
The Institutional Design of "Open Source" Programming:
Implications for Addressing Complex Problems in Pubic Policy and Management

(Or alternatively,
What If We Utilize an "Open Source" Approach to Address Complex Problems

in Public Policy and Management?)

By

Charles M. Schweik*
Andrei Semenov

Department of Natural Resources Conservation and
Center for Public Policy and Administration

University of Massachusetts at Amherst

Paper prepared for the
Twenty-Fourth Annual APPAM Research Conference,

November 7-9, 2002
Dallas, TX

* Corresponding author.
Email cschweik@pubpol.umass.edu

This material is based upon work supported by the Cooperative State Research
Extension, Education Service, U. S. Department of Agriculture, Massachusetts

Agricultural Experiment Station, under Project No. MAS00847.

ABSTRACT

Recently, an exciting approach to solving complex problems has evolved out of

computer science, called "Open Source" programming. In Open Source software

development settings, programmers freely share their intellectual property - their readable

programming source code - over the Internet. Some open-source endeavors have resulted

in very complex, high quality software products, of which the best-known are the Linux

operating system and the Apache web server. A great advantage of an Internet-based

Open Source approach is its potential to achieve global collective action toward

developing robust solutions to complex programming problems. This paper argues that

Open Source has potential application beyond computer programming. The concept of

Open Source can be applied to almost any intellectual endeavor, and may be a very

important innovation toward harnessing global collaboration toward solving complex

public policy and management problems.

Little research has been published outlining the details of how successful open-

source programming endeavors are achieved, such as how license agreements have been

crafted, what rules for participation have been established, and how the methods for

maintaining versions of new submissions have been managed and organized. The

institutional designs and management of open source projects could be critical for

ensuring participants' willingness to collaborate and for recruiting new team members.

This paper and the research program it describes, attempts to address this gap. It provides

a summary of the "life cycle" of Open Source programming projects based on existing

literature that is largely focused on high profile open source projects like Linux and

Apache Web Server. It then provides interim results from an on-going study of the

institutional designs of open-source programming projects. It concludes with ideas on

how these principles might be applied to complex problems beyond programming in the

realm of environmental policy and management.

INTRODUCTION

A quiet, but potentially important phenomenon related to human collaboration

occurred at the end of he 20th century in the field of computer science. The phenomenon,

called "Open Source" (OS) software development, has the potential to change, perhaps

dramatically, the way humans work together to solve complex problems in general, and

specifically in areas of public policy and management.

Probably the most well known OS project is the computer operating system called

"Linux." Over the course of the 1990s, Linux gained a substantial user community and is

now becoming a serious rival to the dominant Microsoft Windows operating system (The

Economist, 1998). What is unusual about the Linux case and other OS software (such as

the Apache Web Server, PERL and others), is: (1) that extremely complex software was

designed, built, maintained (Feller and Fitzgerald, 2002); (2) they continue to be

improved primarily by a global team of volunteers collaborating in a "virtual community"

(Rheingold, 1993) over the Internet; and (3) the OS software is made available to the

world at no cost.

There is considerable excitement (see, for example, Bollier, 1999) and perhaps

some exaggeration over the promise of OS. Some proponents argue that OS is a

fundamental cultural shift in the incentives leading to collaboration: where social status

of individual participants is no longer based on what they possess and can trade, but is

now based on the quality and significance of what they give away (e.g., Raymond,

1998b; Learmonth, 1997; Edwards, 2001). Others have cautioned that while OS is an

interesting phenomenon, the processes of OS have similarities to other long enduring

approaches to collaboration, such as the generic approach to academic research

(Bexroukov, 1999a; 1999b). Arguments have also been made that some of the lessons of

OS projects are also found in "closed" or proprietary collaborative approaches (Eunice,

1999).

The argument made in this paper is that the OS phenomenon is something we

should give serious attention to, and that there are components of it that make it different

from more traditional models of collaboration and complex problem solving. Moreover,

we make the argument here and elsewhere (Schweik and Grove, 2000) that the concept of

OS has the potential to be applied in many areas where humans are trying to craft

solutions to complex problems facing humanity, and we should explore opportunities to

try to harness its creative power. In fact, this is already beginning to happen in an area

that could be referred to as "Open Content." See, for example, Open Music (2002), Open

Law (2002), Open Courseware (2002) and Open Content (2002).

The central dilemma over OS as a new form of collaboration paradigm is that

there has not been enough research on the broader population of these types of projects to

determine how they work and what leads to success.1 While theoretical and empirical

studies on OS are starting to emerge (e.g., http://opensource.mit.edu/; Feller and

Fitzgerald, 2002; Lakhani, et al. 2002; Krisnamurthy, 2002), a significant amount of the

literature on the properties of OS is based upon only a few cases - in particular, Linux

(Raymond, 1999a; 1999b; Torvalds, 1999; Moody, 2001; Learmonth, 1997; Godfrey and

Tu, 2000; Browne, 1998), Apache Web Server (Mocus et al. 2000) and a few others. It is

an open question whether the success of Linux and Apache are collective action

anomalies that would be difficult to recreate elsewhere or whether there is indeed

something new and special about this approach to collaboration that could be applied

elsewhere if the right conditions were established. But with the very recent book by

Feller and Fitzgerald (2002) as a possible exception, there is little published guidance

documenting how OS projects are initiated and managed.

This paper and the research program it describes is an important step to providing

such guidance. In the first section, we describe the concept of OS and then give a detailed

review of what is and what is not known about the lifecycle and composition of OS

projects. Second, we address the question: "Is OS really a different approach to solving

complex problems from the way usually conduct scientific research?" Our answer is

"yes, there are differences" and we provide support for this contention. But OS is not a

cure-all. Significant analysis has been devoted to a few highly successful, high profile OS

projects (Eunice, 1998) - and some exaggerated claims made about them - while OS

project failures are forgotten. The third section of the paper turns to the need to look more

closely at success stories and failures to understand critical success factors. We describe

1 The number of existing OS software projects is sizable. The prominent OS software website
www.sourceforge.net stated recently (October 4, 2002) that there are more than 48,000 OS projects
utilizing their services.

our research strategy for studying institutional designs of OS projects and we present

some initial results from the first phase of this study. In the fourth section, we close the

paper by providing a look at the potential of OS: in particular, we provide some ideas on

how OS principles could be applied in contexts outside programming, specifically in the

realm of environmental research, policy analysis and management.

OPEN SOURCE SOFTWARE COLLABORATION
- WHAT WE KNOW AND WHAT WE DO NOT KNOW

PRINCIPLES OF OPEN SOURCE

Traditionally, proprietary computer software is shipped by the company or author

in compiled format, which is readable by the computer but not by humans. Software

licenses prohibit the copying or sharing of the software. OS flies in the face of this

tradition and the core difference is a shift in the licensing parameters. OS licenses give

anyone with access to the software permission to download the program and its readable

source code, to copy it, and to freely distribute it with one provision: if any user makes an

improvement to the software, he or she is obligated to give the improvement back to the

OS community. In other words, ".. .a user must be able to 'look under the hood,' and be

allowed to tune, adapt, or evolve a [software] for his/her personal needs" (Godfrey and

Tu, 1999:2) but these enhancements then also take on the provisions of the OS license.

Through this adaptation, over time the software will continue to evolve new capabilities

and be less prone to errors (Opensource, 2002a).

OS began in the mid 1980s as part of the Free Software movement popularized by

Richard Stallman and the evolution of these ideas during the early distributional policies

related to the Linux software project (Perens, 1999).2 Today, people behind the Open

Source Initiative (Opensource.org, 2002a) manage and promote an official OS Definition

(OSD) and provide certification for software and OS distributional licenses

(Opensource.org, 2002c). OSD defines a set of nine rights that a software license must

2 The concepts of Free Software and its relation (and differences) to OS are complicated and not important
to this discussion. Readers are encouraged to read Perens (1999) or Pavlicek (2000) for more information
on these distinctions.

provide in order to be certified as Open Source (Perens, 1999; Feller and Fitzgerald,

2001). The first four rights cover the core OS principles:

1. Free distribution. This allows the user of the software to redistribute it using any
method, including giving it away or selling it.

2. Source Code. The program provided must include the readable source code and
allow the free distribution of this source code. This allows other programmers to
fully understand the logic of the program and gives them the ability to make
improvements to the program.

3. Derived works. The license must allow changes to be made by others and allow
these changes to be distributed under the same licensing terms as the original
software.

