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ABSTRACT. The bioethanol industry has been experiencing rapid growth over the past several years, and
is expected to continue to increase production for the foreseeable future. A vital component to the success
of this industry is the sales and marketing of processing residues, which are primarily sold as dried distillers
grains with solubles (DDGS). Systems modeling, a technique that has been used to predict future demand
for bioethanol, can also be used to determine potential byproduct generation rates. This paper discusses
the development of one such model, and presents predicted generation of DDGS as well as carbon dioxide
emissions from this industry through 2100. These simulation results underscore the growing need to actively
pursue research focused on value-added alternatives for the use of bioethanol byproduct streams.
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INTRODUCTION

With growing population, industrialization, and
energy consumption, coupled with an increasing
reliance on fossil fuels, the energy security needs of
North America continue to escalate. Biofuels,
renewable sources of energy, can help meet these
increasing needs, and are produced from biomass
sources including corn stover, residue straw,
perennial grasses, legumes, and other agricultural
and biological materials. At the moment, the most
heavily used is corn. Fermentation of corn is readily
accomplished at a relatively low cost vis-à-vis other
biomass sources. However, in the coming years, the
conversion of other lignocellulosic materials is
expected to become cost competitive due to rapid
technological advances (DePardo 2000).

Concern over resource inputs/outputs, economics,
and impact of manufacturing and the use of
bioethanol has led to many life cycle assessment
studies (LCA). In addition to Chan et al. (2004),
prominent studies include Andress (2002),
Kaltschmitt et al. (1997), Kim and Dale (2002,

2004), Lynd and Wang (2004), Shapouri et al.
(1995, 2002, 2003a,b), and Sheehan et al. (2002,
2004). Each manufacturing plant needs to
contribute to the mission of sustainability in order
for the entire system to succeed. A key element to
this approach is to examine waste and byproduct
streams (Rosentrater 2004). Modeling and
simulation provides a tool for such analysis.

The primary objectives of this study are two-fold:
1) to further the discussion regarding the use of
computer simulation to provide insights into
bioethanol manufacturing, and 2) to expand the
discussion to include processing residues. Based on
Chan et al. (2004), a computer model was
constructed to determine the quantity of byproducts
resulting from bioethanol manufacture. This paper,
therefore, raises the issue of the use and/or disposal
of byproducts generated as this industry expands.
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Fig. 1. Nonfermentable residues–dried distillers grains with solubles (DDGS).

CORN ETHANOL: A CASE STUDY IN
BIOFUEL MANUFACTURING

Although the bioethanol industry is poised to
produce substantial quantities of biofuel during the
next century, corn grain is currently the only
biological material that can be economically
converted into ethanol on an industrial scale. Thus,
it is useful to examine this segment of the industry
to establish a baseline for the consideration of
bioethanol production from other potentially viable
lignocellulosic materials.

Briefly, bioethanol manufacturing from corn grain
results in three products: bioethanol, the primary
end product; residual nonfermentable corn kernel
components, which are typically marketed as “dried
distillers grains with solubles,” known as “DDGS”
(Fig. 1); and carbon dioxide (Fig. 2). Anecdotally,
the rule of thumb commonly used in industry states
that for 1 kg of corn processed, approximately 1/3
kg of each of the constituent product streams will
be produced. The production process (Fig. 3)

consists of several key steps, including grinding,
cooking, liquefying, fermenting, and distilling the
corn grain. Indepth information on this process,
which is beyond the scope of this paper, can be found
in Dien et al. (2003), Jaques et al. (2003), Tibelius
(1996), and Weigel et al. (2005). Carbon dioxide
results from the fermentation stage during starch
consumption and metabolic conversion by yeast.
This byproduct stream can be sold to specific
compressed gas markets. Often, however, it is
released to the atmosphere, because location or
logistics prevent economic marketing. Distillers
grains, on the other hand, are removed from the
distillation stage, dried to ensure a substantial shelf
life, and then sold to local livestock producers or
shipped via truck or rail for use in distant livestock
feed rations. Their sale contributes substantially to
the economic viability of bioethanol manufacturing,
and is vital to each plant’s operations. The quantity
of processing residues that will be produced will
substantially influence the future of the industry.
Predictions of these can be accomplished via
computer modeling and simulation.
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Fig. 2. Steam and carbon dioxide discharge from a typical corn-to-bioethanol manufacturing plant.

