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I. Introduction

There is a common tendency in economics and related

disciplines to presume that government intervention is warranted

in the provision of collective consumption goods and the

management of common property resources.

In the tradition of Aristotle (Stroup, 1991), Hume (Olsen,

-1965) and Hardin (1968), individuals following their inevitably

myopic self-interest will underprovide public goods and

overexploit common property resources.

The presumption that public goods will be underprovided can

be formally demonstrated as a Nash equilibrium in a non-

cooperative game. In this model, each player chooses to provide

that quantity of good which will maximize his own utility,

assuming that the amount provided by other players will remain

the same as in the previous period. In equilibrium each of the n

players equates his marginal rate of substitution to the full

cost of a unit of the public good. Therefore, the sum of the

marginal rates of substitution is n times the marginal rate of

transformation, i.e. the public good is underprovided and the

degree of underprovision increases with the number of potential
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cooperators (Roberts and Holdren, 1972; Cornwall, 1984).

With more sophisticated strategies, however, it is plausible

that cooperation can be sustained by punitive strategies directed

at defecting players. Indeed, any target solution that becomes

the focal point of such punitive action and which is superior to

the Nash equilibrium can be so sustained (Aumann, 1981) . This

"folk Theorem" has two severe limitations. First it applies

equally to efficient and inefficient outcomes. Second, it

provides no guidance on how a particular focal point becomes

prominent.

In this paper, we derive conditions under which public goods

could be under, over, or efficiently provided, even in a non-

cooperative setting. In Section II of this paper, we show that

efficiency in the voluntary provision of public goods can be

achieved if consumers underestimate the quantity of public goods

to be provided by others. In particular, we show that efficiency

can occur under various combinations of numbers of players (n),

elasticities of substitution (a), and the degrees of

underestimation of public good provision by others, with the

degree of underestimation being measured by 0 which is the

proportional underestimation of the actual public good provision

by others.

In Section III, we discuss how an efficient solution, once

achieved, has a natural prominence and may be sustained as a

spontaneous order (Hayek, 1960). This provides a fundamental

theory of government as the constitution of cooperation in an

economy with public goods and thus complements Nozick's (1974)
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minimal state. Section IV provides a brief summary, while

Appendix A provides derivations of equations (1) through (5).

II. A Model of the Voluntary Provision of a Public Good

In contrast to the Nash-Cournot model, wherein players

assume that other players' provisions of the public good will

remain the same as in the prior period, and equilibrium occurs

when that assumption is realized by all n players, we provide a

more general analysis wherein assumptions as to others'

provisions may be based on other than the prior period's behavior

and wherein those assumptions may not be realized. We begin by

presenting the following two-player game model which allows for

explicit treatment of conjectures regarding the other player's

strategy.

In this model both players' preferences are representable by

Cobb-Douglas utility functions. Specifically, suppose that two

individuals, Ken and Ben, maximize their utility functions:

UK = X K (SK + SaB)

UB = x B (SB + Sak)
subject to the budget constraints:

YK PXXK + PSSK

YB PXXB + PSSB
where, e.g. XK = the amount of private good purchased by Ken

SK = the amount of the public good provided by Ken

PS = the (supply) price of the public good

SaB = the amount of the public good that Ken assumes

Ben will provide
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SK + SB = the actual amount of public good provided.

Now suppose that SaK = SaB = 0, for example, because Ken and

Ben are extremely risk-averse, or because neither player has

provided the public good in the previous period. In this case,

the sum of the quantities of the public good provided by the

players will be efficient.2 An intuitive explanation of this

result rests on the presence of opposing forces in the model. To

the extent that each individual's provision of the public good

generates external benefits which are not taken into account in

his decision calculus, there is a tendency towards

underprovision. On the other hand, to the extent that

individuals underestimate actual provision by the

other party, e.g. SaB = 0 < SB, there is a force towards

overprovision. The latter force is greater the lower the value

placed on unanticipated spillins, i.e. the lower the elasticity

of substitution between the public and private good. Where the

elasticity of substitution is one, i.e. the Cobb-Douglas case,

and where SaB = SaK = 0, these two forces exactly offset one

another and efficient provision results.

Although it can be shown that efficiency occurs when the

elasticity of substitution is one and players assume zero

provision of the public good by others, these conditions are not

necessary for efficiency. In fact, we shall now generalize the

model and show that efficiency can occur under various

2. This statement is proven later in the paper in that when

= 1 and =0, equations (4) or (5) hold for any n.
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combinations of n, , and .