4. Integrity of author's source code. This clause requires the work of developers to
be represented accurately. Some programmers were concerned that future
modifications to their original source might be poorly constructed and hurt their
reputation as good programmers. One method of protecting the original author's
work and still allowing enhancements is by distributing original works with
"patches" that are enhancements.

The remaining rights are included primarily to close loopholes and to prevent misuse

of the OS concept (Feller and Fitzgerald, 2001):

5. The license cannot restrict distribution to certain people or groups.

6. The license cannot specify fields of research where a particular piece of software
can or cannot be used.

7. The associated rights defined by a license also apply to redistribution of the
product. This is to ensure that the product, in the life cycle of new releases, cannot
be closed as it is later developed.

8. The license must not be specific to a product. An OS software product cannot be
"attached" to a certain software distribution. Feller and Fitzgerald (2002:17) use
the example of multiple distributional versions of Linux (Red Hat and Caldera).
This provision ensures that a piece of software (e.g., a new module) for Linux
cannot be restricted for distribution only in the Red Hat distribution.

9. The license must not contaminate other software. This ensures that the license
applies only to the software package it is associated with. If, in a software

distribution, there is other separate software included, this other software is not
under the same licensing specifications.

There now are thirty OSI-certified licenses, each possessing its own nuances

(Opensource.org, 2002d). The important point is that in order for a particular software to

be recognized as OS the developers need to follow these OS principles and the software

license should comply with the OSD standards.

THE LIFECYCLE OF OS PROGRAMMING PROJECTS

OS projects involve three major stages3: (1) Project initiation; (2) Going "open";

and (3) Project growth, stability or decline.

Stage 1: Project Initiation

Like any area of endeavor, OS projects are initiated because one or more people

realize that there is a computing-related problem or challenge left unfilled, and for one or

more reasons, they decide to take it on (Godfrey and Tu, 1999). This describes the history

of the operating system Linux, where Linus Torvalds, a Finnish graduate student, decided

that a cheap unix-based PC operating system was needed and set out to build it himself

(Learmouth, 1997; Moody, 2001). Motivations, "the kernel," and a modular design are

three important components of this stage of an OS project.

Very recently studies have emerged on the motivations of general participants in

OS projects (Feller and Fitzgerald, 2002; Lakhani et al. 2002), but it appears that no

systematic study has focused specifically on the motivations of OS project initiators.

However by analyzing discussions in existing OS literature and building upon the work

by Feller and Fitzgerald (2002), we can surmise some of the likely motivations of

initiators (Table 1, Column 2). From a technological standpoint, initiators are motivated

to meet some personal need (Raymond, 1999); to work on the leading edge of some

technology; to address some software crisis; or to provide intellectual stimulation. Likely

3 This section is based loosely on the discussion on the OS development lifecycle provided by Feller and
Fitzgerald (2002).

socio-political motivations for project initiators include the sheer enjoyment to do the

work and an interest in taking on a technical rival (e.g., a large, dominant software

company provided motivation in the Linux case). Skill-building and low opportunity

costs (e.g., nothing to lose by undertaking the project) are likely economic reasons for

initiators to start a programming project.

*** Table 1 about here***

The second important component of the initiation stage is the development of an

initial product for others to build upon — what we might call the project core, or "kernel."

For example, Torvalds developed the kernel of the Linux operating system largely on his

own and then, when he felt that it was ready to be shared, he made the kernel source code

available on the Internet, and encouraged others to help improve it (Learmouth, 1997).

A third critical component in this stage of OS development is good design and the

concept of modularity, "for without it, you cannot have people working in parallel"

(Torvalds, 1999: 108). Modularity means that the kernel itself and plans for its future

development is organized around small, manageable pieces. For example, the Apache

Web Server software has over 40 modules and Perl (a general purpose programming

language developed in an Open Source approach) has over 1000 modules (Feller and

Fitzgerald, 2002: 77-78). With a modular design, multiple programmers (perhaps

unknown to one another) can be working to build new functions into the same module.

This parallel approach is thought to spur innovation and can lead to a rapid development

process. Modularity also allows development to continue but avoids the situation where

the impact of one person's enhancements to a module leads to problems with the work in

some other module. And modularity enables the project content manager to keep better

control as work progresses and as the product gets more complex (Torvalds, 1999).

Closely linked to modularity is good project design (or at least a well-crafted and

articulated vision of where the project is going). "The easiest way to get coordinated

behavior from a large, semi-organized mob is to point them at a known target."

(Opensource.org, 2002b). In OS literature, it is thought that a concrete vision, a strategy

for the future coupled with a modular structure helps to recruit others into the project.

Stage 2: Going "Open"

The second stage of the OS lifecycle is the point in time when the initiator(s)

decide to make the project "open." Going open means that the project founders decide to

follow the OSD licensing principles (Opensource.org, 2000c) and they select a particular

license for the product (Opensource.org, 2000d). But in addition to the licensing question,

at this juncture, five additional components need to be considered: project/product

credibility; adequate communication systems; suitable version control systems; effective

recruitment strategies; and appropriate project governance structures and institutional

designs.

Project and Product Credibility. The credibility of the kernel and project is an

important issue at the time a project goes "open" (Raymond, 1999). Raymond and the

authors of the now infamous "Holloween Documents" (Opensource.org, 2002b) posit

some key criteria for a project to be deemed credible by others: (1) there needs to be at

least a handful of enthusiastic "core developers" already interested in the project; (2) the

project has "plausible promise," both technically and sociologically (i.e., the kernel can

evolve into something very good with a little effort, and that the people in the core

developer community are enthusiastic and of high reputation); (3) the project or product

is something that will attract interest and is innovative; (4) the project is important and

deployable for a (future) large number of developers; and (5) the right amount of the

problem has already been solved before it becomes "open." This last point means that

there must be enough of the product developed to provide an adequate framework for

coordinating future work. But if too much of the product is completed before going open

with it, it has the potential of turning other collaborators who might join in the effort into

"testers" - a task many programmers find uninteresting (Opensource.org, 2002).

Adequate Communication Mechanisms. OS projects utilize the standard Internet

tools for communication: email, group email lists, and threaded discussion lists posted on

websites (Behlendorf, 1999). However the World Wide Web has greatly improved the

ability to communicate and share documentation and modules with one another. Several

web systems are now available whose purpose is to support collaboration on OS projects.

7

Www.sourceforge.net, for example, advertises itself as the "largest open source

development website" (Sourceforge.net, 2002). This site provides free project hosting

services, which include version management, problem tracking, project management,

backing up facilities, and various communication tools such as mailing lists and web

discussion forums. Another website undertaking a similar mission with a different design

approach is www.freshmeat.net. Other sites, such as www.slashdot.com, www.osdn.com,

and www.newsforge.com have emerged in recent years to enhance communication and

provide news and information to the general OS community.

Suitable Version Control Systems. At the core of any successful OS project is a

system for managing the ongoing development of the product - something referred to as

version control systems. In recent years, the most popular of these in the OS community

is CVS, or Concurrent Versioning System (Fogel, 1999; Behlendorf,1999). CVS, an OS

product itself, provides team members with methods for downloading the latest version

of the OS software and includes functions to manage the history of previous versions of

modules, problem (bug) tracking, and web access to archived source code (Feller and

Fitzgerald, 2001). Another version control system called "Subversion" is currently under

development (see http://subversion.tigris.org).

Effective Recruitment Strategies. Another important concern for a project about

to go open is choosing the strategies for announcing the project and for recruiting

additional project participants. For OS programming projects, this has become much

easier because of the establishment of "central" websites for OS project hosting such as

surgeforge.net and freshmeat.net. Surgeforge.net provides a "project help wanted" option

off of their main menu for people to post requests for participation in noncommercial,

volunteer projects.

Appropriate Governance/Institutional Designs. As Bezroukov (1999b: 17) notes:

".. .in each [OS] project in particular, there are political systems with corresponding and

sometimes fuzzy hierarchical structures." We suspect that these concepts include critical

variables that may ensure the success or failure of the project. The governance and

institutional designs of OS projects is an area where very little research exists and this is

an area where this paper and its associated research program is intended to inform.

To analyze the institutional components of OS projects, we utilize an institutional

analysis framework outlined by Ostrom, Gardner and Walker (1994). Central to this

framework is the concept of "working rules," which define what actions are required,

prohibited or permitted and what sanctions are authorized if someone breaks these rules

(Ostrom, Gardner and Walker, 1994: 38). These could be formally written rules or norms

of behavior understood and shared by a community. An important aspect of working

rules is that they are followed, at least the majority of the time. Formally written rules

that no one pays attention to are not, in this context, considered working rules. We expect

that within OS projects there are three levels of working rules as defined by Kiser and

Ostrom (1982): Operational, Collective-choice, and Constitutional-choice.