Simulating byproduct generation

To predict the quantity of byproducts that may be
produced during the next century by bioethanol
manufacturing operations, a computer model was
constructed using spreadsheet software. Several
conversion factors were necessary to consider and
incorporate, including: (1) Corn-to-bioethanol
conversion (CEC): 2.58 kg corn/L bioethanol (Kim
and Dale 2002); (2) Corn-to-byproducts conversion:
25.4 kg of corn typically produces approximately
7.98 kg of bioethanol, 7.71 kg of DDGS, and 8.35

kg of carbon dioxide (Kelsall and Lyons 2003). This
equates to a corn-to-distillers grains conversion
(CDGC) of 3.29 kg corn/kg DDGS, and a corn-to-
carbon dioxide conversion (CCDC) of 3.04 kg corn/
kg CO2; and (3) Energy density (ED) of bioethanol:
2.12 x 107 J/L (Sheehan et al. 2004).

To model the quantity of byproducts that may be
produced during this time frame, i.e., 100 yr, several
steps were involved. Briefly, key calculations
included the rate of energy use (EU1; J/yr):
information was based on predictions by Chan et al.
(2004), Scenarios B and C.
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Fig. 3. Process flow diagram of corn-to-bioethanol manufacturing process.
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Fig. 4. Projected generation of DDGS under Scenario B.

Rate of ethanol use (EU2; L/yr):

(1)

 

Rate of corn use (CUR; kg/yr):

(2)

 

Dried distillers grains with solubles generation rate
(DDGS; kg/yr):

(3)

 

Carbon dioxide generation rate (CD; kg/yr):

(4)

 

After programming, simulations were constructed
based on energy use Scenarios B and C. However,
the model can be used to simulate other use
scenarios as well.
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Fig. 5. Projected generation of dried distillers grains with solubles (DDGS) under Scenario C.

Simulation results

When constructing simulations, it is crucial to
account for potential variations in numerical
quantities and conversion factors, because these
impact resulting calculated values. Literature
reports a broad range of corn-to-distillers grains
conversion, i.e., DDGS, rates from 0.282 to 0.323
kg DDGS/kg corn, as well as corn-to-carbon dioxide
conversion, i.e., CCDC rates from 0.287 to 0.329
kg CO2/kg corn (Dien et al. 2003, Kim and Dale
2002, Lyons 2003, Shapouri et al. 1995, Tibelius
1996). These variations substantially affect the
quantity of predicted byproducts that are determined
by the computer model. Moreover, at individual
manufacturing plants, variations in raw material
inputs, equipment used, and operational procedures
result in conversion rates that do not match values
found in literature, but instead vary stochastically
over both time and location. However, much of this
information is proprietary and is not available in the
literature. The computer model had to accommodate

these variations, which thus led to differences in the
calculated generation rates of the byproduct
streams. Potential variations can most simply be
accounted for by providing a range of potential
conversion factors in the programming itself. In this
study, ± 5% of the calculated conversion values
were used to achieve this range.

Figure 4 predicts DDGS produced (± 5%) according
to the quantity of manufactured bioethanol if
Scenario B is realized; Fig. 5 depicts results for
Scenario C. Figure 6 illustrates the carbon dioxide
generated (± 5%) if Scenario B is realized; Fig. 7
depicts results for Scenario C. Not surprisingly,
production rates of the byproducts increase in
parallel with the quantity of bioethanol, as predicted
by Chan et al. (2004). Most notably, the construction
of this model has allowed specific quantities of
byproducts to be predicted over time.

Recently, research has begun to address process
modifications to reduce the amount of manufacturing
byproducts. These include Barnes (2003), Johnston
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Fig. 6. Projected generation of CO2 under Scenario B.

and Singh (2003), Murthy et al. (2004), Naidu and
Singh (2003), Singh et al. (2001b), Singh et al.
(2003), Singh et al. (2004), and Wahjudi et al.
(2000). Figures 4 through 7, therefore, also illustrate
production rates if these newer technologies can
achieve 25, 50, and 75% reductions. If these
modifications can be commercially implemented in
production facilities, drastic reductions in generated
byproducts could be realized. Thus, the success or
failure of technological innovation has the potential
for profound ecological ramifications as this
industry continues to grow.

Regardless of potential new technologies, the
overarching issue brought to light from these
simulation results is the substantial increase in both
distillers grains and carbon dioxide during the next
century. The increased supply of distillers grains
will affect the potential sales price vis-à-vis feed
demand, whereas allowable carbon dioxide
generation will be affected by greenhouse gas
emission constraints. Both of these issues could
severely affect the production economics of the

industry in the near future. If estimates of future
bioethanol production hold true, the current
unidirectional approach may not be sustainable;
thus, alternative avenues of use are necessary.

