloud consumers apply approaches

to overcome failures due to a single data center or cloud

crash. Netflix [2], for instance, utilizes three indepen-

dent Amazon EC2 regions to limit shared dependencies,

while Zynga [3], developers of many Facebook games,

uses both EC2 and an internal cloud system to enhance

its availability [1]. During the EC2 crash in April of

2011, both experienced significant failures, but because

the failures were isolated, their redundancy approaches

sufficed. While admirable and successful in this cir-

cumstance, their approaches fail to address the problem

fundamentally, as they are still unaware of “secrets” or

deep dependencies hidden by non-transparent cloud ser-

vices. A recent study [10] shows that this problem has

not yet been paid significant attention, potentially creat-

ing a dangerous situation waiting to erupt.

Figure 1 illustrates a situation where redundancy tech-

niques may not be sufficient to provide increased relia-

bility. In this example, the cloud consumer, Alice, repli-

cates critical states on both cloud services A and B,

for ensuring reliability of the application service. Alice,

however, does not know that both A and B share a com-

mon dependency: network service C. If C becomes un-

stable, Alice’s service will begin exhibiting unexpected

behavior. Alice’s unknown shared dependency on C has

been hidden by both A and B but presents a hidden cor-

related failure.

Facing this dilemma, this paper aims to answer the fol-

lowing central question:

Can we build a system that recommends suitable re-

dundant services to cloud consumers according to their

requirements (e.g., reliability, cost, and location) while

minimizing hidden common dependencies?
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Figure 2: Target scenario and the interacting among the

cloud consumer (Alice), cloud services (Carol) and the

CRR (Bob).

Building such a system would significantly enhance

cloud consumers’ selections, thereby allowing them to

improve their cloud deployments without wasting re-

sources on unnecessary redundancies, i.e., the ones hav-

ing correlated failures.

Our approach. Motivated by the above question, this

paper proposes a novel approach for recommending the

most suitable (redundant) services to cloud consumers

in terms of their specifications. In order to facilitate the

recommendation service, we construct a cloud reliabil-

ity recommender (CRR), who translates clients’ expec-

tations and requirements into deployment models across

various services hosted by a variety of cloud providers.

Upon receiving a request from a consumer, the CRR

makes a recommendation utilizing both the failure proba-

bilities as calculated by fault tree analysis [17] and corre-

lation matrices representing hidden common dependen-

cies in order to reduce ineffective duplication while em-

phasizing the consumer’s other criteria.

Road-map. The rest of this paper is organized as fol-

lows. The next section describes system architecture.

Section 3 presents detailed design of our approach, and

Section 4 illustrates our system with a case study. Sec-

tion 5 finally discusses our future work.

2 System Architecture

This section discusses interactions in our system ar-

chitecture between the cloud reliability recommender

(CRR) and the cloud consumer as well as the CRR and

the cloud providers.

Target application/scenarios. In our system, there

exist three different roles: 1) cloud consumers intend-

ing to deploy their services into cloud; 2) cloud ser-

vice providers hosting various services such as storage,

computation and network communications; and, 3) cloud

reliability recommender (CRR) recommending suitable

(redundant) services to cloud consumers. As shown in

Figure 2, it presents a typical scenario we target.

Usage model of our system. In addition to highlight-

ing the roles in our system, Figure 2 also demonstrates

one potential usage model. Specifically, a cloud con-

sumer, Alice, wants to deploy her application service to

the cloud while ensuring reliability. In Step 1, Alice con-

tacts a cloud reliability recommender (CRR), Bob. Bob

discusses with Alice her deployment expectations and

potential scenarios resulting in a deployment model tai-

lored for Alice, Step 2. After receiving a recommenda-

tion from Bob, Alice adopts her service onto some cloud

providers, Step 3. In the intermediate Step 1.5, Bob con-

sults the cloud providers, this could either be done inline

or before Alice’s inquiry. In this scenario, Bob plays the

role of a third party, an ombudsman between Alice, the

cloud consumer, and a variety of cloud providers. In the

remainder of this section we discuss what the interaction

between Alice and Bob followed by the interaction be-

tween Bob and the cloud providers.