Operational rules direct the daily decisions and actions of actors involved in an

OS project. They specify how new module submissions are managed, how new design

strategies are defined, when new versions are released, etc. For instance, one of the

benefits often cited about OS projects is the concept of parallel development, where

multiple parties are working separately on enhancements to the same module. In this kind

of development structure, there needs to be some rules as to how module submissions are

evaluated, and chosen for the next release. In addition, in some projects, there may be

tiers of developers with different levels of authority for the project. For example

Bexroukov (1999b:7) states that in OS projects, "...limiting those who can directly

contribute to the kernel to a few most qualified developers (the core team) is a good

idea." In these contexts, Operational rules define what actors can or cannot do at certain

levels of authority within the project team hierarchy. In the Linux context, qualified

developers are referred to as "trusted lieutenants" who are recognized as experts in a

particular domain (Moody, 2001; Dafermos, 2001).

Collective-choice rules specify who is eligible to craft or change operational-level

rules, and also define the procedures for changing established rules. In some instances,

collective-choice rules may be defined by some project leader who has total authority

over making and changing operational rules and can do this at any time. For example, in

the case of Linux, Torvalds is recognized as the supreme authority (MacLachlan, 1999).

Raymond (1999:18) mentions that "the leader/coordinator" of OS projects needs to have

a talent for recognizing good design ideas from bad ones in an environment of parallel

development. Given that Raymond is a recognized leader in the OS movement, his

comments suggest that many OS projects may have an established system of collective-

choice that is governed by a strong and dominant leader. And Bezroukov (1999a: 15)

argues: "Open source may sound democratic, but it isn't. Leaders of the best-known

Open Source development efforts often explicitly stated that they function as dictators."

But other OS projects may have different sets of collective-choice rules that establish a

project oversight body, such as a committee of core developers who, using some kind of

voting system, make decisions about the operations of the project and have authority to

make changes to established operational rules. For example, in the Apache Web Server

project, another prominent OS initiative, the decision-making body is comprised of two-

dozen people, all of whom have the right to veto an addition to the software (Maclachlan,

1999).

At the Constitutional-choice level, rules are established to define who is eligible

to create or change Collective-choice level rules - a kind of project Constitution,

specifying who (or what team positions) has these rights, and outlining procedures for

making changes in collective-choice arrangements.

At this juncture we can with some confidence predict that successful OS projects

will be ones where collective-choice and operational level rules are at least reasonably

well defined, understood, and followed. And we expect projects that go open without

some prior consideration about systems for defining and changing operational rules will

exhibit problems or perhaps even fail. But it is the more detailed components of the

governance of OS projects where substantial variability may lie, and we expect these

variables to be important determinants of the success of the endeavor. Hence, the

character of these variables is one central focus of our current research into OS projects.

Finally, with respect to OS institutional designs, there are two important areas of

operational rules that may be especially important: (1) the system of peer-review and (2)

established mechanisms for conflict resolution (Elliot and Scacchi, 2002). Peer-review is

a vital component of OS projects. Similar to the process in academic settings, peer-

review is a process where others review submitted enhancements (Maclachlan, 1999). In

many OS projects, reputation within the group is an important motivation, and in a

parallel development approach there may be conflicts between two alternative solutions

10

to a problem. The selection of one solution over another could lead to some potentially

serious debates between group members. The worst conflict scenario in OS projects is a

kind of intellectual mutiny referred to as "forking." In these instances, members of the

group decide to break away from the existing OS project to form a rival project because

they do not agree with the design directions the current leadership regime is taking

(Lessig, 2001). Because of the licensing rules in OS, they have are guaranteed access to

the source code and are free to develop it further in whatever way they please. Feller and

Fitzgerald (2002: 91) note that in some OS projects core developers who have earned

substantial respect in the community go on to take on the role of arbitrators. Since

conventional project management control is not possible, a supreme leader or

acknowledged board of directors is essential in OS projects (Feller and Fitzgerald, 2002).

Maclachlan (1999) notes that "dictators" run some of the best-known OS projects with

Linux being the ultimate example. We would add that at least some system for conflict

resolution is required. In the case of Linux, for example, a "trusted lieutenant" openly

disagreed with Torvalds (the recognized leader of the project) about a technical issue and

this open discussion led to community support for the argument made by the trusted

lieutenant (Dafermos, 2001:42). This suggests that there are mechanisms for conflict

resolution in successful OS projects - even those run dictatorially — although they may

simply be social norms and not formal mechanisms. But how, exactly, disputes are

resolved in OS projects is another area that deserves more attention by the research

community, for if they are not resolved in a satisfactory way from the perspective of

many participants, this could lead to problems within the group and diminish the

likelihood of project success.

Stage 3: Project Growth or Decline

Once a project officially becomes OS, the hope is that it will generate enthusiasm

and entice others (programmers and users) in the global Internet community to utilize the

existing product and contribute to the further development of the product through

programming, testing, or providing documentation. At Stage 3, projects can grow with

new membership, remain stable with about the same number of participants as they had

11

before going open, or they can gradually die from a lack of participant interest. The

components of Stage 2 - credibility, communication systems, version control,

recruitment strategies, and project governance — are likely contributors to enticing new

members to the group.

Some of the motivations for joining an OS project at this stage are the same as for

initiating one, but there are some new motivations as well. Lakhani et al. (2002) recently

asked some 684 OS programmers to rank their top three motivations for participating in a

project and came up with a subset of the reasons similar to the ones identified by Feller

and Fitzgerald. In rank order as reported by Lakhani et al. (Table 1, Column 2),

computer hackers participate in OS projects because: (1) it is intellectually stimulating;

(2) it is helpful in improving their own programming skills; (3) it provides some

important product for the context of their job or hobby; (4) they feel it should be open

and therefore they contribute some time to it; (5) it provides some important product for

their own non-work related interests; (6) it provides sense of community in working with

a team; (7) it enhances their professional status (e.g., provides them with an opportunity

to do consulting work or other job opportunities); (8) it helps maintain their belief in open

source as a 'good thing'; or (9) it may be simply a response to license requirements that

forces them to participate. Feller and Fitzgerald (2002) identify other motivations that are

not reported in the Lakhani et al. (2002) survey. These additional motivations are marked

with an "X" in Table 1, Column 2.

The rankings in Table 1, Column 2 and additional work by Lakhani and von

Hippel (2002) help to emphasize the importance of intellectual stimulation and learning

as a motivator for participation. Making the source code available on the Internet

provides access to the programming logic of others. New programmers or programmers

interested in learning a new technology have the luxury of being able to study the

existing program infrastructure - the details of the intellectual property of others in the

group — and from this they can learn in a form of distance learning from other

participants. This is quite similar to the learning that has gone on in the development of

web pages simply because browser technology allows the user to view the web page

source code (Lessig, 2001). In addition, in situations where the programmer submits a

contribution back to the community, the peer-review component of the OS process,

12

provides a way to get important feedback on the quality of one's work. As academics

know, student independent studies are usually improved when they have an opportunity

to discuss what they are learning or doing with another more learned colleague.

The importance of team growth to the success of an OS project is, however, still

very much an open question. On the one hand, in his observations on Linux and

Fetchmail, Raymond (1998: 9) emphasizes the importance of large groups in what he

terms "Linus' Law": "Given enough eyeballs, all bugs are shallow ones." This function

of group size certainly has been a factor in the success of high-profile OS software

products like Linux and Apache web server.

But group size at the "going open" stage of an OS project is a more complex

matter than a simple head count. As Cavalier (1998) points out, total size of an OS

participant base - i.e., the simple sum of the number of individuals participating - may

not be as revealing as what he terms "effective size" and "effective power." "Effective

size" is the total number of individuals who actively contribute to a specific activity (e.g.,

testing) or module development, and more intellectually stimulating areas of the project

can have a substantially higher effective size than others, such as that of documentation.

Furthermore, even this measure needs qualification, for the "Effective power" of an OS

project activity may be calculated as the effective size of that activity multiplied by the

average (per-participant) weekly contribution to the activity in hours. These

measurements have led Cavalier to some further observations on group size and effective

power. First, some activities will require higher effective size and power than others.

