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ABSTRACT

The mathematics required for a detailed analysis of the behavior of a model can be formidable. In this paper, I 
demonstrate how various computer packages can aid qualitative analyses by implementing techniques from 
dynamical systems theory. Because computer software is used to obtain the results, the techniques can be used 
by nonmathematicians as well as mathematicians. In-depth analyses of complicated models that were previously 
very difficult to study can now be done. Because the paper is intended as an introduction to applying the 
techniques to ecological models, I have included an appendix describing some of the ideas and terminology. A 
second appendix shows how the techniques can be applied to a fairly simple predator-prey model and establishes 
the reliability of the computer software. The main body of the paper discusses a ratio-dependent model. The new 
techniques highlight some limitations of isocline analyses in this three-dimensional setting and show that the 
model is structurally unstable. Another appendix describes a larger model of a sheep-pasture-hyrax-lynx system. 
Dynamical systems techniques are compared with a traditional sensitivity analysis and are found to give more 
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information. As a result, an incomplete relationship in the model is highlighted. I also discuss the resilience of 
these models to both parameter and population perturbations. 

KEY WORDS: bifurcation; computer analysis; dynamical systems; ecological models; qualitative analysis; 
ratio-dependent model; XPPAUT. 

Caution: If your browser does not handle graphics, the mathematical models and all Greek characters will be 
unreadable in this online version. Please email the author to obtain a complete hard copy. 

1. INTRODUCTION

A fundamental aim of ecological models is to help us better understand ecological systems. If this aim is to be 
fulfilled, then we need to know the range of possible behavior that a model can exhibit, and which relationships or 
mechanisms give rise to this behavior. Although numerous mathematical techniques exist for analyzing systems of 
model equations, in practice, the application of these techniques to anything other than the very simplest models 
is often impossible, or at least sufficiently difficult that it is seldom done. The development of dynamical systems 
computer software has changed this situation. It is now possible for both mathematicians and nonmathematicians 
to study the behavior of complicated models and to obtain useful, practical information. This is illustrated in the 
remainder of the paper. 

Most parameter values in nature are not known with certainty (Hadamard 1952, Frank 1978). It is also well 
known that different parameter values in a model can give rise to very different dynamics, such as stable 
equilibrium behavior, oscillatory behavior, or a decline to extinction. However, finding parameter combinations 
that give rise to these different dynamics is often a matter of trial and error and involves numerous simulations. 
The dynamical systems software provides an easier and more systematic way to do this. 

In this paper, I substantiate this claim by using the software XPPAUT (Ermentrout 1994), which contains an 
interface to AUTO86 (Doedel 1981), to analyze three continuous ecological models of varying complexity. 
Appendix 5 contains a list of other packages that have capabilities similar to XPPAUT or AUTO86. In the main body 
of this paper, I consider only one of these models in detail. This model is a recent example from the controversial 
area of ratio-dependent modeling. It has three state variables that represent a plant, a herbivore, and a predator. 
In addition to highlighting some of the limitations of an isocline analysis in this three-dimensional setting, the 
analysis shows that the model is structurally unstable. Even small perturbations to the ratio-dependent terms 
alter the dynamics. 

Appendix 4 discusses the application of the software to a system dynamics model that has 10 state variables and 
a large number of parameters. Analytical work done by hand and isocline analyses are of little use in such 
situations. Traditionally, computers have been used to obtain numerical solutions corresponding to a fixed 
parameter set and to implement sensitivity analyses. In Appendix 4 , I show how dynamical systems techniques 
can be used to increase our understanding of the relationships between different components in the model. In 
particular, bifurcation diagrams give more information than sensitivity analyses. These diagrams also highlight an 
incomplete relationship in the model and lead to an improvement in the formulation of the equations. Thus, the 
packages can help us to formulate more plausible models. 

Because this paper is intended as an introduction to the application of dynamical systems techniques to ecological 
models, I include a number of appendices. Appendix 2 introduces some of the ideas and terminology and also 
provides a glossary of the terms used in the paper and appendices. Those readers unfamiliar with dynamical 
systems ideas may benefit from a quick reading of this appendix before continuing. A more comprehensive 
exposition, also specifically written for ecologists, can be found in Yodzis (1989). Another excellent introduction to 
nonlinear dynamics can be found in Strogatz (1994). Appendix 3 shows how the dynamical systems techniques 
can be applied to a fairly simple predator-prey model using XPPAUT. I show how I reproduced and improved on 
Bazykin's analytical results (Bazykin 1974) for the model. This appendix establishes some confidence in the 
reliability of the computer software. 
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I also discuss the topic of model resilience, a concept introduced by Holling (1973), to parameter and population 
perturbations. 

2. RATIO-DEPENDENT MODEL

Gutierrez et al. (1994) developed and analyzed a tritrophic model of a plant-herbivore-predator system. 
Currently, there is widespread debate over the validity of such ratio-dependent models (Appendix 1 summarizes 
the arguments). A numerical study of how such a model behaves under extreme conditions would test its validity. 
To do this, I introduce a small modification to the ratio-dependent model of Gutierrez et al. (1994) and study this 
modified model in conjunction with the original one. My analysis shows that the original model is structurally 
unstable, because a small perturbation to the ratio-dependent terms substantially alters the dynamics. 

I also claim that the technique used by Gutierrez et al. (1994) to study the model, namely isocline analysis (for 
technique and examples, see Edelstein-Keshet 1988), is unsuitable in this three-dimensional setting. This is 
discussed in detail in section 2.2.4. Although isocline analyses have been employed in many settings and with 
considerable success (Fitzhugh 1961, Rosenzweig and MacArthur 1963, Gilpin 1974, Hethcote 1976, Ludwig et al. 
1978, Fairen and Velarde 1979, Murray 1981), in more complicated, higher dimensional models for which the 
categorization of variables as slow vs. fast is not possible, their application is limited. (If the state variables in a 
model vary on different time scales, it is often possible to approximate the system by a two-dimensional model 
representing either the slow or the fast dynamics. An isocline analysis can then be done using the reduced 
system.) An isocline analysis allows two variables, at most, to vary simultaneously. This means that, for the 
current model, one variable is held fixed, resulting in a partly static representation of the dynamics. However, the 
dynamical systems techniques allow all three state variables to vary simultaneously, thus permitting a more 
accurate analysis. 

2.1 Model Equations

The basic model equations and a description of the parameters can be found in Appendix 1 . There are three 
equations describing the dynamics of a plant, a herbivore, and a predator. In Appendix 1 , I describe how I 
nondimensionalized the equations and introduced a small modification to the ratio-dependent terms. The resulting 
equations are as follows: 

   

In the next section, I compare results from the original model, (ai = 0) with those from the modified equations (ai 
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= 0.001). I chose this latter value for the ai's because it only affects the isocline configurations (see Appendix 1 ) 

at low values of the state variables, which is where the difficulties with the ratio-dependent model are 
encountered. I also investigate a few other values. 

2.2 Model analysis

2.2.1 One-parameter studies

Gutierrez et al. (1994) did a partial qualitative analysis of the original model, but used different techniques 
(namely, isocline analysis), so it will be informative to compare some of the results. I chose dimensionless 
parameters with this in mind (see Appendix 1 ). Because one of the main conclusions in Gutierrez et al. (1994) 
concerns the relative efficacy of two parasitoids in controlling the cassava mealybug population, I begin by 

studying two parameters that affect the third trophic level, namely  and . I then discuss some parameters 
affecting the herbivore. Only a few examples are included here. Results, together with possible biological 
interpretations, are described in the next section. 

2.2.2 Analysis of the predator parameters

The parameter  can be thought of as the potential predator biomass growth rate when prey are abundant, or as 
the predator's conversion efficiency in the presence of abundant prey. Note that the value of  does not affect 

the isoclines. The M3 zero isocline is given by , and the solution of this equation is independent of  

(see equations (1). Hence, an isocline analysis similar to that done in Gutierrez et al. (1994) would not give any 
insight into how this parameter influences the behavior of the system. 

Bifurcation diagrams showing the effects of varying  for both the original and the modified model are shown in 
Fig. 1 , with M1 plotted on the y-axis. These diagrams were obtained using AUTO through XPPAUT. In both Fig. 1 

diagrams, the position of the equilibrium point does not vary with , supporting the previous observation that  
does not affect the isocline configuration. However,  does affect the stability of the system. In both cases, the 
equilibrium point is unstable for very low values of  (low predator growth rate) and the stable attractor is a limit 
cycle for these values. The original model gives an example of hard loss of stability (see Appendix 2) so that, for 
certain values of , there are two stable attractors, a sink and a stable limit cycle (as in Fig. 11 ). The initial 
values of the state variables determine which final state is reached. Also, perturbations to the system may cause 
a rapid change from one stable attractor to the other if the disturbance is sufficiently large. For a very small range 
of  values near the Hopf bifurcation point HB in Fig. 1 a, there are two stable limit cycles. The range of values is 
so small, however, that it is not of much biological significance. 

FIGURE 1:     One-parameter bifurcation diagrams showing the effects of varying  for (a) the original 
model and (b) the modified model. The state variable  is plotted on the y-axes. 
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FIGURE 11:     Isoclines in the (a)  and (b)  planes for , , , 

, , , , , and . Both the 
stable equilibrium point and the limit cycle are shown. 

 

Analysis of the temporal dynamics of the system (using XPPAUT) for different values of  shows that larger 
values of  decrease the time taken to reach equilibrium. Increasing , the potential growth rate of the 
predator, has a stabilizing influence on the system. This seems biologically plausible, because higher values of  
suggest that the predator is better adapted to controlling its prey. Interestingly, this trait does not affect any of 
the equilibrium biomasses. The modified model has a much smaller range of parameter values over which cycles 
occur, and the amplitudes of these cycles are smaller than for the original model (see Fig. 1 ). Thus, even though 
the ai' s have small values, they appear to have a stabilizing influence on the dynamics. 