We begin this analysis by recognizing that there are

intermediate cases between that of a Nash-Cournot equilibrium

(wherein assumed and realized spillins of public good provision

are equal) and the zero assumed spillin case. Under the

simplifying assumption that all players have identical 0's, we

can derive the relationships between 0 and the level of provision

of the public good relative to the two polar cases. This

intermediate solution is given by:

where:

R = the negative of the partial derivative of a player's

provision of the public good with respect to another

player's provision of the public good, with all

players assumed to have identical Rs,

S* = the level of public good provision if all players

assume zero provision by others, i.e. = 1,

SNC = the level of public good provision in Nash-Cournot

equilibrium, i.e. = 0, and

S = the level of public good provision.

Equations (1) and (2) are derived in Appendix A.

Given the above analysis, it can be seen that 0 affects the

level of public goods provision. Underestimation of others'

provision of public goods distorts the ratios of private goods to
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public goods. Given the assumptions of identical homothetic

preferences (the CES utility function being an example) and equal

incomes for all n players (consumers), Equation (3) can be

derived which shows how player i's ratio Xi/S is related to , n,

and the ratio which player i assumes would occur if there was

zero public good provision by others:

where:

Xi* = the level of private good purchased by player i if

i assumes zero public goods provision by others

(i.e. =1),

Xi = the level of private good purchased by player i,

Si* = the level of public goods purchased by player i if

=1, and

the other variables are as previously defined.

Equation (3) is derived in Appendix A. Note that in equation

(3), since [1 + (1- )(n-1)]/n < 1, even though a player's

assuming some provision of public goods by others increases a

player's ratio of private good to public good purchases, it

reduces the ratio relative to what players assumed would occur

had public good provision by others been zero. The significance

of this distortion becomes apparent in the following paragraphs.

By distorting the ratio Xi/S, the marginal rate of

substitution between Xi and S is altered. This, then, has

effects on the efficiency of the provision of public goods.

Recall that in Nash-Cournot equilibrium, there is an

underprovision of the public goods since each player sets his
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marginal rate of substitution (MRS) equal to the marginal rate of

transformation (MRT), resulting in the sum of the MRSs exceeding

the MRT. In the Cobb-Douglas case, with the players having a

unitary elasticity of substitution between public goods and

private goods and assuming zero provision of the public good by

others, efficiency is achieved because the "unexpected" provision

of public goods by others reduces each player's MRS so that the

sum of the MRSs equals the MRT. In the intermediate solution,

which is between the Nash-Cournot equilibrium and the Cobb-

Douglas zero assumed spillin case, there is some "unexpected"

provision of public goods by others but since some provision by

others was anticipated (i.e. < 1), the MRSs are not reduced as

much as in the Cobb-Douglas zero assumed spillin case. To

achieve efficiency, then, another factor must come into play.

That factor is the elasticity of substitution between the public

good and the private good. The less the substitutability between

public and private goods (i.e. the smaller the ), the more the

MRS will decline for any given level of "unexpected" provision of

public goods by others. Thus, there should, and in fact do,

exist combinations of 0 (which affects the level of unexpected

provision of public goods by others) and a which result in

efficiency (the sum of the MRS equaling the MRT) . Given the

assumptions of n consumers with identical CES utility functions

and incomes and each consumer underestimating others' provision

of the public goods by the same fraction (given by 0) we can

derive equations (4) and (5) which are equivalent expressions for
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efficient combinations of n, , and :

Equations (4) and (5) are derived in Appendix A. Using

these equations we can determine combinations of a and 0

resulting in efficiency for different numbers of players. In

Figure 1 are shown combinations of a and 0 resulting in

efficiency in the n = 2 and n = 100 cases.

Figure 1: Combinations of a and 0 Resulting in Efficiency in
Public Goods Provision For the n=2 and n=100 Cases
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In Figure 1, for a given n, any combination of a and 0 to

the southeast of the locus of efficient combinations would result

in an over-provision of the public good and any combination to the

northwest would result in an underprovision. Thus, under-, over-

or optimal provision are possible, depending upon the combination

of n, a, and 0. It is apparent from this analysis that the

greater the number of players, the greater the tendency toward

underprovision. This result, which supports the Hume theorem,

can be readily seen in Figure 1 in that the locus of efficient

combinations collapses toward the southeast as n increases.