Second, if the required effective size of an activity is not achieved, then the activity will

likely not be completed. Third, there is often an implicit deadline for project completion

(sometimes driven by knowledge of a competing product) and therefore there is some

minimum effective power and effective size needed to complete the task on time. Fourth,

willingness of people to continue to contribute is related to the progress that is made. If a

large number of activities do not seem to be moving forward, participants will lose

interest or bicker thus reducing effective size and power. This leads to a higher likelihood

of activities not being completed, and ultimately, the death of the project.

Krishnamurthy's (2002) work raises questions about the importance of the group

size variable. He reports that out of the most active 100 "mature" OS software products

13

listed on Sourceforge.net, the majority are developed by a small number of individuals (a

median of 4 developers and 1 project administrator). He also reports that there is a high

variation in the number of developers. This suggests that although some OS projects

achieve significant success with high participation rates, the majority of projects tend to

remain in the hands of a small number of interested participants and never achieve the

levels anticipated by "Linus' Law." In short, high profile cases like Linux and Apache

web server may be more anomalies than the norm. Most literature up until recently, have

been about these high profile cases, which may be why there are presently some possibly

exaggerated claims over OS. Yet clearly, these high profile cases have an impressive

ability to generate nearly global collaboration.

OS LESSONS AND IMPORTANT RESEARCH QUESTIONS

To summarize, Table 2 lists key attributes of OS projects and what we have

learned from the analysis of the lifecycle of these projects. In general, OS projects exhibit

several common attributes (Feller and Fitzgerald, 2002): (1) parallel development; (2)

truly independent peer review; (3) prompt feedback to user and developer contributions;

(4) highly talented developers; (5) user involvement; and (6) rapid release schedules. In

most literature group size is also seen as an important factor for innovation, rapid release

and success (e.g., "Linus' Law), but Krishnamurthy's (2002) research is raising a

question on whether group size is a critical success factor. It may be that the active

support of volunteers motivated largely because of intellectual stimulation and the desire

to learn through independent study of source code and the process of a "truly independent

peer review" (Feller and Fitzgerald, 2002) is a more critical element of success.

*** Table 2 about here ***

Stage 1 of the OS lifecycle requires first one or several motivated individuals who

often are friends or have already built social capital and have an idea for a project that

fills in a need many have. Other "virtual members" might join in, and the project would

evolve into a high quality development team, putting significant attention into product

14

design (e.g., modularity) and the development of an initial project kernel that shows some

promise. Stage 2 requires closer attention to the details of the OS license to be used, team

communication, version control systems and approaches for participant recruitment. The

designs of the project governance structure and rules outlining day-to-day operations, and

collective-choice and constitutional-choice mechanisms could be very important factors

but have not been researched. Stage 3 involves either community growth or stability,

based on how well the project appeals to the personal interests of current and future

members, and how well the project can maintain an enthusiastic community of

participants through its institutional design and governance structure. Growth in this

stage moves first toward a "network" where advanced coordination systems are required.

"Trusted lieutenants" and "regional coordinators" are required to manage development

and to assist with the growing user community. Finally, the truly successful projects (e.g.,

Linux, Apache, PhP) have evolved into "OS enterprise" endeavors where a core staff is

established, an official logo, in some cases its own press or literature (there are magazines

now devoted to Linux) and a massive end-user base.

IS OPEN SOURCE REALLY A DIFFERENT APPROACH
FOR SOLVING COMPLEX PROBLEMS?

The argument has been made that the OS approach described above is simply a

special case of the process of scientific or academic research (Bezroukov, 1999a; 1999b).

For instance, perhaps the earliest example of an open source approach is the development

of the dictionary (The Economist, 1999). The standard process of scientific endeavor is to

conduct research on your own or with a team of colleagues, submit findings in a peer-

reviewed process, and make "open" the findings through published outlets. With the

information and ideas in the public domain, others can build upon this research. How

does OS differ from this current process? In our view, OS differs from the traditional

scientific process in at least four important ways:

1) OS collaboration over the Internet provides the ability to share the entire
research product and the process of generating the product. This differs from the
traditional research process undertaken today in that everything about the
development process could reside in the public domain. In traditional publishing

15

outlets, we have space limitations and traditionally only final results are presented
to the community. Having the entire process open promotes even more learning,
especially in more junior participants who want to learn from more
knowledgeable team members.4

2) OS collaboration over the Internet greatly increases the speed in which
innovations can be published. We do not need to wait for the traditional time
period for paper-based products to be printed and distributed. And in certain
circumstances, the peer-review process can be almost immediate.

3) Open-source collaboration over the Internet greatly increases the size of the
potential audience the material might reach. Researchers across the globe are
gaining access to the Internet. They may not have access to paper versions of
research publications.

4) Open-source licensing over the Internet allows for free sharing and distribution
of intellectual property (e.g., copying is allowed- even encouraged), and requires
that improvements to this research be given back to the community. Traditional
publication approaches do not have these kinds of requirements. Moreover, the
OS licensing approach allows anyone who is interested in contributing to join in
the ongoing project. Our current approach to research tends to be more
proprietary, where people who are collaborating are working in "tighter," less
open, groups.

In short, the OS approach is an extension of the traditional approach to research, but

the way the entire collaboration process is conducted over the Internet coupled with the

licensing requirements greatly enhances this process. This leads Lessig (1999) to observe

that OS can be a fast and powerful process that promotes and encourages deep learning,

thereby lowering barriers of entry for other innovators.

However researchers like Eunice (1998) and Lancashire (2001) have warned about

the exaggerations of the promise of OS projects in past literature. A primary concern is

that much of this earlier work on OS was based on a small number of high profile OS

enterprise cases and, therefore, it is impossible to make robust arguments about the

factors that led to their phenomenal success. Lancashire (2001: 7), warns that "even

4 This is exactly why the World Wide Web became so successful. Specifically designed in the Internet
Explorer and Netscape browsers are a "view source" option, which allows any web user the ability to see
the programming logic (HTML) for a web page they are visiting. In the early days of web publishing, this
viewing of source allowed others to learn directly from the web page code of others. And this feature
greatly enhanced the speed in which web pages were published around the world (Lessig, 1999).

16

trivial differences in the general license under which code is released affect subsequent

development decisions..." and these decisions might affect the ultimate success or failure

of the project. Elliot and Scacchi (2002: 2) note that further empirical research is needed

to understand the "social circumstances surrounding the technical and virtual

organizational contexts that comprise OS development processes.

EMPIRICAL RESEARCH STRATEGY AND
PRELIMINARY RESULTS

Given the emergence of successful OS "enterprise" projects and the need for

detail on the technical and social aspects of OS, we now introduce some important

research questions to be pursued:

1. What are the critical success factors that enable some OS projects to generate
substantially higher rates of participation, enthusiasm and "effective power" than
most other OS projects?

2. Can the attributes of OS projects be borrowed and applied to other areas outside
of computer programming, especially in areas where humanity is desperately
trying to find solutions to complex problems? In other words, can the principles
and approaches to collective action in OS projects be borrowed and applied to
problems related to public policy and management?

We recently initiated a research program studying OS projects to address these

questions. This study has two major objectives. The first is to understand the factors that

lead to very successful endeavors like Linux or Apache and what factors result in project

failures. Our hypothesis is that the institutional designs (operational, collective choice

and constitutional choice rules) of these projects make some difference in outcome. The

second objective is to begin to study the diffusion of the OS approach into realms beyond

computer science (non-programming cases) to understand how OS principles are being

applied in non-computer programming cases - what we generally call "Open Licensing"

projects. Such cases (experiments, really) are now beginning to emerge (see for example,

Economist, 1999; Open Content, 2002; Open Law, 2002; Open Music, 2002; Open

Courseware, 2002). As they do, it is important to compare and contrast their experiences

17

to the experiences in the OS programming realm to understand how, generally, these

collaborative approaches to problem solving are similar and different.

CASE SELECTION AND APPROACH

"Open Licensing" projects can be classified by three dimensions: (1)

programming or non-programming; (2) stage of development (initiation, going open, and

growth/decline); and (3) outcome at that stage (success or failure). These three

dimensions help to define a case selection matrix with the dependent variable being

success (project and product growth or stability) or failure (project decline or death) at

each stage (Table 3). Ultimately, our research project will study cases falling within each

of the cells in Table 3. Detailed case study is required to understand the factors that lead

to successful and unsuccessful projects at various stages of the OS lifecycle. At the same

time, we must sample enough cases that we can say something definitive about what

leads to the success or failure of these cases. This is especially important given that so

much of the OS literature currently is based upon a small number of the successful "OS

enterprise" cases like Linux (Eunice, 1998).