, the availability (or nutritional value) of the herbivore to the predator, also directly affects the predator. 
Bifurcation diagrams for the original and modified models, respectively, are shown in Fig. 2 and Fig. 3 . From 

these figures, it can be seen that as  increases, there is a general increase in the M1 equilibrium value, or limit 

cycle maximum. The larger , the greater the availability of the herbivore to the predator and the easier it is for 
the predator to control the herbivore. Obviously, the lower the herbivore population, the higher the plant 
equilibrium. As the M1 equilibrium value approaches the M1 carrying capacity in the original model, a Hopf 

bifurcation (see Appendix 2 ) occurs at  = 0.09 (see Fig. 2 ). The periodic orbit associated with this Hopf 
bifurcation undergoes a number of period-doubling bifurcations (see Appendix 2 ), which leads to more 

complicated cycling behavior. An example of the temporal dynamics when  is shown in Fig. 4 . The 
minima of the M2 and M3 cycles, in particular, get very small (on the order of 10-15, according to XPPAUT's data 

window). From a practical viewpoint, these populations would be considered extinct due to statistical variation, in 

which case the plant population would increase to its carrying capacity for these values of . This is exactly the 
case for the modified model (see Fig. 3 ). Thus, the upper Hopf bifurcation may be an artifact of ratio-dependent 
models. This will be discussed in more detail later. 
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FIGURE 2:     One-parameter bifurcation diagrams showing the effects of varying  on (a) , (b)  
and (c)  for the original model. 

 

FIGURE 3:     One-parameter bifurcation diagrams showing the effects of varying  on (a) , (b)  
and (c)  for the modified model. 
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FIGURE 4:     Time plots showing the behavior of (a) , (b)  and (c)  when  in the 
original model. Two complete cycles are shown in the figures. 
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These low minima also lead to numerical difficulties, resulting from the way in which the model is formulated, 

particularly the dependence of many of the terms on the ratio . These ratios become difficult to evaluate 
numerically as Mi approaches zero, causing the ratio to tend to infinity. XPPAUT fails to calculate zero isoclines, 

whereas AUTO often enters an infinite loop if such a situation arises and may crash. Setting a fairly low total 
number of steps for a continuation sometimes allows AUTO to break out of the loop and signal nonconvergence. 
Manually stopping a continuation when one of the state variables gets very close to zero also prevents the 

package from crashing. This explains why the limit cycles in Fig. 2 are only calculated up to . Such 
problems do not occur when using the modified model. 

 has a significant effect on the equilibrium values of the state variables. This is in agreement with Gutierrez et 
al. (1994), but the way in which they arrive at this conclusion is not entirely correct. Gutierrez et al. (1994) state 

that a less efficient parasitoid has a wider C-shaped M2-isocline. It is true that if  is decreased, the M2-isocline 

widens. However, this is provided that M3 is constant. If the system is integrated and M3 is allowed to vary until a 

new equilibrium is reached, and the isoclines are plotted with this new equilibrium M3 value, then the final M2-

isocline may, in fact, have a narrower C shape than before. 

This analysis has shown that the properties of the predator affect the stability of the system as well as the 
equilibrium magnitudes of the herbivore (directly) and the plant (indirectly). The extent of these effects depends 
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on the properties of both the plant and the herbivore. In the next section, a parameter affecting the herbivore is 
examined in more detail. 

2.2.3 Analysis of a herbivore parameter

Varying , the assimilation or conversion efficiency of the herbivore when plants are abundant, gives the 
bifurcation diagrams in Fig. 5 . Comparing Fig. 5 b with Fig. 3 a reveals that they are almost mirror images. If the 
mean of the cycle maxima and minima in Fig. 5 a and Fig. 2 a is taken, then these two figures are also almost 

mirror images. That is, decreasing  has a very similar effect to increasing . Both parameters can be thought 
of as affecting the resistance of the herbivore to the predator. Decreasing  causes a decline in the condition of 
the herbivore, because it cannot convert food as effectively. As a result, the detrimental effect of the predator on 

the herbivore is greater. Increasing , the availability (nutritional value) of the herbivore to the predator, 
achieves the same result but more directly. 

FIGURE 5:     One-parameter bifurcation diagrams showing the effects of varying  for (a) the original 
model and (b) the modified model. The state variable  is plotted on the y-axes. 

 

Two-parameter diagrams in ( , )-space can be generated by continuing the Hopf bifurcations in Fig. 5 in two 

parameters. The results are shown in Fig. 6 . These diagrams show clearly that decreasing  or increasing  
has a similar effect, since the Hopf bifurcation curves occur roughly along the diagonal that has one end at the 
origin. Part of this result could have been predicted from Gutierrez et al. (1994), because they note that it is the 

ratio of  and  that determines the nature of the herbivore isocline. This inverse relationship is thus expected. 
However, the one-parameter bifurcation diagrams give us the additional information that, for certain parameter 
ranges, limit cycles are possible. 

FIGURE 6:     Two-parameter bifurcation diagrams showing the effects of varying both  and  on the 
positions of the Hopf bifurcations in Figure 5. (a) and (b) correspond to the original and modified models 
respectively. The meaning of "less complex cycles" is made clear in Figure 8. 
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Some important observations can be made by comparing the Fig. 6 diagrams. First, AUTO could not calculate 
beyond the point denoted by MX in Fig. 6 a; this problem does not occur in Fig. 6 b. A closer investigation reveals 
that the equilibrium values for the state variables are close to zero in the upper left triangle of the two-parameter 
space, and this results in numerical problems when using the original model. Figure 6 b gives a more complete 
picture of the dynamics. There are two regions that correspond to stable cycles, whereas stable tritrophic 
equilibria occur in the other region. Low values of  give rise to high equilibrium values of M1 and high values of 

 give rise to low equilibrium values, an ecologically important distinction. A comparison of the two Fig. 6 
diagrams shows that the dynamics for the modified model, although very similar to those for the original model, 
are more stable in general. That is, the region corresponding to tritrophic equilibria is larger and the cycles in the 
upper half of the two-parameter space are less complex. These claims are made clearer in Fig. 7 and Fig. 8 . 

FIGURE 7:     Two-parameter bifurcation diagram of the Hopf bifurcation continuations in -space 

for the modified model with . 
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FIGURE 8:     Time plots corresponding to the points marked with *'s in figures 6(a), 6(b) and 7. (a) 

These plots were obtained using the original model with (i) ,  and (ii) , 

. (b) These plots were obtained using the modified model with  and 

,  and (ii) , . (c) These plots were obtained using the modified 

model with  and (i) ,  and (ii) , . 
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Figure 7 shows the ( , )-space for the modified model with ai =0.002 (i = 1,2,3). The region of stable 

equilibria is even larger than in Fig. 6 b, resulting in smaller regions of cycles. The presence of the ai 's seems to 

have a stabilizing effect on the dynamics of the system. Figure 8 shows time plots corresponding to points marked 
with *'s in the left-hand section of the upper region of cycles in Figs. 6 a, b, and Fig. 7 . The left-hand portion of 
this region is where the values of M2 and M3 are low and, hence, where the nonzero ai 's have most effect. 

Clearly, nonzero ai 's reduce the complexity of the cycles (even for very small values), and increasing their values 

also reduces the cycle amplitude. Additionally, the cycles for the original model (ai =0, i = 1,2,3) undergo long 

periods of extremely low values, which is unrealistic from an ecological viewpoint. 

2.2.4 The role played by the isocline configurations

From their isocline analysis, Gutierrez et al. (1994) concluded that the parasitoid Epidinocarsis lopezi could control 
the cassava mealybug, whereas E. diversicornis could not. However, with three state variables all having similar 
time scales, these deductions are not as straightforward as they may seem. First, the equilibrium isocline 
configuration in the M1M2(M2M3) phase plane depends on the value of M3(M1) as well as the parameter values. 

Thus, noting how an isocline changes as a parameter is varied does not give a complete picture. Second, it is 
impossible to tell from the qualitative structure of the isoclines which intersection point in the M1M2 plane 

corresponds to a tritrophic equilibrium. Figure 9 shows three possibilities. Two of these (Fig. 9 b and c) appear in 
Gutierrez et al. (1994), who assumed, incorrectly, that the equilibrium point in Fig. 9 b was unstable. 

FIGURE 9:     Examples of isocline configurations showing the different possibilities for the position of the 
tritrophic equilibrium. 
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Even if the exact position of the equilibrium point is known, it is impossible to tell, from the qualitative structure of 
the isoclines, whether this point is stable or unstable and whether or not limit cycles occur. For example, although 
altering the parameter  has no effect on the isoclines, low values of  give rise to unstable fixed points and 
stable limit cycles, and high values give rise to a stable equilibrium (see Fig. 1 ). Thus, numerical computation is 
needed to determine the exact location as well as the local stability of an equilibrium point for the current model. 

In general, it is the proximity of the tritrophic equilibrium point to the peaks of the M1 and M2 isoclines in the 

M1M2 and M2M3 planes, respectively, that is important for determining the robustness of model behavior with 

respect to parameter perturbations. If the equilibrium point is close to one of these peaks, then a small parameter 
perturbation may change the qualitative structure of the isoclines and, hence, the dynamics. However, to obtain 
this information, the exact equilibrium isocline configuration for a given set of parameter values needs to be 
known. 
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By inference, these criticisms have all noted that if the exact positions of the isoclines and the tritrophic 
equilibrium were known in both phase planes, then we could obtain a fair amount of information from them. Using 
XPPAUT, this is possible. In particular, the effects of introducing nonzero values for the ai's can be studied. Figure 

10 shows the results obtained using the reference parameter set for model 1 (Eq. A1.1) of Appendix 1 with ai = 0, 

ai = 0.001, and ai = 0.005 (i = 1, 2, 3). 

FIGURE 10:     Isocline configurations for (a) , (b)  and (c)  
together with the reference parameter set. 

 

A comparison of Fig. 10 a and b demonstrates that introducing the ai's prevents the M1 and M2 isoclines from 
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passing through the origin. Hence, the equilibrium values for the state variables do not approach zero as rapidly 
as for the original model, and the modified model is more robust to parameter variations in this region of low 
biomasses. Increasing the ai's from 0.001 to 0.005 reduces the humped shape of the M1 and M2 isoclines. The 

result is an even more robust model. In fact, when ai = 0.005 (i = 1, 2, 3), no regions of cycling behavior are 

encountered when the various parameters are altered. Because values of 0.005 are still small, this suggests that 
the model is structurally unstable and, hence, predictions from ratio-dependent models should be treated with 
caution. 

2.3 Discussion

The preceding analysis has shown how XPPAUT and AUTO can be used to study the effects of various parameters 
on the behavior of the ratio-dependent model of Gutierrez et al. (1994). Regions of stable equilibria, sustained 
oscillations, and multiple equilibria were located in this study. The limitations of an isocline analysis in this three-
dimensional setting were also discussed, thus supporting the need for new techniques such as the dynamical 
systems ones. 