Despite using some highly simplifying assumptions in the

above analysis such as identical reaction curves and utility

functions for all players, several key points have been made.

The most basic point is that underprovision is not the only

possible outcome when public goods are privately provided. If,

for whatever reason, consumers, either totally ignore the

provision of public goods by others as in the Cobb-Douglas case

or partially underestimate the provision by others as in the

intermediate case, efficiency may occur and we cannot presume

that underprovision necessarily results. Also of significance

are the more specific results of the model presented herein.

Specifically, it was found, in support of the Hume theorem, that

the larger the number of players the greater the tendency toward

underprovision. It was also found that this tendency toward

underprovision which 'arises from free riding was offset,

partially or totally, by underestimation of others' provision of

public goods. The greater the underestimation (i.e. the larger
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the ), the greater the offsetting force toward overprovision,

with the offsetting force being greater the less the

substitutability between public and private goods (the smaller

the ). Further results could undoubtedly be developed,

e.g. one could analyze the effects of different players having

different elasticities of substitution, but the above analysis

seems to capture the significant forces toward underprovision and

overprovision, and the fact that these forces can result in

under-, over- or optimal provision of a public good in a non-

cooperative setting.

III. The Sustainability of Efficiency and the Folk Theorem

If optimal provision of voluntarily provided public goods

was only sustainable if consumers continue to underestimate the

provision of public goods by others, the results of the above

section would be of limited interest since continued,

underestimation seems unlikely over a number of decision periods.

What makes the possibility of optimality in a single round

setting more interesting is that once optimality is achieved,

it may be sustainable over time based on the "folk theorem"

rather than on the continued underestimation of others' public

goods provision.

The following example will clarify the applicability of the

folk theorem to our analysis. Suppose Ben and Ken have the

following utility functions and budget constraints, respectively:

UB = XB(SB + SK) subject to 120 XB + SB

UK = XK(SK + SB) subject to 120 XK + SK
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Assume further that both Ben and Ken, due to initial pessimism

or risk aversion, assume that the other will be providing none of

the public good. The payoff matrix below (Figure 2) depicts some

of the possible outcomes to this game.

SB=60

SB=40

SB=30

sB=0

SK=60

UB=7200

UK=7200

UB=8000

UK=6000

UB=8100

UK=5400

UB=7200

U K = 3 6 0 0

SK=40

UB=6000

U K = 8 0 0 0

UB=6400

UK=6400

UB=6300

UK=5600

UB=4800

UK=3200

SK=30

UB=5400

U K = 8 1 0 0

UB=5600

U K = 6 3 0 0

UB=5400

UK=5400

UB=3600

UK=2700

SK=0

UB=3600

UK=7200

UB=3200

UK=4800

UB=2700

U K = 3 6 0 0

U B = 0
UK=0

Figure 2: Payoff Matrix Example

Given their assumptions of zero public good provision by the

other, both Ben and Ken would choose to provide 60 units of the

public good. That is, each, in attempting to escape from cell

1 to cells 2 and 3 respectively would provide SB = SK = 60.

Thus, they would end up in cell 4, which happens to be Pareto

optimal and a Lindahl equilibrium. If the two players followed

Nash-Cournot behavior, they would each assume that in the next

round the other player would again provide 60 units of the public

good. Therefore, in round 2, each would provide 30 units of the
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public good and the players would end up in cell 5. If the

Cournot behavior continued over a number of rounds, the outcome

would gravitate toward cell 6 which would be the Nash-Cournot

equilibrium.

Several points can be made from the above example. First,

the outcome in cell 4 is Pareto optimal, which is consistent

with our conclusion that when = 1 and =0, efficiency is

achieved. Second, the Nash-Cournot equilibrium in cell 6 is

suboptimal, with cell 4 being Pareto superior to it. Third,

cell 4 is sustainable if Ben and/or Ken recognize that cell's

desirability and threaten to match or exceed any cutback in

public good provision by the other. Such a threat, in a repeated

game setting with a large number of rounds, would be ample

incentive for players to remain in cell 4. A number of features

of the cell 4 solution, which is a Lindahl equilibrium, combine

to make the solution prominent in the sense of Schelling (1960).