*** Table 3 about here ***

Because OS programming cases are well-established and further in the life cycle

than the non-programming cases, we decided to concentrate the first phase of our study

on the shaded cells in Table 3. Sourceforge.net provides a good repository for hundreds

of OS programming projects at various stages of the OS development lifecycle. For initial

5 Several criteria can be used as a measure of project success, including: (1) annual
growth of participant base; (2) annual growth of user community; (3) growth in "market
share" (in the case of programming cases); (4) user satisfaction with the product; and (5)
peer recognition of the product. Not all of these are prefect indicators, however. For
example, a participation base growth may stabilize, but ultimately, the project could still
produce a quality product. Of course, we do not want to sample on the dependent
variable, so these criteria were not used to select specific cases.

18

pretest of the case coding form, we decided to initially sample 15 cases based on the

following criteria:

1. Cases should reflect the broad range of OSS development by software type
(operating systems, databases, internet applications, desktop environments)

2. Cases should be relatively well known and therefore will be further along in the
OS lifecycle and will have a relatively large participant base.

3. Cases should have a reasonable amount of information posted about them so we
can undertake initial case coding without having to contact participants directly.

4. Cases should differ from each other by community size, geographic origin,
ideology, product use, distribution, and management because that would give us
more comprehensive picture of OSS.

Table 4 lists the fifteen selected cases for initial coding. Most of these cases fall

under the Programming/Success cell in Table 3. At the time of this writing, we have

analyzed these cases based only on our observations from activity within their project

websites and from web-based literature on these projects.

*** Table 4 about here ***

PRELIMINARY FINDINGS

For analytic consistency, we developed a case "coding form" to help guide case

interpretation. This coding form collects detailed information on the attributes of the OS

product and the attributes of the OS development process (including the institutional

structure). To avoid inconsistency in case interpretation, all case analysis was undertaken

by a single researcher with an understanding of computer programming. Here we will

provide a brief summary of what we have found so far, organized by the OS lifecycle

attributes in Table 2.

19

Stage 1 - Project Initiation:

Fourteen of the fifteen cases we studied appear to be initiated by either a single

person or small group of people. The only exception is the Mozilla project (the Netscape

web browser), which was initiated by the company Netscape. For the most part, project

initiators do appear to be technically sophisticated individuals who are motivated in part

because of need but also because it is intellectually stimulating.

To our surprise, the modularity of a case was more difficult to measure than we

expected. We thought we could simply find, or count the number of modules in existing

project repositories. Most of the cases utilize sourceforge.net as the system for project

coordination and sourceforge is designed around projects, not modules. Within a specific

project sourceforge allows one to view discussions and downloads of various modules

and these could potentially be counted. What is difficult is that there are different

versions and different sets of libraries so without deeper knowledge about the specific

project it is not easy to get an accurate count of modules with real confidence. The only

case where we could get an accurate count was the Mozilla project where each module

has a designated owner listed (Mozilla, 2002).

Stage 2 - Going Open:

Ten of the fifteen projects were initiated in the United States and then extended

internationally. Five of these projects were designated "open" from the start. The others

became open after they had been well defined. Twelve of these cases use the GNU

General Public License (GPL) or a GPL compatible license (see Opensource.org, 2002d).

PHP, Apache, and Zope each have established OS Definition compatible licenses, but

have slight variations in their licensing requirements.

Communication between developers of these OS projects is handled through

email mailing lists and web-based discussion forums. Face-to-face meeting is not

common, with the exception of conferences related to OS software development. Users

also discuss issues through mailing lists. In some OS cases, complicated sets of mailing

20

lists exist for a variety of subjects related to the project (see for example,

http://mail.gnome.org/mailman/listinfo).

Consistent with what is reported by Feller and Fitzgerald (2002) we found that

most OS projects use the Concurrent Version System software (CVS, 2002) to manage

product content. The frequency of version releases for cases varies from one month

(Linux) to one year (PHP, KDE) which does differ from the typical release schedule of

proprietary software.

Understanding the governance structure and institutional designs of cases from

publicly available online material is difficult. This could be because governance

structures are not formally documented, or because they are documented in locations not

in the public domain. But in each case we reviewed there do appear to be at least some

social norms about various roles or participants. At each stage there has to be some

common understanding of obligations and duties of various participants. In our cases,

there are one or more designated project leaders and these tend to be people who initiated

the project. These leaders tend to have the final word over issues on implementing project

changes (code, suggested changes in operational rules, etc.) or when disputes arise

(Maclachlan, 1999; Dafermos, 2001). In the case of OpenOffice.org, leaders of various

subprojects are given voting rights over the future direction of the project and other issues

(OpenOffice.org, 2002) but what exactly voting rights mean is not articulated in this

document. This does suggest that rules do indeed exist related to collective-choice and

constitutional-choice components in these projects and that these rules need to be studied

in more depth. These are important components of teamwork and social capital

generation that are vital to growing a development and user team.

Some projects we reviewed also have a "governing body," especially the well-

established or mature OS projects such as Linux and Apache. For example, the Apache

HTTP server project was first initiated in 1995. Then, in 1999, members of the Apache

Group formed the Apache Software Foundation (ASF) and established a board of

directors to provide organizational, legal, and financial support for the Apache HTTP

Server, their core project. While the Board retains ultimate responsibility for the

foundation, it delegates decision-making authority for the technical direction of projects

to Project Management Committees (PMC). The PMCs are groups of members who take

21

responsibility for the long-term direction and management of a specific OS project.

While the Apache Server remains the core product, the ASF is now involved in other OS

projects (e.g., Jakarta, XML, etc.) run by different PMCs but all under the control of the

Board of Directors.

Some project leaders coordinate activity in OS projects and check submissions of

other developers. In other cases, this is delegated to some of the other developers

themselves. In Linux, for example, members of such groups are called "trusted

lieutenants." This is a layer of project developers who are the interface between project

leaders and other developers and/or users. In most cases trusted lieutenants appear to be

formally appointed by project leaders or by a governing board but more research is

needed to understand these procedures better. They are people also recognized as highly

competent and trustworthy by their peers.

In most cases, the designated project leader appears to have authority to define the

operational rules. For instance, the decision about the release of a new version tends to

fall under the leader's domain. It also appears that project leaders are the authority at the

collective-choice level: they can establish and change operational-level rules. Linux was

the only project where we could identify a formal written Constitution online, and these

appear to be user-initiated and governs only particular subgroups of the project and not

the entire project (Linux Australia, 2002; UMBC, 1997). This does not mean necessarily

that in these projects there are no established constitutional-choice or collective-choice

rules. It means that these rules are either: (1) not formally written and put online, or (2)

they exist as "social norms" and are not written down.

Stage 3: Growth, Stability or Decline

All of the projects we investigated invite new users or developer participants to

join in and do not specify any requirements of participants (e.g., advanced technical

skills). To become a user of Linux or Apache, for example, requires only the basic

computer skills needed to download and install software. Consequently, in most cases, it

is difficult to determine the number of users because counters of downloads are usually

unavailable and the fact that people can copy and share software once it is downloaded.

Estimating the number of developers is equally difficult - it could be done, but it would

22

require reviewing lots of discussion lists and would be extremely time intensive. In OS

enterprise cases there are sometimes projections on users/participants. For example, in

Linux, the approximate number of current users is projected to be around eighteen

million (Linux counter, 2002).

The contributors to source code in these fifteen cases are distributed

geographically all over the world; however, only four projects have a substantial

contribution from non-US and non-European developers. Countries that have

participants in the cases we reviewed include: USA, Canada, Western Europe, Australia,

India, China, Japan, Russia, and South Korea. This finding is consistent with the

geographic patterns described by Lancashire (2001) regarding the Linux and Gnome

projects.

Most of these contributors are volunteers, stimulated by intellectual interest. But

often these contributors benefit from their efforts in related businesses, for example,

publishing articles about OS software development. But our analysis of some groups

supports findings by Lakhani et al. (2002) that there is some participation by people

employed by businesses. This is an interesting phenomenon in that some businesses are

willing to contribute employee work time toward OS projects because they are as a

company utilizing an OS product and have a need for new functionality. Our research

also suggests that many OS developers know each other from past computer science

work or through interaction in higher education. See for example, Gnome (2002) which

describes how people from OS projects of GNOME, GIMP, KDE and Linux knew each

other from scientific or academic environments. Project participants in our cases

averaged 3 hours per day to the project according to available literature on cases. See for

example, KDE (2002) which provides interviews with various contributors to the project

- one method of building social capital within the project.