The ease with which models may be studied using XPPAUT allowed the simultaneous study of the original model 
and a modified one. I concluded that the original model is structurally unstable, because a small perturbation to 
the ratio-dependent terms has a significant effect on the dynamics. This supports the argument that ratio-
dependent models exhibit pathological behavior and are not valid near the axes (see the background information 
for ratio-dependent models in Appendix 1 ). Thus, they cannot be used to study extinction or situations in which 
one of the state variables attains low values. However, the model by Gutierrez et al. (1994) that has been 
analyzed is a biological control model whose aim is to suggest what kind of predator can keep herbivore numbers 
low. 

This paper aims to show the usefulness of dynamical systems computer packages and to indicate the ease with 
which they may be used to gain insights into the behavior of a model and, thus, concentrates on these points. 
However, the arguments should not be taken out of context. My claim is not that the packages provide a 
comprehensive way in which to study ecological models. Instead, they should be seen as aids to be used in 
conjunction with other methods of analysis. Also, these packages do have their limitations. They can only be used 
to study systems of ordinary differential equations where all the functions are continuous (although simple step 
functions can often be approximated by continuous functions, as is done in Appendix 4 for the sheep-hyrax-lynx 
model). Other types of models require different methods of analysis. The packages also require an initial set of 
parameter values to be chosen. Thus, other techniques are required for theoretical studies that aim to find the 
exact parameter relationships giving rise to different types of behavior. However, numerical studies can be useful 
for indicating the relationships that do exist, and thus can provide direction for theoretical studies.

3. RESILIENCE

The concept of resilience of ecological models was introduced by Holling (1973), and is described by May (1981) 
as the magnitude of population perturbations a system will tolerate before collapsing into some qualitatively 
different dynamical regime. A slightly broader interpretation (Beddington et al. 1976), identifies resilience with the 
magnitude of the perturbation in any specific quantity that some property of a system can undergo before 
suffering qualitative changes. 

Wollkind et al. (1988) use the latter definition to examine the resilience of their model system for predator-prey 
mite interactions to changes in food quality of prey for conversion into predator births. This resilience depends on 
the range of parameter values that give rise to a certain type of qualitative behavior. The wider this range, the 
greater the systemØs resilience to perturbations of the relevant parameter, provided the parameter is not too 
near the range endpoints. 

Collings and Wollkind (1990) discuss the resilience of various stable phenomena in their model, which exhibits 
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metastability. In this case, the resilience is in terms of the magnitude of population (rather than parameter) 
perturbations that the system can withstand. If a stable phenomenon has a small domain of attraction (see 
Appendix 2), then small changes to the populations can lead to dramatic changes in system behavior. Such a 
system is not resilient. 

Both of these studies used bifurcation diagrams to obtain results. Thus, bifurcation diagrams can characterize the 
resilience of a model system to both parameter and population perturbations. In the sheep-hyrax-lynx model in 
Appendix 4, the stable equilibrium behavior predominates for wide ranges of the parameter values that were 
considered. Because there was only a single equilibrium point, the system is resilient to both population 
perturbations and perturbations in the sheep female culling normal (SFCN), provided SFCN is within the desirable 

range of values and the initial population values are reasonable. 

The ratio-dependent model is less resilient, in that parameter perturbations can push the system from stable 
equilibrium behavior into oscillatory behavior and vice versa. However, Fig. 6 shows that the regions of stable and 

oscillatory behavior in  space are fairly large. Hence, for parameter combinations that are well within 

these regions, the system is resilient to small perturbations in  and . 

4. CONCLUSION

This paper has shown how techniques from dynamical systems theory can help us to understand the behavior of 
ecological models. Previously, trial and error had to be used to locate parameter values that gave rise to different 
types of behavior, but we now have a more systematic approach. In addition, bifurcation diagrams provide a 
concise way of summarizing results. 

The results obtained were compared with those from traditional approaches. AUTO improved on some 
approximations that Bazykin (1974) made in his analytical study of a predator-prey model. In the sheep-hyrax-
lynx model (Swart and Hearne 1989), the bifurcation diagrams gave more information than a traditional 
sensitivity analysis. This highlighted a relationship that had been omitted from the model. Thus, the dynamical 
systems techniques can be helpful in constructing better models. 

For the ratio-dependent model (Gutierrez et al. 1994), XPPAUT allowed two variations of the model to be studied 
simultaneously. The resulting conclusion was that the original model is structurally unstable, due to its ratio-
dependent terms. The dynamical systems techniques also highlighted the limitations of an isocline analysis in a 
three-dimensional setting. 

In addition, the bifurcation diagrams can be used to characterize the resilience of models to both parameter and 
population perturbations. 

The most important point of this paper is that dynamical systems software was used to arrive at these 
conclusions. A complete understanding of the underlying mathematical techniques is not required to obtain useful 
information about the behavior of a model. The software also allows complicated models to be analyzed in greater 
depth than was previously possible. It is also possible to study discrete models, the topic of a second paper. 

None of the models in this paper has a seasonal component. Seasonality plays an important role in the dynamics 
of many natural systems; thus, studies of models that include such components would be of interest. A few such 
studies using dynamical systems techniques have been done (e.g., Rinaldi et al. 1993, Gragnani and Rinaldi 
1995), but the bifurcation structure is more complicated than that discussed in this paper and requires a 
continuation package that can handle higher codimension bifurcations, such as LOCBIF (Khibnik et al. 1993; see 
Appendix 5). Because this paper is intended to introduce the application of dynamical systems techniques to 
ecological models, I have not included one of these more complex examples.
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APPENDIX 1 
 

DETAILS FOR THE RATIO-DEPENDENT MODEL 

A1.1 Background 

Ratio-dependent models assume that the functional response terms depend on ratios of the state variables rather 
than on absolute values or products of variables, as is the case for classical models. Although not a new idea, the 
concept of ratio dependence in predator-prey interactions has been approached with fresh interest in ecological 
theory in recent years (Berryman 1992). 

One advantages of such models is that they prevent the paradoxes of enrichment and biological control predicted 
by classical models (Berryman 1992). Experimental observations of Arditi and Saïah (1992) suggest that prey-
dependent models are appropriate in homogeneous situations and ratio-dependent models are appropriate in 
heterogeneous situations. Based on their work, Ginzburg and Akçakaya (1992) and McCarthy et al. (1995) also 
conclude that natural systems are closer to ratio dependence than to prey-dependence. Gutierrez (1992) develops 
a physiological basis for the theory. 

Gleeson (1994), however, questions the assumptions of ratio-dependent models, noting that direct density 
dependence, or self-regulation, in the top consumer is sufficient to preclude the paradox of enrichment from 
classical models. From his work on whether patterns among trophic levels are a reliable way to distinguish 
between prey- and ratio dependence, Sarnelle (1994) concludes that the ratio-dependent approach should be 
applied only when predator and prey are the top two trophic levels in an ecosystem. Abrams (1994) argues that 
patterns and experimental results used in support of ratio-dependent predation are consistent with numerous 
other explanations, and that these other explanations do not suffer from pathological behaviors and a lack of 
plausible mechanism, as do ratio-dependent models. Lundberg and Fryxell (1995) note the difficulty of 
distinguishing between competing hypotheses without a proper mechanistic understanding of the processes 
involved. 

In a recent paper, Akçakaya et al. (1995) respond to some of these criticisms. The argument relevant to my 
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present paper concerns their refutation of the pathological behavior of ratio-dependent models. Freedman and 
Mathsen (1993) note that ratio-dependent models are invalid near the axes (that is, where the state variables are 
close to zero), because the ratios tend to infinity in these regions. As a result, even when prey (resource) 
densities are very low, ratio-dependent models predict a positive rate of predator (consumer) increase, provided 
that predator densities are low enough, because the number of prey available per predator increases to infinity as 
predator density declines to zero (Abrams 1994, Gleeson 1994). In terms of isoclines, the problem stems from the 
fact that the predator isocline passes through the origin in ratio-dependent models, which means that, even at low 
prey densities, a sufficiently small predator population can increase. According to Hanski (1991), this is against 
intuition and many field observations. It also means that ratio-dependent models cannot be used to study the 
extinction of species. 

However, Akçakaya et al. (1995) state that these problems near the axes are only pathological in a mathematical 
sense; in biological terms, both species would increase initially, and then predators would consume all the prey 
and both species would become extinct. Because prey-dependent models cannot predict this outcome, they are 
pathological in a biological sense. In the next section, however, I will show that ratio-dependent models do not 
necessarily predict this outcome either. I will describe a ratio-dependent model that predicts oscillations of large 
amplitude in these "pathological" regions (see Fig. 2 ). Although these large-amplitude oscillations may be 
interpreted as signaling extinction from a practical viewpoint, this is not the prediction of the ratio-dependent 
model. 

Akçakaya et al. (1995) state that:

A realistic model of prey-predator interactions should be able to predict the whole range of dynamics 
observed in such systems in nature. A ratio-dependent model can have stable equilibria, limit cycles, 
and the extinction of both species as a result of over exploitation.

However, a few sentences later, they agree that ratio-dependent models are not valid at very low densities (a 
precursor of extinction); earlier in the paper, they state that " it is at the extremes of low and high densities that 
strict ratio dependence may not be valid." 

In an attempt to clarify some of the arguments in this debate, I introduce a small modification to the ratio-
dependent model of Gutierrez et al. (1994) and study this modified model in conjunction with the original one. 
The analysis to follow shows that the original model is structurally unstable, because a small perturbation to the 
ratio-dependent terms substantially alters the dynamics. 

A1.2 Model equations 

The model equations are functionally homogeneous (i.e., all three equations contain the same basic terms), 
because the authors argue that the same generalized functional and numerical responses must describe the 
search, acquisition, and conversion of all organisms as they seek to satisfy their metabolic requirements. Details 
of the model formulation can be found in Gutierrez et al. (1994). The final equations are: 

http://www.ecologyandsociety.org/vol1/iss1/art5/ (22 of 48) [11/4/2008 10:19:23 AM]



Conservation Ecology: Automated Techniques for the Qualitative Analysis of Ecological Models - Continuous Models

  , 

where M1 is the biomass of plants, M2 is the biomass of herbivores, and M3 is the biomass of predators. The 

parameters  represent assimilation rates corrected for the efficiency of biomass conversion;  represents the 
proportion of the resource that is available to its consumers (that is, its apparency); Di is the per unit demand of 

the consumer for resources; ri is the base respiration rate corrected for the efficiency of biomass conversion; and 

bi is the degree of self-limitation. M0 represents a biomass equivalent of the light energy incident in the growing 

space of the plants, and  and  (which both lie between 0 and 1) scale the potential photosynthesis rate to 
the realized rate. 