2.1 Conversing with Cloud Consumers

Cloud consumers may be large organizations with vast

resources and global interests or individuals with limited

resources and regional interests with a myriad of other

possibilities between the two. Alice, a cloud consumer,

cannot realistically go to Bob, a CRR, and ask for a set

of the most reliable cloud services for her application de-

ployment without at least some restrictions, because Bob

may recommend services in some remote land, far away

from Alice’s target customers, or instead he might rec-

ommend very reliable services costing orders of magni-

tude more than competitors. In order to fine tune the

deployment plan Bob provides to Alice, we envision that

Alice’s communication with Bob will involve a discus-

sion of Alice’s goals, such as, locality, cost, importance

of reliability, and types of services.

Alice may want to speak directly with a human being;

thus, a CRR could actually be a consulting service staffed

with real people, such as Bob, who interact with an in-

ternal system in order to provide recommendations. This

approach provides robustness capable of handling non-

technical expectations translating them into a specific set

of requirements. From there, Bob could even help Alice

deploy her services, allowing non-technical individuals

and business make better use of the cloud.

Alternatively, Alice may be very technical wanting

to interact with a web service-based CRR. In this sce-

nario, the CRR would have an API consisting of a

function that when queried returns back a deployment

schema. Alice could take the schema input it into a

deployment application, instantaneously deploying her

system into the cloud. Alternatively she could read

the schema and manually do the process. We envi-

sion such an API would have at least one function:

getDeployment(params[]). This function might
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Figure 3: Illustrative examples of four steps in our approach.

have many parameters, such as total cost, cost goals, per-

formance goals, service type, network demands, loca-

tion, or reliability expectations. Each parameter could

have a default value, but Alice could specify the values

that are important for her.

2.2 Discovering Dependencies

The construction of clouds are well kept secrets. For ex-

ample, searching the Internet for details about Amazon

or Google’s does not reveal much. Asking them directly

tends to be an equally unhelpful approach. This presents

a difficult challenge for the CRR, as the CRR must under-

stand deep, potentially secret, aspects of a cloud in order

to calculate reliability and make recommendations.

A practical approach to allowing cloud providers to

share dependency information with a CRR would be

through NDA (non-disclosure agreement). With the

NDA, a CRR could easily document all the dependencies

and be kept up to date as changes occur. We believe that

this is practical because it benefits both the consumer and

the provider with minimal risk for the provider [16]. By

inclusion into the CRR’s database of cloud providers, the

provider may see a rise in business due to recommenda-

tions to consumers from the CRR. Cloud providers may

selectively sign NDAs with large consumers but not with

small companies. The CRR could represent the dispersed

group as a single entity acting as a proxy between the

companies secrets and the consumers’ goals.

If for some reason, a cloud provider does not want

to sign NDAs, the CRR could investigate through other

means the dependencies within a cloud. Over time, a

cloud provider might lose potential customers due to the

fuzziness calculated by the investigation, relent and sign

a NDA with the CRR.

3 Our Approach

In this section, we delve into the inner workings of a

CRR (cloud reliability recommender) as illustrated in

Figure 3 or what effectively happens in Step 1.5 of Fig-

ure 2. With this information, we elaborate on how the

CRR determines a recommended deployment for the

consumer in the transaction shown in Steps 1 and 2 of

Figure 2.

Step 1: Collecting dependency information. The

CRR collects dependencies from various cloud providers

as elaborated in Section 2.2. In short, this may be ob-

tained by NDA, investigation, or by some other means.

Step 2: Generating the fault tree. After receiving de-

pendency information, the CRR generates a fault tree for

the set of service providers based upon service and hard-

ware dependencies. As shown in Step 2 of Figure 3, the

CRR builds fault tree for storage service A, B and C,

respectively, and merges them together to build a com-

posite tree. During the process of building the composite

fault tree, our approach explicitly tags the common de-

pendencies between redundancies to facilitate handling

them in the next step.

Step 3: Discovering hidden common dependencies.

The CRR finds all the common dependencies by travers-

ing the fault tree generated in the previous step. Upon

completion, the CRR generates a correlation matrix C,

which reflects hidden correlations between different ser-

vice providers. The elements in C, denoted as εi,j , rep-
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resent the correlation coefficient between service i and j,

computed by εi,j = δ/λ with δ representing the number

of shared dependencies between i and j and λ denoting

total number of elements that the i has.

Step 4: Computing failure probability for each ser-

vice. The CRR can now calculate each service’s fail-

ure probability through quantitative approach in fault tree

analysis. Specifically, our approach begins by finding

the minimal cut sets of the target fault tree. Minimal cut

set here denotes the set constructed by the leaves which

could directly make root fail. With the discovered mini-

mal cut sets, our approach computes the failure probabil-

ities of the target redundancies using top-event probabil-

ity computation method [4, 17] which is designed based

on conventional probability theory of occurrence.