As the project teams move from team to network to OS enterprise, complications

arise in terms of language. With the exception of the Greenstone project, all of our cases

have localized mailing lists using different languages. In the extreme example of Linux,

there are lists supporting Albanian, Catalan, Chinese, Chinese, Croatian, Czech, Danish,

Dutch, English, French, German, Greek, Hungarian, Indonesian, Italian, Japanese,

23

Korean, Norwegian, Polish, Portuguese, Romanian, Russian, Spanish, Swedish, Turkish,

and Vietnamese languages. This requires a new level of project coordination and

complexity, where there are designated team members who act as moderators or

translators as modules are developed and tested and as new documentation is created.

Finally, to our surprise, all of the fifteen projects have some permanent staff to

manage the project. This is probably the result of our decision to look only at more

established OS projects. The average number of such people in the cases we reviewed is

somewhere between 5 and 9. For example, OpenOffice.org core staff includes 5 people

who are "community managers," and "coordinators and release managers." Community

managers are responsible for the day-to-day management, growth and planning of the

project. Coordinators and release managers are responsible for coordinating developers

and ensuring a smooth release schedule (OpenOffice.org, 2002). The Mozilla project has

fourteen people as a permanent staff (Mozilla.org, 2002). For most cases it appears that

these staff are paid either from donation sources or through support from some parallel

business.

NEXT STEPS

The findings described above are preliminary and based upon available literature

on the projects over the Internet. Over the coming year we will be continuing this

research agenda. Specific tasks will include:

Refinement of the case coding form (removing questions that do not seem
applicable) based on the lessons from these first 15 cases.

Development of an online survey form that complements the coding form. Of
central interest will be questions that cannot be easily determined through online
research. The institutional designs of OS projects do not appear to be well
documented and therefore will be a central focus in this stage of the study.

Increasing sampling of programming cases and undertaking a random sampling
approach to OS cases in sourceforge.net.

Beginning similar analysis of non-programming cases that take an "OS-like"
approach. The population of possible cases will be much smaller than in the realm
of programming and many of these projects will be in the early stages of an "OS-
like" lifecycle. Consequently we will analyze as many non-programming projects

24

as can be identified and can be accomplished under current project resources.
Table 5 lists OS-like non-programming cases that we have identified so far.

*** Table 5 about here ***

The preliminary findings from our review of the fifteen programming cases raise

some issues requiring further research either through coding form refinement or through

the online survey instrument.

Existing literature on OS has emphasized the importance of modularity, but in this

initial research we had difficulties measuring it. However, the methods for modular

designs may be critical to a successful project because of the importance of parallel

development in OS projects. Efforts to quantify and explain modularity will be important

as we further evaluate cases.

The timing of when projects go open (the move to stage 2 in Table 2) appears to

vary and it is not clear if this timing is an important factor leading to long-term success or

failure. Five of these mature projects we studied became open immediately, so the

community was encouraged to participate in project design. As we get a better handle on

measures of success, it will be interesting to see whether these "open early" projects do

better, worse, or the same as projects who wait to go open until the project kernel is better

designed. A related issue is how to measure "project credibility" at the time of going

open.

Information on the operational, collective-choice and constitutional-choice rules

of projects are difficult to in the publicly available Internet forums of various cases. We

expect that these rules do exist either formally or informally, but to understand them will

require the next phase of investigation - surveys of project participants.

Measuring growth, especially in the user community is difficult, for in most cases

the software is free to download, and there is no registration requirement. There may be

a similar problem of tracking use as the OS concepts get transferred into non-

programming domains.

Finally, as a project grows in participant base internationally, there will be the

need for language coordinators and translators to help manage parallel development of a

virtual team speaking (and writing) in multiple languages. In the context of programming,

25

this might be easier if a programming language is the common language between

participants. But even so, coordination and communication across linguistic boundaries

may be substantial and success or failure of a project to gain a critical mass of

participants may hinge on the abilities of these coordinators.

CONCLUSION

The concept of "Open Licensing" coupled with the global communication power

of the Internet brings new opportunities for collaboration and complex problem solving in

the context of computer programming. The existence of enterprise OS cases like Linux

and Apache Web Server suggest that there is something to this idea. The question is

whether these cases are flukes, or whether open licensing is a new emerging paradigm for

collaborative Internet-based efforts to solve complex problems. We would argue that

these cases are not flukes, but rather that the conditions were right for them to acquire

large amounts of (mostly) donated intellectual labor and that they had in place systems of

management and coordination which were configured appropriately to meet the needs of

the project. Table 5 lists some new projects that are applying the concept of Open

Licensing to initiatives outside of programming. For most it is probably too early to try

and measure their success, but it will hinge on how well they are able to motivate others

to participate and how well they manage the various stages of the OS lifecycle. None of

these innovative projects appear, however, to address problems of public policy or

management. Let us conclude with some examples of where we hope our research will

take us in the future — how an Open License approach, crafted and managed

appropriately, might enhance our ability to harness a global collaborative effort to solve

complex environmental management and policy problems.

THE IDEA OF OPEN SOURCE LANDUSE/LANDCOVER MODELING

One of the most pressing environmental problems in the United States and

elsewhere is the issue of sprawl. Local and regional planners and environmental policy

26

analysts are often faced with trying to predict how landuse and landcover (LULC) are

likely to change and what policy responses are required. There is considerable need for

planning/policy "flight simulators" where planners and policy analysts can sit down with

the computer and assess the impact of various policy initiatives to curb the negative

impacts of sprawl (Schweik et al., in preparation). Two recent reviews identified over 20

LULC models in existence, most using different technologies and approaches and each

being developed in the context of their own organizational confines (U.S. EPA, 2000;

Agarawl, et al. 2002). Many of these models are complex to develop and learn, and each

provides its own features and functions. But for the policy analyst trying to find an

applicable LULC model for his or her location, the transaction costs to select and then

implement one of these models is substantial.

Imagine the same scenario in an OS context. This is fairly easy to imagine given

LULC models are mostly software. In Stage 1 (Table 2), one or more of the existing

LULC models that show great promise for policy analysis and planning could be solicited

to be a kernel for a new OS project building a LULC policy flight simulator. If the team

that developed this or other models could be encouraged to make their source "open" and

participate in the initiation of the project, this would immediately establish credibility.

Stage 2 would involve decisions on the appropriate OSD license to use (based on our 15

case research, the GNU GPL license might be an appropriate choice), and the

communication and version control mechanisms would need to be established. We expect

that at this juncture some thought would have to be applied to the construction of

operational, collective-choice and constitutional-choice rules governing the project.

Moreover, special attention might be required to develop some distance learning

mechanisms and appropriate documentation to assist and help recruit new members.

Stage 3, the growth stage, would then involve both new model developers from various

disciplines who can contribute new functionality as well as new users from a substantial

global population of local and regional planners and policy analysts. For example, if the

kernel lacked a population growth component, the opportunity would exist for interested

demographers to join the project and develop that module. Trusted lieutenants could be

established to guide coordination for further development of modules requiring their

expertise (e.g., demographers, economists, geographers, policy analysts, planners, etc.).

27

An additional benefit of the Open Licensing approach would be that universities and their

students could learn from the freely available components and possibly make

contributions as part of coursework or their own research.

THE IDEA OF "OPEN CONTENT ENVIRONMENTAL MANAGEMENT"

Let us now describe an example that moves outside the realm of programming to

the sharing and collaboration of approaches to environmental management and policy.

Over the last decade, the first author of this paper has been involved in a research

program called the International Forestry Resources and Institutions (IFRI) program

(http://www.indiana.edu/~ifri/). This research program studies how human communities

have been able to craft institutional designs for the effective management of forest

resources. "Institutions," in this context are defined generally as "rules in use," with

mechanisms also in place for the monitoring and enforcement of these rules.

Environmental institutions can be laws created by national or state governments, they can

be rules established around property-rights and market-based structures, or they can

simply be well-understood "social norms" followed and enforced by people who live

together in a community (Ostrom, 1990, 1992, 1998; Schweik, Adhikari and Pandit,

1997). In developing country contexts, communal property and locally established

mechanisms for monitoring and enforcing of established rules may be prominent

(Gibson, McKean and Ostrom, 2000). In the United States, property rights, markets and

national and state laws are the dominant institutional forms. But even under these broad

institutional requirements, there are opportunities for communities to craft more detailed

institutional designs for environmental management. Habitat conservation planning

(HCP), a requirement of the U.S. Endangered Species Act, provides a good example.