The respiration term, riMi1 + bi, requires further explanation. Respiration usually increases with population density 

(Gutierrez et al. 1994) and, thus, should be an increasing function of Mi. However, introducing such a functional 

dependence increases the model's complexity. Because the effect is usually small, the authors chose the simpler 
formulation riMi1 + bi, where bi has a value between 0.02 and 0.05. The disadvantage of this choice is that ri 

must have rather unusual units (grams per bi per day, where grams are the units of Mi) that depend on bi. Thus, 

the term riMi1 + bi has the same units as  (namely, grams per day, where grams are the units of Mi). This 

dependence of the units on bi is not satisfactory from a mathematical viewpoint, but since bi is small, I chose to 

ignore this initially. In the next section, I discuss a small alteration to the model that takes care of the difficulty. 

Gutierrez et al. (1994) use parameter values corresponding to a cassava (Manihotesculenta Crantz)-mealybug 
(Phenacoccuss manihoti Mat.-Ferr.)-parasitoid system in Africa. They claim that their analysis demonstrates that 
the parasitoid Epidinocarsis lopezi (De Santis) can control the mealybug (except on poor soils), whereas E. 
diversicornis (Howard) and native natural enemies cannot. However, the parameter values for the cassava-

mealybug-parasitoid system given to me by the authors (only values for  are reported in the paper) did 
not yield the isocline configurations or the behavior that they described. I then scaled the equations to get a 
better idea of the relative magnitudes of the parameters. The procedure involved is discussed in the next section. 

A1.3 Nondimensionalization 

The technique of nondimensionalizing, or scaling, is commonly used to simplify a system of equations because it 
has many other advantages. It illuminates which parameters are most important in determining the dynamics of 
the model (Edelstein-Keshet 1988) and gives insight into the relative magnitudes of the parameters required to 
produce biologically reasonable behavior. Also, the state variables are scaled so that they all have the same order 
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of magnitude, say between 0 and 1. This is important when solving the equations numerically, as very different 
magnitudes can lead to computer round-off errors (Gerald and Wheatley 1989). In the cassava-mealybug-
parasitoid system, the biomass of cassava is much larger than that of the mealybug and the parasitoid (cassava 
mass averages ~ 2 kg, whereas the mealybug and parasitoids have average masses of ~ 2 mg). Scaling, at least, 
is thus vital. (For an introduction to nondimensionalizing systems of ordinary differential equations, see Edelstein-
Keshet 1988.) 

Natural scalings for the state variables are given by their carrying capacities when resources are abundant. 
Gutierrez et al. (1994) calculate these to be 

 

Replacing Mi by  (i=1,2,3) , and t by  (here Ki has the dimensions of Mi and  the dimensions of t; 

hence,  (i =1,2,3) and t* are dimensionless variables) and choosing the dimensionless combinations of 
parameters 

, 

where K0 = M0 gives the nondimensionalized Eqs. A1.2, where I have replaced  by Mi and t* by t for 

convenience: 

  

 

(I replaced the product  by , because all three parameters have the same effect on the dynamics 
and, thus, do not need to be considered separately.) 

The choice of dimensionless parameters is not unique. Other combinations would have led to slightly different final 
equations, but the choices here lend themselves to biological interpretation. For example,  can be thought of as 
the potential per unit biomass growth rate (Gutierrez et al. 1994), or as the conversion efficiency of the consumer 

in converting the resource into biomass.  can be thought of as the availability of the resource to the consumer, 

or perhaps the nutritional value of the resource.  is made up of a ratio of quantities. The numerator can be 
thought of as the maximum amount of resource available to the consumer, and the denominator as the maximum 
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demand of consumers for resource. More simply,  gives a measure of the ratio of supply to demand. Results in 

Gutierrez et al. (1994) are based on the relationship between  and , since  is just a scaling factor. Hence, 
results using Eqs. A1.2 are comparable with those in Gutierrez et al. (1994). 

I mentioned earlier that the parameters ri in the original model have units that depend on bi. This can be 

prevented by replacing the terms riMi1 + bi with terms of the form , where Ti has the same units as Mi. 

Ti can be thought of as a threshold value above which self-limitation becomes noticeable. With this modification, 

the units of ri are per day, and ri can be interpreted as a respiration rate, as was originally intended. The new 

carrying capacities are given by 

 

It can be shown that setting the Ki 's equal to these new values and scaling the equations as above results in 

system (A1.2) once again. Thus, the problems with the respiration term can be ignored in the remainder of the 
paper. 

Having scaled the equations, I needed to choose values for the parameters. An advantage of scaling is that there 
are now 11 parameters instead of the original 18. For comparison with the results of Gutierrez et al. (1994), I 
wanted to find values that resulted in isocline configurations similar to those in their paper. XPPAUT calculates and 
displays isoclines in two dimensions, and parameter values can be altered interactively. Since the competition 
effect is very small, but difficult to quantify, I followed A. Gutierrez (personal communication) and chose Bi = 0.02 

(i = 1,2,3). Values of , , , , , , , 

 gave the isocline configurations shown in Fig. 11 . These isoclines have similar shapes to those in 
Gutierrez et al. (1994). A noticeable difference is that the M3 -isocline intersects the M2 -isocline to the left of the 

M2 -peak. In fact, using the techniques in Gutierrez et al. (1994), it would have been impossible to conclude that 

the tritrophic equilibrium is stable for the isocline configuration shown in Fig. 11, because of the position of the 
intersection point in the plane. For this parameter set (which I shall call the reference set), there is also a stable 
limit cycle. The initial values of M1,M2 and M3 determine whether the system approaches the stable equilibrium 

or the limit cycle. 

Biological considerations suggest that these values for the  are rather high and that the value for  is rather 
low. However, in the absence of better information and since this parameter set has a nontrivial, stable 
equilibrium point, it is a convenient starting point. 

Before beginning an analysis of the model, I will introduce a small modification to the equations. Because the 
problems associated with ratio-dependent models described in section A1.1 involve low population densities, it 
would be interesting to know what effects a small modification to the model, which prevents the denominators of 
the ratios from getting too close to zero, would have on the dynamics. Abrams (1994) states that modifications to 
ratio-dependent models cannot be made biologically realistic because the original models have no clear 
mechanistic derivation. However, some form of modification that prevents the ratios from tending to infinity may 
be useful for revealing any spurious behavior near the axes that may result from the ratio dependence. 

The ratios in model (A1.2) have the form 

. 
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The difficulties are experienced when Mi approaches zero. Adding a constant in the denominator, that is, replacing 

the ratio by 

   

would alleviate the problem. Although this addition may appear difficult to justify biologically, Gutierrez (1992) 
used an exponent of this form in his functional response term. That model is physiologically based, as is the 
present one. 

In model A.1.2 ], the ratio-dependent terms have the form 

  , 

where k is a parameter or combination of parameters. When the exponent is small, we have 

. 

In order to preserve this property when using the modified term (Eq. A1.3 ), I replaced Eq. A1.4 by 

, 

where ai is a small constant, say 0.001. The resulting equations are: 

  . 

If ai = 0 (i = 1, 2, 3) , then the above model is equivalent to system (A1.2). 
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APPENDIX 2 
 

DYNAMICAL SYSTEMS BASICS 

A2.1 Glossary of dynamical systems terminology 

This appendix lists alphabetically those topics that are required in the main body of the paper and in the 
appendices. Brief descriptions are given and diagrams are used to explain the concepts as simply and intuitively 
as possible. A more comprehensive introduction to dynamical systems theory can be found in most introductory 
dynamical systems texts (e.g., Guckenheimer and Holmes 1983, Seydel 1988). Yodzis (1989) explains the theory 
using ecological examples, and Strogatz (1994) gives an informal introduction to nonlinear dynamics, with an 
emphasis on geometric intuition and scientific applications. 

A2.1.1 Bifurcation diagram 

A one-parameter bifurcation diagram summarizes the qualitative behavior corresponding to different values of a 
parameter. A state variable, or some function of the state variables, is usually plotted on the y -axis and the 
parameter on the x -axis. The positions and local stabilities of equilibrium points, as well as periodic orbits, are 
indicated using different line types. Solid curves are used to represent locally stable equilibria and dotted curves 
are used for locally unstable equilibria. Maxima and minima of periodic orbits are indicated using circles: solid for 
stable orbits and open for unstable orbits. 

It is important to note that bifurcation diagrams summarize the behavior associated with a range of parameter 
values. They do not represent the dynamics corresponding to a continually varying parameter (Wiggins 1990). To 
read a bifurcation diagram, fix the parameter at a particular value and mentally draw a vertical line at that value. 
Each crossing of this line with a curve in the diagram corresponds to an equilibrium point or a periodic orbit (limit 
cycle). The local stability properties of a particular phenomenon are given by the type of curve: solid, dotted, or 
open or closed circles. For example, the phase portraits in Fig. 14b (i) and (ii) were obtained by mentally drawing 
vertical lines at the parameter values µ = µ1 and µ = µ2, respectively, in Fig. 14a. 

FIGURE 14:     (a) A bifurcation diagram of a transcritical bifurcation, (b)(i) a phase portrait corresponding to  and (b)(ii) a 
phase portrait corresponding to . The stabilities of the two equilibrium points interchange for parameter values on either side 
of the bifurcation point. 
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A two-parameter bifurcation diagram shows how the positions of bifurcation points change as two parameters are 
varied. For example, if a bifurcation point is encountered in a one-parameter bifurcation diagram, a second 
parameter may be varied to see how it affects the position of the bifurcation point. An example is shown in Fig. 
19. 

FIGURE 19:     Two-parameter bifurcation diagram of -parameter space for , ,  and . 
The regions (i), (ii) and (iii) correspond to those in Figure 16. 

 

FIGURE 16:     Bazykin's two-parameter bifurcation diagram of -parameter space. 
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A2.1.2 Bifurcation point 

A bifurcation point is a point in parameter space at which the qualitative behavior of the system changes. A stable 
equilibrium may become unstable at this point, or there may be a change from a stable equilibrium to oscillatory 
behavior. Examples can be found in sections A2.1.6, A2.1.8, A2.1.11, and A2.1.19. 

A2.1.3 Continuation branch 

A solution branch, or continuation branch, is a curve of equilibrium points (or limit cycles or bifurcation points) 
that indicates how the position and properties of the equilibrium point (or limit cycle or bifurcation point) change 
as a parameter (or parameters) is altered. Together, a number of these branches make up a bifurcation diagram. 