Making recommendations to cloud consumers. The

CRR now has sufficient information to handle consumer

requests. While externally a CRR may only present a

single deployment plan to the consumer, internally, it

must rank the services in accordance with the cloud con-

sumer’s requirements. In order to recommend the most

suitable deployment plan to a cloud consumer, a CRR

makes use of Equation 1 to compute a recommendation

value for each service in terms of the cloud consumer’s

requirements, where RVi denotes service i’s recommen-

dation value. In our current design, we focus on the fol-

lowing three factors for calculating a rating score: fail-

ure probability (FPi), correlation degree (CCi) and cost

(τi).

{

RVi = α(1− FPi) + β(1− CCi) + γ(1− τi)

α+ β + γ = 1

(1)

Where, FPi denotes failure probability of provider i
(computed in Step 4) and CCi is the average of corre-

lation coefficients for i and all other providers (obtained

from correlation matrix generated in Step 3); τi denotes

the cost of purchasing from i with a value within the

range [0, 1]. α, β and γ are weighting coefficients spec-

ified by the cloud consumer for the deployment require-

ments. As mentioned in Section 2.1, this may either be

explicitly stated or interpreted by the CRR. The weight-

ing coefficients reflect the importance of three compo-

nents (i.e., failure probability, correlation degree and

cost) in computing final recommendation values. The

range of Equation 1’s result (i.e., recommendation value

RVi) is [0, 1].
After computing all the services’ recommendation val-

ues, the CRR produces a report consisting of the services

ranked by their recommendation values. Depending on

the CRR model, the CRR may send this report to the

consumer, use this to deploy the consumer’s services, or

only recommend a specific deployment model using the
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OR

CDN Service DCDN Service CAlice’s CDN Service B

Data Center A Network A Data Center B Data Center DData Center CNetwork B,C Network D

AND

IaaS Service B

AND

IaaS Service C
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IaaS Service A

AND

IaaS Service D

OR

CDN Service A

Figure 4: A case study illustrating our approach.

“optimal” choices from the report and other criteria from

the consumer. Sharing too much information may leak

secrets breaking NDAs signed with providers or reveal-

ing the CRR’s expensive independent research [11]. The

process of transmitting this information to the consumer

is shown in the second step of Figure 2.

4 Case Study

In this section, we discuss a realistic, yet fictitious, case

study similar to the Netflix situation mentioned in the in-

troduction. In this scenario, Alice, a rising entrepreneur

in video on demand (VoD), wants to deploy her services

into the cloud using various content delivery networks

(CDNs). Alice has many options at her disposal, as

shown in Figure 4. During her investigations into op-

tions, she determines three potential providers, CDN Ser-

vice A, C, and D, and also another possibility of build-

ing her own CDN using an IaaS, CDN Service B. Using

Figure 4, she might decide to construct CDN Service B,

herself, and subscribe to CDN services A and C for re-

dundant services. Unbeknownst to her, that CDN Ser-

vice A actually uses the same IaaS service used by her

CDN, and that her CDN Service shares the same net-

work as CDN Service C. A faulty Network B,C would

invalidate the choice of CDN Service B and C, likewise,

constructing CDN Service B only replicates software in-

dependence from CDN Service A but no infrastructure

independence. Meanwhile she never considered CDN

Service D, which happened to be completely resource

independent from the other CDNs.

If Alice had been introduced to a cloud reliability rec-

ommender (CRR), she could have made a much more

informed decision about her deployment. Now we illus-

trate a world in which Alice does know a CRR. Alice

begins by telling the CRR her desire to use CDNs in a

specific region along with the possibility of constructing

her own CDN, CDN Service B in Figure 4. Taking this

information, the CRR initiates the process of generating

a deployment plan for Alice by building fault trees for the

four potential providers, shown Figure 4. During analy-

sis, the CRR discovers the existence of two common de-
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pendencies: IaaS Service B and Network B,C. Using

this information, the CRR calculates correlation coeffi-

cients: εA,B = 1/2, εA,C = 1/4, εB,A = 1, εB,C =
1/2, and εC,A = εC,B = 1/2, constructing the correla-

tion matrix C, as shown in Equation 2, This mimics the

process shown in the third step of Figure 3.