BYPRODUCT USE POSSIBILITIES

Currently, the bioethanol industry’s only outlet for
the nonfermentable residues from the manufacturing
process is livestock feeds. This approach is well
established, but must be augmented if it is to retain
its high-value returns because the generated
quantities increase over time. Other novel uses such
as human foods and industrial products should also
be pursued.
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Fig. 7. Projected generation of CO2 under Scenario C.

Feed uses

Feeding dried distillers grains with solubles
(DDGS) to animals is a viable method for the use
of nonfermentable residues, because they contain
high nutrient levels. Over the years, numerous
studies have been conducted to optimize their use
in livestock feed rations. Aines et al. (1986) and UM
(2004) provide comprehensive reviews. Even so,
much work remains to improve and maximize the
use of these residues in animal feeds. Priorities
should include:

1. Densification via pelleting or cubing to
improve bulk density, storability, transportation,
and delivery;
 

2. Extrusion processing to produce value-added
feed products;
 

3.  Storability, shelf life, and preservation
assessment; and
 

4.  Feeding trials and acceptability testing.

Food uses

Studies have also examined the possibility of using
these streams in human food products. Some of the
most recent include Abbott et al. (1991),
Bookwalter et al. (1984), Brochetti et al. (1991),
Kim et al. (1989), Maga and van Everen (1989),
Rasco et al. (1990), van Everen et al. (1992), and
Wall et al. (1984). To date, however, no commercial
food products incorporate DDGS. In order for viable
products to be successfully manufactured,
additional research is needed. Studies essential to
this effort include: (1) Analysis of current DDGS
streams for food-grade applicability, especially
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nutritional contents and chemical levels, including
vitamins, minerals, nucleic acids, pigments, heavy
metals, and toxic compounds; and (2) Methods for
processing DDGS into food grade ingredients,
including:
 

1. Pretreatments such as separation and
concentration of proteins, fibers, lipids, or
other compounds;
 

2. Washing, cleaning, and quality upgrading;
 

3. Bleaching, deodorizing, and sterilizing;
 

4. Milling into corn flour;
 

5. Development of specific food products such
as bakery goods, noodles, pastas, or other low
carbohydrate, high protein, high fiber foods;
 

6. Storability, shelf life, and preservation
assessment; and
 

7. Sensory analysis and acceptability testing.
 

Industrial uses

Beyond these, little work to develop other value-
added applications has been undertaken. Initial
trials have been conducted investigating soil
amendments and fertilizers (Erdem and Ok 2002,
Ramana et al. 2002a,b), plastic composites (Julson
et al. 2004), and extracting industrial chemicals
(Kwiatkowski and Cheryan 2002, Singh and
Cheryah 1998, Singh et al. 2001a, 2002). Other
potential avenues do exist, and should be
investigated, including:
 

1. Fractionation into component-rich, i.e.,
protein, fiber, oil, streams;
 

2. Hydrolysis to release additional sugars for
fermentation;
 

3. Energy generation, including pyrolysis and
gasification;
 

4. Biodegradable plastic composites; and
 

5. Wood composites.
 

Carbon Dioxide Emissions

Very little work has investigated the capture and use
of carbon dioxide (Ginger 2004, Marland and
Turhollow 1991). As demand for bioethanol
increases, and more manufacturing plants are
constructed and expanded, it will become essential
to consider this issue, especially because the issue
of greenhouse gas emissions continues to gain
importance in environmental policies.

CONCLUSIONS

The bioethanol industry is poised to significantly
contribute to meeting rising energy demands in
coming years. Because this industry is not yet fully
mature, questions have arisen regarding the nature
of the industry itself. One concern is the quantity of
byproducts that will be generated; thus, considering
how these residues will ultimately be used is vital.
Simulation modeling provides a tool that can be
used to predict residue generation rates, and provide
a baseline that can be used for discussions regarding
use, as well as policy analyses for the bioethanol
industry as a whole. Examining potential generation
rates for the coming century underscores the
pressing need for research and development into
value-added uses for these materials if, given the
current level of technology, the bioethanol industry
is to remain cost competitive.

 

Responses to this article can be read online at:
http://www.ecologyandsociety.org/vol11/iss1/resp2/responses/
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