A2.1.4 Domain of attraction 

Suppose the system in which we are interested has a stable equilibrium point (see section A2.1.9). Then the 
collection of all initial state variable values from which the system tends toward this equilibrium, as time 
progresses, is the domain (or basin) of attraction of the equilibrium point. The equilibrium point is called an 
"attractor." Any stable phenomenon, such as a stable limit cycle, also has a domain of attraction and is referred to 
as an attractor. 

A2.1.5 Hard loss of stability 

In the case of a Hopf bifurcation, this occurs when there is a rapid change from stable equilibrium behavior to 
stable limit cycles of large amplitude. This results from a subcritical Hopf bifurcation in which the unstable orbit 
reaches a limit point and turns around to stabilize. An example is shown in Fig. 12. When the parameter µ is 
increased beyond the Hopf bifurcation at µ*, the system rapidly changes to limit cycles of large amplitude instead 
of starting off with small limit cycles that grow in size as µ increases, as shown in Fig.15 . Also, as µ is decreased,
there is a jump from large-amplitude cycles to a zero-amplitude equilibrium point, but this takes place at µ1, 

which is less than µ*. For µ1 < µ < µ*, there are two stable attractors, an equilibrium point and a limit cycle. 

Examples of hard loss of stability arise in the analysis of the ratio-dependent model. 
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FIGURE 12:     Hard loss of stability (adapted from Seydel (1988), p.74). This phenomenon gives rise to sudden changes between stable 
equilibrium behavior and limit cycles of large amplitude. 

 

A2.1.6 Hopf bifurcation 

A Hopf bifurcation (also known as a Poincaré-Andronov-Hopf bifurcation; Arnold 1983, Wiggins 1990) is a 
bifurcation point at which an equilibrium point alters stability and a limit cycle (period orbit) is initiated. The 
example in Fig. 15 has a stable limit cycle surrounding an unstable equilibrium point. It is also possible to have an 
unstable limit cycle encircling a locally stable equilibrium point. Unstable periodic orbits are indicated by open 
rather than solid circles. 

FIGURE 15:     Diagram showing the dynamics corresponding to a range of parameter values surrounding a Hopf bifurcation at . 

 

A2.1.7 Limit cycle 

(See periodic orbit, section A2.12) 

A2.1.8 Limit point 
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A limit point or saddle-node bifurcation occurs when there are two equilibrium points on one side of the bifurcation 
point, but none on the other side. Figure 13a shows an example of a bifurcation diagram of a limit point (LP). For 
µ < µ*, there are no equilibrium points at which both populations are nonzero. µ* is thus the limiting value of µ 
for which equilibrium points exist; hence, the name limit point. A possible phase portrait in two dimensions for µ 
> µ* is shown in Fig. 13b for the particular value µ = µ1. A is a locally stable equilibrium point and B is a saddle 

point. The initial values of x1 and x2 determine the subsequent behavior of the system. If the initial point is in the 

domain of attraction of A (to the right of point B in Fig. 13b), then the system will approach A. However, if the 
initial point lies on the other side of B, it will be repelled away from B in the opposite direction to A. Notice how 
the size of the domain of attraction of A, in terms of the state variable x1, decreases as µ decreases towards µ* 

(see Fig. 13a). 

FIGURE 13:     (a) Bifurcation diagram showing a limit point (LP) and (b) a phase portrait corresponding to . For  
there are no equilibrium points at which both populations are nonzero. 

 

A2.1.9 Local stability 

Suppose the system in which we are interested is disturbed slightly from its equilibrium point. For example, a 
week of warmer weather may cause an insect's growth rate to increase slightly. If, after the disturbance is 
removed, the system returns to its original equilibrium, then the equilibrium point is said to be locally stable and 
is called an "attractor." Otherwise, it is said to be unstable and is a "repeller." Locally stable equilibrium points are 
called sinks and locally unstable ones are called saddle points or sources. 

A2.1.10 Parameter 

A parameter is a quantity, e.g., fecundity rate or predation rate, that is used in describing the dynamics of a state 
variable. Although a state variable evolves with time, a parameter is kept constant as time progresses. In this 
paper, parameter values are varied across ranges of values to see how they affect the qualitative behavior of the 
state variables. For example, increasing the fecundity rate of a population that is at equilibrium may cause the 
population to start oscillating. 

A2.1.11 Period-doubling bifurcation 

A period-doubling bifurcation occurs when a limit cycle or periodic orbit undergoes a bifurcation and there is an 
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exchange of stability to orbits having double the period. See Seydel (1988) for a detailed explanation. 

A2.1.12 Periodic orbit 

The terminology periodic orbit is used to describe a state variable (e.g., population density) that is oscillating in a 
regular, repetitive manner. For continuous models having dimension of at least two, such an orbit is also called a 
limit cycle, provided that the orbit is isolated (that is, trajectories starting at points near the orbit spiral either 
toward or away from the cycle; Strogatz 1994). 

A2.1.13 Phase portrait 

Suppose our system is continuous and has two state variables, say a prey (x1) and a predator (x2). We can 

represent the behavior over time of both populations in a single diagram called a phase portrait. Examples are 
shown in Figs. 13b and 14b . An illustration of the relationship between time plots and phase portraits can be 
found in Holling (1973: 3). 

A2.1.14 Saddle point 

A saddle point is an equilibrium point that attracts in certain directions and repels in others. Such an equilibrium 
point has unstable and stable manifolds. Initial points lying on these manifolds are repelled from, or attracted 
toward, the equilibrium point, respectively. Other initial points first may be attracted and then repelled (see 
Edelstein-Keshet 1988). 

A2.1.15 Sink 

A sink is a locally stable equilibrium point and may be either a stable node or a spiral attractor. In the case of a 
spiral attractor, the state variables oscillate with decreasing amplitude as they approach the equilibrium point. 

A2.1.16 Soft loss of stability 

This occurs at a Hopf bifurcation when there is a continuous change from stable equilibrium behavior to limit 
cycles of small amplitude. The amplitude of these cycles increases gradually for parameter values further from the 
Hopf bifurcation. Figure 15 gives an example of soft loss of stability. See also section A2.1.5. 

A2.1.17 Source 

A source is an equilibrium point that is locally unstable. Any disturbance to the system will cause the state 
variables to move away from this point. In the case of a spiral repeller, this repulsion may be oscillatory. 
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A2.1.18 State variable 

Suppose we are interested in a system consisting of plants, herbivores, and predators. Then the"state" of the 
system can be described by the relative biomasses or densities of these populations. The variables that are used 
in a mathematical model of the system to represent these biomasses or densities are called state variables. 

A2.1.19 Transcritical bifurcation 

At a transcritical bifurcation point, two equilibrium points coincide and exchange stabilities. An example is shown 
in Fig. 14. There are two equilibrium points, A and B, at each value of the parameter µ. A is stable for µ < µ* 
and a saddle point for µ > µ*. The situation is reversed for B. Figures 14b(i) and (ii) show possible phase 
portraits in two dimensions for µ = µ1 and µ = µ2. Note that the bifurcation diagram in Fig. 14a only indicates 

the positions of the equilibrium points in terms of one of the state variables, x1. 

A2.2 Introduction to dynamical systems concepts 

In this paper, I am more interested in obtaining qualitative than quantitative information about model behavior. 
That is, I am more interested in finding out how varying a parameter value affects the modes of behavior of a 
model, rather than finding the exact parameter values at which these changes occur. Berlinski (1976) notes that 
qualitative insights are at a much greater depth than partially quantitative results. Because of the uncertainty 
associated with parameter values in nature (Hadamard 1952, Frank 1978, Swart 1987), and because models are 
necessarily simplifications of reality, the exact quantitative predictions of a model have little significance. It is the 
type or mode of behavior that is most important. 

Qualitative analyses are concerned mainly with long-term rather than transient behavior. Transient dynamics vary 
with the initial values of variables and the time period over which solutions are calculated, whereas qualitative 
studies deal with the eventual behavior of the system once the initial transients have died away. 

There are many different modes of behavior that characterize the long-term dynamics of a model. Suppose that 
the modelØs state variables represent interacting populations. In the long term, any given population may 
become extinct, reach a stable equilibrium, or oscillate in time. Another mathematical possibility is that a 
population may grow indefinitely, although this is not biologically plausible except for short time periods. As one 
or more parameters are varied, it is possible to change from one mode of behavior to another. 

Consider the following two-dimensional model due to Bazykin (1974): 

 

Here, x represents prey density and y predator density. The term ax describes the exponential growth of the prey 
population in the absence of predators, and  takes into account intraspecific competition among prey. In 
the absence of the predator, the prey population experiences logistic growth. The term - cy describes the 
exponential decline in the predator population in the absence of prey. The Holling type-II functions (Holling 1965) 

 and  describe the interaction between the two populations. 

If intraspecific competition in the prey population is sufficiently intense (i.e.,  is sufficiently large), then the prey 
population reaches a stable equilibrium. However, the equilibrium value is too low to support the predator 
population and this forces the predator into extinction. 
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If  is decreased, thus reducing competition among prey, then the predator-prey interaction becomes relatively 
more important and both populations reach stable equilibria. 

If  is decreased further, the dynamics become more complicated. Instead of reaching a stable equilibrium, the 
two populations oscillate in time in a sustained manner. This is known as stable limit cycle behavior. For any 
positive initial values, the predator and prey populations oscillate, with the amplitudes of the oscillations 
increasing or decreasing until the regular oscillatory pattern corresponding to the limit cycle is reached. 

The exact values of  at which the previously mentioned changes in qualitative behavior occur are known as 
bifurcation points. In particular, the transition between equilibrium behavior and limit cycle behavior is known as a 
Hopf bifurcation (at least in this case; limit cycles can also be generated in other ways). 

Figure 15 is an example of a one-parameter bifurcation diagram. These diagrams summarize the phase portraits 
corresponding to different (fixed) values of a parameter, showing how the qualitative behavior of a system of 
equations changes as a parameter is varied across a range of values. The parameter in question is plotted on the 
x -axis and one of the state variables (in this case, x) is plotted on the y -axis. Solid lines represent stable 
equilibria, dotted lines represent unstable equilibria, and solid circles indicate the maxima and minima of stable 
limit cycles. In order to interpret a bifurcation diagram, imagine the phase portraits corresponding to different 
values of the parameter. This is done by choosing a particular value of the parameter and mentally drawing a 
vertical line at that value. The points at which this line crosses the curves in the bifurcation diagram will indicate 
the points (in terms of the quantity on the y -axis) at which equilibria or limit cycles occur, as well as the stability 
of these phenomena. This information can be used to construct a possible phase portrait. 