First, any change in the total contribution to the public good

will decrease the economic surplus. Thus there is no possibility

of a win-win strategy that departs from the Lindahl equilibrium.

Moreover, the Lindahl equilibrium is "just" in the sense that all

participants pay in accordance with their marginal benefits and

reap the surplus due to the higher valued intramarginal units

3. Although the above example is based on the special case of
both players having identical Cobb-Douglas utility functions and
zero assumed public good provision by others, alternative
examples based on different numbers of players, elasticities of
substitution, and degrees of underestimation could be constructed
which would lead to the same demonstration that once achieved, an
efficient level of the public good provision may be sustained by
a threat mechanism among players.
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(Lindahl, 1919). Finally, in the special case of similar tastes

and incomes, the economic surplus of all participants is roughly

equal.

The punitive strategies adopted constitute a governance

structure of cooperation. The commitment to retaliation becomes

more credible if it is encoded in the cultural norms of the group

and reinforced by social sanctions such as ostracism.

Enforcement against recalcitrant and thick-skinned deviants

(whose presence threatens an unraveling of cooperation through

envy and imitation) can be further secured by legal institutions

that commit the group to punish opportunism. In this way, the

spontaneous order matures into government.

IV. Summary

In this paper we have shown that, contrary to the

conventional wisdom, the voluntary provision of public goods need

not result in underprovision. If players underestimate the

public good provision by others, then under-, over-, or optimal

provision is possible, depending upon the number of players,

elasticities of substitution, and the degree of underestimation.

Furthermore, if optimal provision is achieved, retaliatory

strategies can be used to sustain the efficient solution as a

spontaneous order.
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APPENDIX A

Derivation of Equations (1) - (5)

In deriving equations (1) and (2) we use the following

definitions:

Si = the level of public good provision by player i,

Si* = the level of public good provision by player i,

if =1

and the other variables are as previously defined. Given the

assumption that all n players have identical reaction curves,

player i's reaction curve would be given by:

and since Si = Sj for all i and j we can substitute (n-1)Si for

which can be rearranged as:

and

Since all players behave identically and would provide identical

levels of the public good, S = nSi and S* = nSi*. Thus we get

equation (1):

Note that in the Nash-Cournot equilibrium, = 0, so

14



which when divided into

yields equation (2):

In deriving equation (3) we assume that there are n identical

consumers with homothetic preferences for X and S. Each player

i is subject to the budget constraint Yi Xi + kSi, where the

private good X is the numeraire and k is the marginal rate of

transformation. We shall use Figure A1 to depict the

intermediate solution wherein each player underestimates by

fraction 0 the provision of public good by others:

Figure A1: Solution with n Identical Players
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Given the assumption of zero provision of public good S by

others, player i would select point (Si*, Xi*). If, instead,

player i assumes that others will be providing some of the public

good and that all players other than i are identical then the

player will assume that provision by others will total

(1- )(n-1)Sj (where j i). Given our assumptions of identical

consumers with identical 's, all players provide the same level

of public good so Sj = Si and we can specify that the solution

is where

This expression states that the solution occurs where each

consumer's purchase of S equals the consumer's chosen consumption

of S less the assumed provision by others. Equation (A1) can be

manipulated to yield:

An expression for Xi can be derived from

yielding:

Taking the ratio of Xi to Si we get, after some simplification:

This expression shows that player i's ratio of private to public

good purchases decreases when the player underestimates the

provision of the public good by others. Note too that Xi/Si is

an increasing function of n.
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To complete our derivation of equation (3), we now note that

player i's actual consumption of S equals nSi since all n players

behave identically. Thus we get:

To derive equations (4) and (5) we make use of the efficiency

condition that MRS equal MRT for a public good. It can be shown

for a CES utility function as follows:

where i = 1/( i + 1), and assuming all n players are identical,

after dropping subscripts to and that:

This expression we set equal to k (the MRT) to find an expression

for efficient outcomes and substitute equation (3) into the Xi/S

term, yielding:

which can be rearranged as:

Noting that if player i assumes zero provision by others then the

player sets

we can substitute k for its equivalent expression on the left
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side of equation (A4) and then divide both sides by nk yielding:

as an expression for efficient combinations of 0, a, and n.

Equations (4) and (5) are merely rearrangements of equation (A5)

putting 0 and a on the left sides of the equations.
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