HCPs are institutional designs crafted by conservationists, developers and public

officials, with the goal of balancing economic development and endangered species

protection (Thomas, forthcoming). Over 250 HCPs now exist in the United States, and

their institutional designs are well documented (Schweik and Thomas, 2002). But

currently, there is limited sharing and learning from various cases, other than what is

produced in case studies or comparative literature. There may be a great many lessons

28

learned and much knowledge to be gained if there was a mechanism to share, in an open-

source fashion, these kinds of institutional designs.

Imagine applying an "Open Content" approach to this endeavor. It would involve

an "Open Publication License" (Grossman, 1998; The Economist, 1999; Cisneros, 1999),

which follows generally the same principles as the Open Source Definition described

earlier, but applies them to information content (e.g., documents, databases, etc.) rather

than computer programs (Newmarch, 2000).

In Stage 1 of the OS development cycle (Table 2), an initial database would need

to be built documenting various approaches to environmental management and

corresponding institutional designs. At the same time, before embarking on the project

there would need to be some serious considerations about the motivations (e.g., Table 1)

of future collaborators to join in on such a project. For example, for academic

participation, the design of the collaborative platform would probably have to take the

design of a new form of electronic peer-reviewed journal, to allow for researchers to

claim publications on their CV (Schweik and Grove, 2000). Some serious design work

would be required to develop a content database that would be organized in a modular

way. For example, a database could be constructed that provided information about the

design of most existing Habitat Conservation Plans. These tend to be well-documented

and could be stored in a database in a standardized fashion. People with expertise in this

area of environmental management would need to be involved in this stage to help make

good modular design decisions and to make the project credible.

Stage 2 of the project would involve consideration of the appropriate "Open-

Publication" license. OPL (Open Content, 2002b) and the GNU Free Documentation

License (Free Software Foundation, 2002) are two such licenses that provide a starting

point. Newmarch (2000, 2001) provides a helpful overview of some of these licenses and

discussions about the open content issue. Critical to the particular license will be the rules

for providing credit to people who contribute valuable intellectual property (e.g., an

academic researcher who needs publications for tenure). Communication systems and

content management systems would need to be created, and the project governance and

institutional structure would need to be defined.

29

Stage 3 would involve similar considerations about such matters as motivations,

recruitment, and motivations as these apply to OS projects. Once open, new institutional

designs (e.g., the documentation for a newly formed HCP), evaluations of existing

institutional designs, policy or management documents, field data, case studies or

relevant theoretical work could be posted for peer-review (e.g., a new Habitat

Conservation Plan). The lower cost of publishing that the World Wide Web provides an

opportunity to create a new form of collaboration that is focused around the Open

Publication concept. Other users of such a system would be guaranteed the right to freely

download, utilize or share online content under the rules of the Open Publication License

in place. Content could also be modified with the licensing stipulation that such

modifications be then made public. For example, a community in the eastern US could

review the institutional designs of several posted HCPs from the west, download their

content, choose one that they think is appropriate, make modifications to fit their own

context and goals, and then post their modified designs back to the system for other

collaborators to see, evaluate and possibly use in the future.

This may be where some new Open Content initiatives listed in Table 5 may be

headed. But these ideas are so new that little experience exists outside of OS

programming endeavors. In order for these ideas to reach "enterprise" scales in other

complex problem-solving contexts, more understanding is needed about the detailed

processes and factors that lead to successful OS programming projects. This paper, and

the research program it describes, is trying to help identify the critical factors that need to

be in place to achieve successful open collaboration in any contexts (programming or

content). Imagine the progress we might make if we can harness the Internet, "Linus'

Law" and get global sets of eyes working collaboratively to address serious policy and

management problems.

30

TABLE 5: OS-LIKE NONPROGRAMMING CASES
- "OPEN CONTENT" PROJECTS

Programming OS Cases
Name

Nupedia

Wikipedia
Open Directory Project

Open Content

OpenCourseWare

Opencode

Openlaw

Jake

Open Music Registry

Open Content for
Education

Public Library of
Science

Project Gutenberg

World Lecture Hall

Linux documentation
project

URL
www.nupedia.com

www. wikipedia. com
http://dmoz.org/
www.opencontent.org

http://web.mit.edu/ocw

http://eon.law.harvard.edu/opencode

http://eon.law.harvard.edu/openlaw

http ://jake-db.org/

www.openmusicregistry.org

http://www.life-open-content.org/

http://www.publiclibraryofscience.org/

http://promo.net/pg/

http://www.utexas.edu/world/lecture/

http://www.tldp.org/

Type of Project
Online peer-reviewed
encyclopedia
Online encyclopedia
Web link database
Open source licensing
scheme for
information content
Open sharing of
undergraduate and
graduate course
content
Consortium for open
research and content
Experiment in the
open crafting of legal
arguments
Research software
and database where
content is built in an
open source way
Open sharing of
music using an Open
Audio License

Online archives of
peer-reviewed
scientific articles
The oldest of the
freely available digital
content (began 1971)
Online course
materials
Content project to
develop
documentation for
Linux

35

BIBLIOGRAPHY

Agarwal, C, G. M. Green, J. M. Grove, T. P. Evans, and CM. Schweik. 2002. A
Review and Assessment of Land-use Change Models: Dynamics of Space, Time, and
Human Choice. Joint publication by the Center for the Study of Institutions, Population,
and Environmental Change at Indiana University-Bloomington and the USDA Forest
Service Northeastern Forest Research Station. Burlington, Vt. 79 pp.

Behlendorf, B. 1999. "Open Source as a Business Strategy." In C. DiBona, S. Ockman,
andM. Stone (Eds.) Opensources: Voices from the Open Source Revolution. Sebastopol,
CA: O'Reilly and Associates.

Bezroukov, N. 1999a. "Open Source Software as a Special Type of Academic Research
(a Critique of Vulgar Raymondism.)" First Monday, 4, 10.

Bezroukov, N. 1999b. "A Second Look at the Cathedral and the Bazaar." First Monday,
4,12.

Bollier, D. 1999. "The Power of Openness: Why Citizens, Education, Government and
Business Should Care About the Coming Revolution in Open Source Code Software."
http://eon.law.harvard.edu/opencode/h2o/. Accessed 9/09/2002.

Brown, C. B. 1998. "Linux and Decentralized Development." First Monday. Vol 3 (3).
http://www.firstmonday.dlc/issues/issue3 3/browne/index.html. Accessed 9/9/02.

Cisneros, O.S. 1999. "Expanding the Universe of Ideas."
http://www.wired.com/news/politics/ 0,1283,20276,00.html. Accessed 9/25/02.

CVS. 2002. Concurrent Versions System, http://www.cvshome.org/. Accessed 9/25/02.

Dafermos, G. N. 2001. Management and Virtual Decentralized Networks: The Linux
Project. Masters Thesis. Durham Business School.
http://opensource.mit.edu/papers/dafemioslinux.pdf. Accessed 9/23/2002.

DiBona, C, S. Ockman and M. Stone (Eds.). 1999. Open Sources: Voices from the Open
Source Revolution. Sebastopol, CA: O'Reilly and Associates.

Edwards, K. 2001. "Epistemic Communities, Situated Learning and Open Source
Software." http://opensource.mit.edu/papers/kasperedwards-ec.pdf. Accessed 9/9/2002.

Elliot, M.S. and W. Scacchi. 2002. "Communicating and Mitigating Conflict in Open
Source Development Projects." http://www.ics.uci.edu/~wscacchi/Papers/New/elliott-
scacchi-April2002.pdf. Accessed 9/9/02.

36

Eunice, J. 1998. "Beyond the Cathedral, Beyond the Bazaar."
http://www.illiminata.com/cgi-local/pub.cgi?docid=cathedral$section=cathesdral2.
Accessed 8/25/02.

Feller, Joseph and Brian Fitzgerald. 2002. Understanding Open Source Software
Development. London: Addison-Wesley.

Fogel, K. 1999. Open Source Development with CVS. Scottsdale, Az: Coriolis Group.

Free Software Foundation, 2002. "GNU Free Documentation License."
http://www.gnu.org/copyleft/fdLhtnil. Accessed 9/27/02.