From Fig. 15, we can see that for  x reaches a stable equilibrium from any initial value, as indicated by the 

arrows. But for  the equilibrium is unstable and the system is attracted instead toward the stable limit 
cycle. The maxima and minima of the limit cycle (with respect to x) are indicated by the solid circles. Notice that 
the amplitude of the limit cycle oscillations increases as  decreases. 

Whereas phase portraits and time plots represent the dynamics of the system for a fixed set of parameter values, 
bifurcation diagrams summarize the dynamics for a whole range of parameter values. They show where stable 
equilibria or limit cycles can be expected, and can also indicate whether multiple stable states are possible at a 
given parameter value, or whether extinction can be expected. Thus, bifurcation diagrams provide more concise 
and complete information than other graphical methods (Collings et al. 1990). Each parameter can be varied in 
turn to see what effect it has on the dynamics. Hence, instead of using trial and error to locate the parameter 
combinations giving rise to oscillations or other behavior, we now have a more systematic method. 

A drawback of the dynamical systems approach is that the mathematics required to obtain a bifurcation diagram 
can be quite formidable, especially when large models are involved. Fortunately, in recent years, many computer 
packages have become available to simplify the task. I used XPPAUT (Ermentrout 1994) and DSTOOL (Back et al. 
1992) to obtain the results in this paper. XPPAUT has a graphical interface for the continuation and bifurcation 
package AUTO86 (Doedel 1981). I shall refer to AUTO rather than XPPAUT when making use of this interface. In 
Appendix 3, I demonstrate how these packages can be used and illustrate the reliability of AUTO's routines by 
reproducing and, in fact, improving upon the results that Bazykin obtained by hand for his model (Eq. A2.1). 

APPENDIX 3 
 

USING XPPAUT TO STUDY BAZYKIN'S PREDATOR-PREY MODEL 

Bazykin's results (1974) for the predator-prey model 
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(see Appendix 2) are summarized in the two-parameter bifurcation diagram in Fig. 16. This figure shows three 

regions in -parameter space, each corresponding to a different form of qualitative behavior. In region (i), 
there is a spiral attractor (say A) at which both x and y are nonzero, as well as a saddle point (say B) on the x -
axis to the right of A. In region (ii), A is an unstable source surrounded by a stable limit cycle and B is still a 
saddle point on the x -axis. In region (iii), B is now the attractor and A is a saddle point, but A has moved into the 
fourth quadrant. 

Since A and B exchange stability in crossing from regions (i) and (ii) to region (iii), we expect a transcritical 
bifurcation to occur as the line with negative slope in Fig. 16 is crossed from regions (i) and (ii) into region (iii). In 
crossing from region (i) to region (ii), point A changes from stable to unstable and a limit cycle is initiated. Thus, 
we expect a curve of Hopf bifurcations to divide these regions. 

I used XPPAUT to reproduce Bazykin's results. (A comprehensive, interactive tutorial on how to use XPPAUT is 
available on the World Wide Web at the address 

ftp://mthbard.math.pitt.edu/pub/bardware/xpptut/start.html. 

The tutorial can also be obtained via anonymous ftp from ftp.math.pitt.edu in the directory pub/bardware). The 
required driving program containing the model equations and parameter values is shown at the end of this 
appendix A3.1. As can be seen, it is very straightforward. In order to use AUTO to create a bifurcation diagram, 
we need a starting point that must be an equilibrium point. By choosing values of 0.3 for  and 0.1 for , we can 
either determine such a point analytically (as Bazykin did), or we can use XPPAUT to perform the task 
numerically. 

I then used AUTO to vary . AUTO locates a transcritical bifurcation (see Appendix 2) at  and a Hopf 

bifurcation at , together with stable limit cycles (see Fig. 17). Since  is fixed in Fig. 17, this one-
parameter diagram describes the dynamics along a horizontal line at, say,  in Fig. 16. 

FIGURE 17:     One-parameter bifurcation diagram obtained by varying  in Bazykin's model with , , , 

 and . The labels A and B mark the continuation branches corresponding to the equilibrium points, HB stands for 
Hopf bifurcation and BP for bifurcation point (transcritical in this case). 

 

In Fig. 17, I have labeled the continuation branches A and B to indicate which equilibrium point corresponds to 
which branch (see Appendix 2 for a description of a continuation branch). Notice that the x -coordinate of A does 
not vary with , but the x -coordinate of B does. The analytical forms of the equilibrium points, which are given by 
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These are obtained by setting the right-hand sides in the predator-prey equations (see Eqs. A2.1) equal to zero 
and solving for x and y. As expected,  does not appear in the x -coordinate for A, but does appear in that for B. 

In the range , point A is unstable and B is a saddle point (see Appendix 2). There is also a stable 

limit cycle surrounding A. Hence, these values of  correspond to region (ii) in Fig. 16. For , 
A is a stable equilibrium point and B is again a saddle point. This configuration corresponds to region (i) in Fig. 16. 

For , B is now stable and A is a saddle point, but the numerical output from AUTO shows that the y -
coordinate for A is negative for these values of . This corresponds to region (iii) in Fig. 16. 

AUTO can be used to continue the Hopf bifurcation at  in  as well as , resulting in a two-parameter 
bifurcation diagram. This is shown in Fig. 18. 

FIGURE 18:     Two-parameter continuation of the Hopf bifurcation shown in Figure 17. 

 

Note that the curve of Hopf bifurcations is very different from Bazykin's straight line in Fig. 16. I will return to this 
point shortly. A second observation is that, for the given values of a, b, c, and d , a Hopf bifurcation (and hence 
limit cycle behavior) is only possible if  and , which is a fairly small region of parameter 
space and, hence, probably not of much biological significance. (AUTO slows down considerably as  increases 
toward 0.5 and  tends to 0 and never actually reaches this point, although the curve does get very close if AUTO 
is left to run for a sufficiently long time period. It can be verified analytically that the curve does pass through 
(0,0.5). However, complex behavioral changes occur at this point, which is why AUTO has computational 
difficulties.) 

It is not possible to continue transcritical bifurcations in two parameters using AUTO, as they are structurally 
unstable unless the system possesses intrinsic symmetry. However, if  is fixed at a number of different values 
and one-parameter bifurcation diagrams similar to Fig. 17 are created by varying  in each case, then the values 
corresponding to transcritical bifurcations can be recorded. An approximation to the two-parameter curve can 
then be drawn through these points. Figure 19 shows the resulting curve, together with the Hopf bifurcation 
continuation. 

Bazykin's model is simple enough that the curves in Fig. 19 can be determined analytically, although the algebraic 
manipulations are rather tedious. It can be shown that transcritical bifurcations occur along the straight line 
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, 

and Hopf bifurcations occur along the curve 

 

(A description of the methods involved in calculating these curves can be found in Guckenheimer and Holmes 
(1983) or Wiggins (1990). I used MAPLE (Waterloo Maple Software 1990-1992) for some of the algebraic 
manipulations. I have only included these expressions here to show the accuracy of AUTO's results. The 
availability of packages such as AUTO precludes the need for the reader to perform such mathematical 
manipulations.) These are exactly the curves shown in Fig. 19. Hence, AUTO's results are more accurate than 
Bazykin's linear approximation (Fig. 16) for the Hopf bifurcation curve. The new regions (i), (ii), and (iii) are 
shown in Fig. 19. XPPAUT or DSTOOL can be used to obtain phase portraits and time plots corresponding to 
different parameter combinations in Fig. 19. Due to space considerations, I have not included any such diagrams 
here. Time plots are useful for indicating the speed with which the stable equilibrium or limit cycle is attained and 
the period of the limit cycle, if applicable. If a system takes a long time to approach an attractor, then the 
transient dynamics may be of greater practical importance than the long-term behavior. 

This section has shown how to rederive Bazykin's work (1974) on the system of Eqs. A2. more accurately and 
without having to completely understand the mathematical techniques involved. It has also established some 
confidence in AUTO's results. 

3.1 Computer listing for Bazykin model 

  

# Model equations. 
dx/dt=a*x-b*x*y/(1+alp*x)-eps*x*x 
dy/dt=-c*y+d*x*y/(1+alp*x) 

# Initial values. 
x(0)=0.2 
y(0)=0.2 

# Parameters and nominal values. 
param a=0.6,b=0.3,c=0.4,d=0.2,alp=0.3,eps=0.001 
done 

APPENDIX 4 
 

ANALYSIS OF A SHEEP-HYRAX-LYNX MODEL 

A4.1 Introduction 

This model is an example of a system dynamics model and has four main components: sheep, hyrax (Procavia 
capensis Pallus), lynx (Felis caracal Schreber), and pasture. In section A4.2, I discuss traditional methods that 
have been used to solve and analyze such models. In section A4.3, I give some background and a few technical 
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details needed to use XPPAUT for analyzing the dynamics. Section A4.5 contains the model analysis. I begin by 
studying the effects of various parameters and density-dependent functions on the behavior of the model. This 
analysis shows the limitations of a traditional sensitivity analysis and highlights dynamics that are biologically 
implausible, namely that pasture growth is unlimited when sheep densities are low. A modification to the pasture 
growth term is discussed in section A4.5.4. The quantity of most interest to farmers is revenue. A two-parameter 
study of the effects of culling rates on farmers' revenue completes the analysis. This is followed by section A4.6, 
which interprets the main results from a biological viewpoint. 

A4.2 Dynamic models and systems analysis: some background 

The systems approach to modeling was made popular by Forrester in the early 1960s (Forrester 1961). This 
approach involves dividing a system into a large number of very simple unit components (Watt 1966) and then 
using equations to describe the processes affecting each of these components. The methodology was originally 
applied to industrial, urban, and world population systems, but its utility has been extended to ecological 
applications by a number of researchers (e.g., Watt 1966, Jeffers 1978). A variety of aspects, such as age 
structure, developmental rates, and density-dependent relationships, can be included explicitly, thus increasing 
the realism of the model. Kowal (1971) notes that an analysis of dynamic models can provide approximations to 
ecosystem dynamics long before traditional experimental approaches can provide more detailed conclusions. 
Insights can also be obtained into aspects of the system that may otherwise be obscured by its complexity. 
However, dynamic models usually involve many equations (generally ordinary differential equations) and 
parameters, making their behavior difficult to predict (Patten 1971). 