C =









1 1/2 1/4 0
1 1 1/2 0

1/2 1/2 1 0
0 0 0 1









(2)

Next, the CRR computes the failure probabilities for

the four providers. For simplicity, we assume a data cen-

ter’s failure probability is 0.2, and a network service’s

failure probability is 0.1. Therefore, we get the failure

probabilities for four CDNs as shown in Equation 3.



















FPA = 1− (0.72 + 0.72− 0.72 ∗ 0.72) = 0.0724

FPB = 1− 0.9 ∗ 0.8 = 0.28

FPC = 1− 0.9 ∗ 0.8 = 0.28

FPD = 1− 0.9 ∗ 0.8 = 0.28
(3)

In order to recommend the most suitable deployment

model to Alice, the CRR needs to compute the recom-

mendation values for all the CDNs in terms of Equa-

tion 1. We assume that Alice cares more about relia-

bility than correlated dependencies; thus, the CRR sets

the weighting coefficient of reliability (FP ) and correla-

tion (CC) to 0.7 and 0.3, respectively, i.e., α = 0.7 and

β = 0.3. Moreover, Alice does not care about redundan-

cies’ cost and sets γ = 0. Therefore, the CRR calculates

the recommendation values for the four CDNs:



















RVA = 0.7 · (1− 0.0724) + 0.3 · 0.75 = 0.87432

RVB = 0.7 · (1− 0.28) + 0.3 · (1− 0.5) = 0.654

RVC = 0.7 · (1− 0.28) + 0.3 · (1− 0.33) = 0.704

RVD = 0.7 · (1− 0.28) + 0.3 · (1− 0) = 0.804
(4)

Using these computations, the CRR ranks the four

providers based on their recommendation values. With

additional criteria, such that Alice wants to use more than

1 but less than 4 CDNs, the CRR might suggest CDN A
and D.

Interesting observations. There are a few interesting

observations from this cast study: 1) if Alice cares sig-

nificantly about shared dependencies (say, sets α = 0.2
and β = 0.8), CDN D’s recommendation value would

be higher than A’s, despite A’s failure probability be-

ing the lowest; 2) even though the failure probabilities of

CDN B, C and D are equal, the recommendation value

for CDN D is much higher than the other two, due to the

lack of common dependencies; and, 3) the current rank-

ing ignores costs, which may further impact the rankings

if taken into account.

5 Discussion

In this paper, we introduced the cloud reliability recom-

mender (CRR), whose primary goal is to address the hid-

den risk in redundant cloud services. In arguing for the

need for and use of a CRR, we discovered many chal-

lenges impeding its utility, but also many side effects that

would benefit cloud consumers. The challenges internal

to the CRR include the need to obtain private cloud in-

formation, a non-trivial task, and to calculate a recom-

mendation for a consumer that both accurately takes into

account their requirements (optionally) without revealing

the CRR’s private knowledge.

We have yet to address trust. Trust in this type of a

system is paramount, not only between a client and CRR,

but also a CRR and a cloud provider. Clients depend on

the honesty of a CRR, if a CRR has been corrupted, it

may provide deployment plans that are known faulty but

generate revenue due to backroom agreements. Clients

could request the service of many CRRs or the CRRs

could reveal more information on how they established

their model without compromising their insider knowl-

edge. Likewise, a CRR could be played fool to a cloud

provider who signs a NDA (non-disclosure agreement)

but does not accurately describe their internal structure,

such that they have multiple Internet connections without

the fact that they all come from the same company. Again

this could potentially be addressed by the CRR doing ei-

ther independent investigation or seeing documentation

that asserts the cloud provider’s claims [19, 23].

In order to make our work more practical, we intend

to do a deeper analysis on the use of fault trees and other

fault tolerance analysis methods to represent data cen-

ters. Earlier researchers have looked at using fault tree

analysis in computer systems [9, 13, 15]. This work may

not be able to be trivially applied to a cloud data center,

since such environments have significant overlaps in reli-

ability, such as machine, storage, and networking redun-

dancy, along with software techniques to recover from

such failures.

Putting aside these issues, the CRR approach brings

not only the benefit of more reliable deployments for

consumers but also the opportunity to optimize along

other guidelines. The emphasis of the paper is on reli-

ability, but as we have glossed over throughout the pa-

per, other aspects can impact a consumer’s recommenda-

tion [?, 12, 18], such as cost and location. We envision a

CRR may be generalized to a CR or cloud recommender.
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