Gibson, C.C., M.A. McKean, and E. Ostrom (eds.). (2000). People and Forests:
Communities, Institutions, and Governance, Cambridge, MA: MIT Press.

Godfrey, M.W. and Tu, Q. 2000. "Evolution in Open Source Software: A Case Study."
Presented at The 2000 International Conference on Software Maintenance.
http://plg.uwaterloo.ca/~migod/papers/icsmOO.pdf. Accessed 8/25/02.

Grossman, L. 1998. "New Free License to Cover Content Online."
http://www.onmagazme.com/on-mag/reviews/article/0,9985,621,00.html. Accessed
9/25/02.

Kiser, L.L. and Ostrom, E. "The Three Worlds of Action: A Meta-theoretical Synthesis
of Institutional Approaches." In E. Ostrom (Ed) Strategies of Political Inquiry. Pp. 179-
222. Beverley Hills, CA: Sage.

Krishnamurthy, S. 2002. "Cave or Community? An Empirical Examination of 100
Mature Open Source Projects." First Monday, Vol 7 (6).
http://www.firstmondav.dk/issues/issue7 6/krishnamurthy/index.html. Accessed
9/9/2002.

Lakhani, K.R. and E. von Hippel. 2002. "How Open Source Software Works: "Free
User-to-User Assistance."
http://opensource.mit.edu/papers/lakhanivonhippelusersupport.pdf. Accessed 10/2/02.

Lakhani, K.R., B. Wolf, J. Bates, and C. DiBona (2002). "The Boston Consulting Group
Hacker Survey, Release 0.73." http://www.osdn.com/bcg/bcg-
0.73/BCGHackerSurvew0-73.html. Accessed 9/9/2002.

Lancashire, D. 2001. "Code, Culture and Cash: The Fading Altruism of Open Source
Development." First Monday, Vol 6(12).
http://www.firstmonday.org/issues/issue6_12/lancashire/index.html. Accessed 9/25/02.

37

Learmonth, M. (1997). "Giving It All Away."
http://www.metroactive.com/papers/metro/05.08.97/cover/linus-9719.html. Accessed
8/18/02.

Lessing, L. 2001. The Future of Ideas: The Fate of the Commons in a Connected World.
New York: Random House.

Linux Australia. 2002. "Linux Australia Constitution."
http://www.linux.org.au/org/constitution.phtml. Accessed 9/29/02.
Linux Counter. 2002. "The Linux Counter." http://counter.li.org/estimates.php. Accessed
9/29/02.

Maclachlan, M. 1999. "Panelists Describe Open Source Dictatorships."
www.techweb.com/wire/story/TWB19990812S0003. Accessed 9/6/2002.

Mockus, A., R.T. Fielding and J. Herbsleb. 2000. "A Case Study of Open Source
Software Development: The Apache Server."
http://opensource.mit.edu/papers/mockusapache.pdf. Accessed 9/9/2002.

Moody, G. 2001. Rebel Code: Linux and the Open Source Revolution. Cambridge, MA:
Perseus Press.

Mozilla.org, 2002. "Mozilla.org Staff Members."
http://www.mozilla.org/about/stafflist.html. Accessed 10/02/02.

Newmarch, J. 2000. "Open Content Licenses."
http://ian.netcomp.monash.edu.au/opendoc/paper.html. Accessed 9/27/02.

Newmarch, J. 2001. "Lessons from Open Source: Intellectual Property and Courseware."
First Monday. Vol 6 (6).
http://www.firstmondav.dk/issues/issue6 6/newmarch/index.html. Accessed 9/27/02.

Open Content. 2002a. www.opencontent.org. Accessed 9/25/02.

Open Content. 2002b."Open Content License (OPL)." http://opencontent.org/opl.shtml

Open Courseware. 2002. http://web.mit.edu/ocw. Accessed 9/25/02.

Open Law. 2002. http://eon.law.harvard.edu/openlaw. Accesed 9/25/02.

Open Music. 2002. www.openmusicregistry.org. Accessed 9/25/02.

OpenOffice.org. 2002. http://www.openoffice.org. Accessed 10/2/02.

Opensource.mit, 2002. http://opensource.mit.edu/papers. Accessed 9/13/2002.

38

Opensource.org 2002a. http://www.opensource.org-/ Accessed 9/14/2002.

Opensource.org. 2002b. "Holloween Document I (Version 1.14).
http://www.opensource.org/holloweenl.php. Accessed 8/25/02.

Opensource.org, 2002c. "The Open Source Definition (Version 1.9),"
http://www.opensource.org/docs/defi.nition.html. (Accessed, 9/25/02).

Opensource.org, 2002d. "The Approved Licenses,"
http://www.opensource.org/licenses/index.html. (Accessed 9/25/02).

O'Reilly, T. and Dyson, E. (1998). The Open-Source Revolution, Release 1.0: Ester
Dyson's Monthly Report. 14 Mar 2000, <http://www.edventure.com/releasel/1198.html>

Ostrom, E. (1990). Governing the Commons: The Evolution of Institutions for Collective
Action. New York: Cambridge University Press.

Ostrom, E. (1992). Crafting Institutions for Self-Governing Irrigation Systems. San
Francisco, CA: ICS Press.

Ostrom, E. (1998). A Behavioral Approach to the Rational Choice Theory of Collective
Action. American Political Science Review 92(1) (March): 1-22.

Ostrom, E., Gardner, R. and Walker, J. 1994. Rules, Games and Common Pool
Resources. Ann Arbor: University of Michigan Press.

Pavlicek, R.C. 2000. Embracing Insanity: Open Source Software Development.
Indianapolis, Indiana: Sams publishing.

Perens, B. 1999. "The Open Source Definition." In C. DiBona, S. Ockman and M. Stone
(Eds.) Open Sources: Voices from the Open Source Revolution. Sebastopol, CA: O'Reilly
and Associates.

Raymond, E. (1998a). The Cathedral and the Bazaar,
http://www.firstmondav.dk/issues/issue3 3/raymond/index.htnil. Vol 3 (3). Accessed
9/9/2002.

Raymond, E. (1998b). Homesteading the Noosphere.
http://www.flrstmonday.dk/issues/issue3 10/ravmond/index.html. Vol 3 (10). Accessed
9/9/2002.

Rheingold, H. (1993). The Virtual Community: Homesteading on the Electronic Frontier.
New York: Harper Perennial.

Sourceforge.net (2002). www.sourceforge.net. Accessed 9/20/02.

39

Schweik, C, K. R. Adhikari and K.N. Pandit. (1997). Land-cover Change and Forest
Institutions: A Comparison of Two Sub-basins in the Siwalik Hills of Nepal. Mountain
Research and Development, Vol. 17 (2): 99-116.

Schweik, C. and J. M. Grove. (2000) "Fostering Open-Source Research Via a World
Wide Web System," Public Administration and Management: An Interactive Journal,
5(3). http://www.pamij.com/5_4/5_4_2_opensource.html.

Schweik, C. M., J.M Grove, and T. Evans. In preparation. "Evaluating Landuse\
Landcover Change Models for Policy Analysis and Planning." Department of Natural
Resource Conservation. University of Massachusetts, Amherst.

Schweik, C. and C. Thomas. 2002. "Using Remote Sensing to Evaluate Environmental
Institutional Designs: An Habitat Conservation Planning Example." Social Science
Quarterly. 83:244-262.

The Economist. (1998). Red Hat Trick: Linux Operating System May Pose a Serious
Threat to Microsoft Dominance, The Economist. 348 (8088): 76. Oct 3.

The Economist, 1999. "Hacker Journalism." The Economist.
http://www.economist.com/displayStory.cfm?StoryJD=265022. Accessed 9/25/02.

Thomas, C. W. Forthcoming. Bureaucratic Landscapes: Interagency Cooperation and the
Preservation of Biodiversity. Cambridge, MA: MIT Press.

Torvalds, L. 1999. "The Linux Edge." In C. DiBona, S. Ockman and M. Stone (Eds.)
Open Sources: Voices from the Open Source Revolution. Sebastopol, CA: O'Reilly and
Associates.

UMBC, 1997. "UMBC Linux User Group Constitution."
http://linux.umbc.edu/constitution.html. Accessed 9/29/02.

U.S. EPA, 2000. Projecting Land-Use Change: A Summary of Models for Assessing the
Effects of Community Growth and Change on Land-Use Patterns. EPA/600/R-00/098.
U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati,
OH. 260 pp.

40