Traditionally, numerical routines have been used to obtain solutions over time for a given set of parameter values. 
Optimization routines are also often employed (Maynard Smith 1974) to determine the "best" possible strategy 
with respect to a cost or revenue function. These routines are implemented using computers (see Patten 1971, 
Gerald and Wheatley 1989, Hultquist 1988). 

Although these methods are useful, their results depend on the particular parameter set used. Hadamard (1952) 
notes that since data in nature are never fixed, a mathematical model cannot be considered as corresponding to a 
physical phenomenon unless small variations in the parameter values lead to small changes in the solution given 
by the model. Attempts to heed this caveat have been based on the ideas of Tomovic (1963), and are often 
referred to as sensitivity analyses. These involve changing the values of the input variables and parameter values 
by a small amount (say 1% or 10%) and seeing whether these changes produce large or small variations in the 
performance of the model (Brylinsky 1972, Jeffers 1978). A sensitivity analysis does give some idea of the 
robustness of model predictions, but the information is limited in that only a single, small perturbation of each 
parameter is considered. (A method for perturbing a combination of parameters in order to find a "worst" case has 
been proposed by Hearne (1987), but it is not yet commonly used.) The dynamical systems techniques show the 
effects of a whole range of parameter values on the system. 

A4.3 Model equations 

Swart and Hearne (1989) developed a dynamic model to study the impact of hyrax (Procavia capensis Pallas) and 
lynx (Felis caracal Schreber) on sheep farming in a region in South Africa. Two main problems were identified. The 
first involves competition for pasture between hyrax and sheep; hyrax encroach on farm land when the hyrax 
population exceeds the carrying capacity of wilderness areas in the region. The second problem is the predation 
on sheep by lynx. The principal food for lynx is hyrax, but lynx prey on sheep from time to time. The latter 
problem is of direct concern to farmers; they tend to be more tolerant of the competition with hyrax. 

Swart and Hearne (1989) developed their model to increase understanding of problems caused by the spillover of 
hyrax and lynx from their predator-prey system into the sheep-pasture system, and to determine the effects of 
different culling strategies for hyrax and lynx. There are 10 state variables in the model. The sheep, hyrax, and 
lynx populations are each divided into three classes: juveniles, female adults, and male adults. There is one 
variable representing pasture. The quantity of most interest to farmers is revenue. This auxiliary variable is a 
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function of the state variables and is made up of wool sales, mutton sales, the value of sheep stock, and the cost 
of culling hyrax and lynx. 

Swart and Hearne (1989) used optimization routines to find the hyrax and lynx culling rates that gave maximum 
profitability in terms of revenue. They also investigated the system's sensitivity to parameter perturbations. They 
found that lynx culling is essential and that substantial increases in both sheep numbers and revenue are possible 
by simultaneously culling hyrax and lynx. Optimal culling rates, in terms of revenue, are ~ 30% per annum for 
both hyrax and lynx. From a policy point of view, the model is robust with respect to small parameter variations. 

My purpose is not to redo the work done by Swart and Hearne (1989), whosemodel and analysis have 
accomplished their aims. Instead, I want to illustrate the usefulness of the dynamical systems software in this 
setting. 

A4.4 Technical details 

A few minor modifications to the model are required to facilitate the use of this software. The first involves scaling 
the state variables so that they all have the same order of magnitude. Combining quantities of very different 
magnitude may lead to computer round-off errors (Gerald and Wheatley 1989). I chose values close to the initial 
values in Swart and Hearne (1989) as scaling constants si (see A4.7). 

Secondly, in order for the computer packages to generate continuous bifurcation diagrams, all functions in the 
model need to be continuous. The original model uses two step functions to represent farmers' sheep-culling 
strategies. I replaced these with continuous functions having steep slopes in the region of the step. 

In the original model, pasture production and fecundity rates vary seasonally. Since this complicates the dynamics 
considerably when it comes to parameter studies, and since the present study is more concerned with long-term 
equilibrium behavior than with day-to-day variations, I did not include the seasonality functions. Solving the 
system of equations numerically over time is still the best way to study seasonal variation, in most cases. 

The various versions of AUTO only allow a state variable, or the L2-norm of the state variables, to be displayed on 

the y -axis of the bifurcation diagrams they generate. The L2-norm of a vector v = (v1, ... , vm) is given by 

 

In order to have direct access to revenue values, it would be most convenient if revenue were a state variable. 
The following suggestion by Bard Ermentrout makes this possible. 

Let v be the vector of existing state variables and let h(v) be the revenue function. We can add to the original 
system the equation 

, 

where  is a small parameter. R is the variable that we want to represent revenue. This ordinary differential 
equation will not affect system equilibria because, at these points, R = h(v) and, hence, dR/dt = 0 (as required 
for an equilibrium value). The existence and stability of phenomena such as periodic orbits (limit cycles) are also 
not affected. Since  acts as a delay time, we would like it to be small so that R is a close approximation to 
revenue. However, care must be taken in the choice of  , because very small values can give rise to computer 
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truncation errors. For the current problem,  = 0.05 was used. 

A4.5 Model analysis 

A4.5.1 Reference parameter values 

An initial set of parameter values needs to be chosen before the effects of varying parameters across ranges of 
values can be determined. Most of the values are given in Swart and Hearne (1989). Only values for the hyrax 
and lynx culling normals (HCN and LCN) need to be chosen. It seems most natural to choose those values that 

give the maximum revenue at equilibrium. I first fixed LCN at 0.1, chose a value of 0.2 for HCN (any reasonable 

values would do just as well), and used a numerical solver in XPPAUT to integrate the system of equations until an 
equilibrium point was reached. Using this equilibrium point as the initial point, I then used the AUTO interface to 
vary HCN. This exercise was repeated for a few different values of LCN. 

A value of 0.35 for HCN was optimal (in terms of revenue) for all values of LCN. I chose this value for HCN and 

then used XPPAUT to vary LCN in order to find the corresponding optimal value for LCN. The result was LCN = 

0.15. 

A4.5.2 The effects of culling sheep 

Many parameters in this model could be used to illustrate the dynamical systems techniques. Those affecting 
population growth rates probably have the greatest influence on the dynamics. For illustrative purposes, I will 
discuss the sheep female culling normal SFCN, which is the average number of ewes culled by a farmer per year. 

As before, I used XPPAUT to integrate the system numerically, using the reference parameter values, until an 
equilibrium was reached. Using these equilibrium values for the state variables as the starting point, I employed 
XPPAUT's AUTO interface to produce a bifurcation diagram. Figure 20 shows the diagram with equilibrium 
revenue, the equilibrium number of lynx females, and the equilibrium amount of pasture on the y-axis, 
respectively. 

Note that AUTO encounters points beyond which it cannot calculate: SFCN=0.54 is such a point. Using XPPAUT to 

solve the system of equations numerically for parameter values on either side of this limiting point, we can 
determine the causes of the difficulties. Output from a numerical integration is shown in XPPAUT's data window, 
and from this we see that the sheep population dies out for SFCN >0.54. Beyond the limiting value, there is no 

equilibrium at which all three populations are present and, hence, AUTO cannot continue the equilibrium branch 
any further. 

A second observation can be made by looking at the bifurcation diagram for pasture in Fig. 20. As the equilibrium 
number of sheep declines (as SFCN increases and approaches the value corresponding to sheep extinction), the 

equilibrium value for pasture increases rapidly (and AUTO encounters numerical difficulties). Clearly, this is 
unrealistic and suggests that some modification should be made to the model equations to limit pasture growth. I 
return to this in section A4.5.4. Before modifying the equations to limit pasture growth, it is informative to study 
the roles of the existing density-dependent functions. This can be viewed as another form of sensitivity analysis, 
in which we investigate the system's response to whole functions instead of single parameters. 
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FIGURE 20:     One-parameter bifurcation diagrams obtained from varying  (nominal value = 0.28/yr). In (a) revenue is plotted 
on the y-axis, in (b) the state variable for lynx females is used, and in (c) the state variable for pasture is used. 

 

A4.5.3 The effects of density dependence 

A number of functions in the model modify growth and death rates as conditions change. All these functions are 
normalized to take the value 1 when the quantities on which they depend are at their reference values. For 
example, the equation governing pasture (P) dynamics is given by 

dP/dt = pasture production - pasture grazing = A.PPN - TSSU.GN.GM(PA), 

whereAis the area of the farming region under study; PPN is the pasture production normal (average pasture 

growth rate); TSSU is total small stock units (a representative value for the number of sheep); GN is the grazing 

normal (average amount of pasture grazed per unit stock); and GM is the grazing multiplier, which is a function of 

PA, the pasture availability index. PA is given by , where P is an average pasture density. The grazing 

multiplier is an increasing function of PA, which reaches a maximum of 1.5 around PA = 3 and has a value of 1 at 

PA = 1. 

To remove a density-dependent function from the model, the simplest approach is to replace it by a constant 
function. For example, we can set GM equivalent to 1. This was done for each multiplier function in turn, and 

bifurcation diagrams obtained from the altered model were compared with those from the original model in each 
case. 

Removing the grazing multiplier, GM, had the greatest effect on model dynamics. Even after I altered a number of 

parameter values, the system did not reach equilibrium. The sheep population either increased indefinitely or 
decreased to extinction for each parameter set that was tried. This is not surprising, since the grazing multiplier 
affects pasture grazing and sheep fecundity as well as sheep juvenile deaths. Without GM, the density dependence 

of pasture grazing and sheep dynamics on pasture availability ( GM is a function of PA) is removed. The results 

show that this density dependence is critical for regulating the sheep-pasture subsystem. 

The effects of the other functions in the model were quantitative rather than qualitative. That is, removing them 
from the model tended to decrease the range of parameter values over which sheep, hyrax, and lynx coexist at 
equilibrium, but did not alter the qualitative dynamics. This does not imply that these other functions play an 
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insignificant role in the model. They have a regulatory effect and reduce the impact of parameter changes on 
model behavior. This resilience to disturbances is very desirable (Holling 1973) and is expected of many natural 
systems. I observed earlier that the model lacks a feedback relationship that would limit pasture growth when 
sheep densities are very low. Also, pasture availability has a significant influence on pasture grazing and sheep 
fecundity and, hence, on the predictions of the model. In the next section, Eq. A4.1 is modified to include density-
dependent growth. 

A4.5.4 Adding density dependence to pasture growth 

Equilibrium pasture values only become unrealistic for extreme parameter values. However, it is desirable to have 
a model that can describe a variety of situations, instead of one that is only suitable for a small range of values. 
Also, improving model realism in extreme regions may affect the dynamics corresponding to more normal values, 
and so play an important part in understanding system behavior. The formulation of a model also affects 
statistical parameter-fitting routines. If important relationships are left out, then these routines may give 
misleading results or fail to converge.In the sheep-pasture-hyrax-lynx model, pasture growth occurs at a fixed 
rate and is independent of existing pasture density (see Eq. A4.1). In order to limit pasture growth, I included a 
pasture multiplier (PM) in Eq. A4.1 as follows: 

dP/dt = pasture production - pasture grazing = A.PPN.PM(PA) - TSSU.GN.GM(PA), 

where PM is a function of pasture availability, PA. For high values of PA, we expect pasture growth to slow down 

and saturate. We also expect a decline in growth when PA is very low. A function having this general form is the 

Ricker function (see Fig. 21). 

FIGURE 21:     The pasture multiplier ( ) as a function of pasture availability ( ). 

 

To test the effects of this new function, I generated a number of bifurcation diagrams and compared them with 
those from the original model. Figure 22 shows those diagrams that correspond to Fig. 20. 

In Fig. 22a, total revenue declines to zero as SFCN increases. This is more mathematically satisfactory than Fig. 

20a, where the curve stops abruptly at a positive revenue value, because it indicates clearly where a positive 
sheep population is no longer possible. Figure 22c shows the maximum pasture density that occurs when a 
positive sheep equilibrium (and hence, a positive value for revenue) is impossible. This density is lower than in 
Fig. 20c, but depends on the exact nature of the pasture multiplier. 
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FIGURE 22:     One-parameter bifurcation diagrams obtained from varying  (nominal value = 0.28/yr) for the new model which 
includes a pasture limiting multiplier. In (a) revenue is plotted on the y-axis, in (b) the state variable for lynx females is used, and in (c) 
the state variable for pasture is used. 

 

Another observation from Fig. 22 is that, instead of AUTO being unable to converge at very low SFCN (sheep 

female culling normal) values, a Hopf bifurcation occurs, and the bifurcation diagrams show that no stable 
equilibrium at which all three populations coexist is possible for SFCN < 0.059. For these values, there is 

insufficient pasture to support the high sheep population. Thus, introducing the pasture multiplier has improved 
the dynamics at low values of SFCN as well as high values, and has solved the problem of revenue increasing 

rapidly as in Fig. 20a. 

Using XPPAUT to integrate the system numerically gives insight into the dynamics corresponding to the different 
regions in the bifurcation diagrams. In particular, the temporal dynamics show that the pasture multiplier slows 
and limits pasture growth as desired. Comparing the dynamics of the original and modified models at SFCN = 0.5 

shows that limiting pasture growth has a stabilizing influence on the dynamics (see Fig. 23 ). The oscillatory 
approach to equilibrium by the original model (Fig. 23a) is replaced by a smooth approach in Fig. 23b. 

FIGURE 23:     Time plots obtained using (a) the original model and (b) the modified model with . 

 

The limiting value for pasture in Fig. 22c is still rather high, but I had no experimental data on which to base the 

http://www.ecologyandsociety.org/vol1/iss1/art5/ (43 of 48) [11/4/2008 10:19:23 AM]



Conservation Ecology: Automated Techniques for the Qualitative Analysis of Ecological Models - Continuous Models

form of the pasture multiplier, and did not think it worthwhile to fiddle with the function to obtain a more plausible 
value. Effects of introducing the multiplier have been adequately demonstrated already. 

A closer look at the behavior of the model may suggest further modifications of the equations. I have shown just 
one example of how bifurcation diagrams can help in the process of model building. The next section describes 
how two-parameter studies can be used to obtain useful summaries of model behavior. 

A4.5.5 A summary of the effects of culling both hyrax and lynx 

Swart and Hearne (1989) originally developed their model to study the effects of culling hyrax and lynx. In their 
model and in previous sections of this appendix, optimal values (with respect to revenue) were found for the 
hyrax and lynx culling normals. However, only one parameter was varied at a time. A two-parameter diagram 
summarizing the effects of varying both parameters simultaneously can be obtained as follows. 

Using the modified model, the bifurcation diagrams for the lynx culling normal LCN have the form shown in Fig. 

24 . For LCN below the limit point, the sheep population dies out under too much predation by lynx. Using AUTO, 

the limit point can be continued in HCN, the hyrax culling normal, as well as LCN. That is, we can see how the 

position of this limit point varies as a function of both HCN and LCN. This gives the two-parameter bifurcation 

diagram in Fig. 25 . From this figure, it can be seen that sheep become extinct as a result of the combined effect 
of lynx predation and competition with hyrax for pasture, since both LCN and HCNare low in the region where 

sheep die out. 

FIGURE 24:     One-parameter bifurcation diagram of revenue as a function of  for the modified model. The change in stability 
(denoted by the change from a solid to a dotted line) occurs at a limit point. 

 

FIGURE 25:     Two-parameter continuation of the limit point in Figure 24. (To determine the behavior corresponding to a particular 

region in this two-parameter diagram, choose values for  and  in this region and then use XPPAUT to integrate the system 
numerically.) 
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If Fig. 25 is combined with the observation that the lynx population dies out for LCN ~> 0.37 for all values of HCN, 

the result is Fig. 26 . This observation was made by generating bifurcation diagrams for LCN for a number of 

different (fixed) HCN values. Conversely, varying HCN for a variety of fixed LCN values does not produce any 

parameter ranges where the hyrax population dies out. 

FIGURE 26:     Two-parameter bifurcation diagram of the  and  parameter space for the modified model. 

 

Figure 26 shows that all three populations coexist at equilibrium for a large set of culling rates. The diagram would 
be of even greater use if the revenue value corresponding to each point in this two parameter space were known. 
This can be done by recording information given by XPPAUT and using some other graphics package to plot a 
three-dimensional surface. 

Using the modified model developed in the previous section, I fixed the value of HCN, chose LCN = 0.15 (say), 

and used XPPAUT to find the equilibrium point numerically. I then used the AUTO interface to vary LCN in both 

directions. Using the GRAB feature of XPPAUT to move along the branch of equilibrium points, I recorded the 
revenue values at regular intervals along the curve. I did this for a number of HCN values and plotted the results 

using the public domain graphics package GNUPLOT (Williams and Kelley 1986). A surface plot and corresponding 
contour plot are shown in Fig. 27 . As can be seen from the figure, there is a large region of parameter space over 
which revenue does not vary much, indicating that the model is very robust to changes in the culling rates in this 
region. This is a desirable property when it comes to developing management strategies. 
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FIGURE 27:     (a) Surface plot and (b) contour plot of revenue as a function of the hyrax and lynx culling normals. The arrow in (b) 
indicates the direction of increasing revenue. 

 

A4.6 Conclusions 

The analysis of the previous sections has led to a number of insights into the sheep-pasture-hyrax-lynx system. 
Figure 22 shows that altering the number of ewes that are culled only affects the sheep-pasture subsystem. 
However, the effects on this subsystem are considerable. Culling too many ewes will obviously cause sheep 
numbers to decline. More important is the effect on revenue. Significant increases in revenue are possible if the 
farmer culls fewer ewes, because there is a greater return if these sheep are allowed to reproduce than if they are 
taken to market (provided that the sheep stock is not too large for the pasture to support it, i.e., provided SFCN > 

0.059.) However, there is a trade-off: culling fewer ewes results in a lower cash flow. Another trade-off results 
from the decrease in pasture availability that accompanies a larger sheep stock. This is already reflected in the 
model by the dependence of sheep fecundity on pasture availability. However, an additional quantity representing 
the quality of sheep may be useful, as this will affect the returns from wool and mutton sales and, hence, 
revenue. This presents another opportunity for improving the model. 

In section A4.5.3, I showed that density dependence of sheep and pasture dynamics on pasture availability is 
critical for regulating the sheep-pasture subsystem. In fact, this encouraged me to modify pasture growth to 
include density dependence. This modification restricts both pasture and revenue values from increasing 
indefinitely (compare Figs. 20 and 22) and also stabilizes the temporal dynamics (see Fig. 23). Other 
modifications, such as including the effects of hyrax grazing in the pasture equation, can also be made. In the 
interests of space, I have not discussed such a modification, but the approach in preceding sections indicates how 
such a modification can be introduced and studied. 

Finally, the effects of culling both hyrax and lynx were summarized using two-parameter diagrams. In particular, 
Fig. 27 shows that the model is robust to changes in culling rates, provided that these rates are sufficiently high. 

A4.7 Mathematical details for the sheep-hyrax-lynx model 
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A4.7.1 Modelling delays in system dynamics models 

A system does not always respond immediately to a change in one of its components. Often there is a time lag 
between the initial change and the system response. For example, a change in hyrax population density will only 
affect hyrax population size in the following season. It takes time for an increase in population density to affect 
reproductive success of hyrax and survival of their offspring. 

To represent this in the model, I use averaged or smoothed versions of certain quantities to calculate growth 
rates. Three quantities are averaged in this model: hyrax density (HD), prey abundance (AP), and the grazing 

multiplier (GM). Sheep fecundity and juvenile mortality are functions of the grazing multiplier average, , 

instead of GM. I use a first-order distributed delay (May 1973, MacDonald 1978) to calculate the averaged 

version, e.g., 

d  /dt = (  ) /tdel, 

where tdel is the average delay time. Examples of this type of delay equation are found in Forrester (1961). 

MacDonald (1978) provides a detailed explanation of the mathematics underlying this differential equation. This 
ordinary differential equation is added to the original system of model equations, thus increasing the dimension of 
the system to be solved. Fortunately, this increase in dimension does not pose a problem when solving the system 
numerically. 

Further discussions of delays in biological systems and their effects on system behavior are found in May (1973) 
and MacDonald (1989). For the sheep-hyrax-lynx model, the delays did not affect stability, even for large average 
delay times. 

A4.7.2 Rescaling model equations 

Suppose the differential equation for the state variable vi is given by 

dvi/dt = fi(v1, ... , vi, ... , vm). 

Let vi = si , then 

 = vi/si 

and 

d /dt = (1/si)(dvi/dt)= (1/si)fi(s1 , ... ,si , ... , sm ). 

Dropping the bars for convenience, we get 

dvi/dt = (1/si)fi(s1v1, ... ,sivi, ... , smvm), 

as required. The state variables have been replaced by sivi and the differential equation for vi is divided through 

by si, as stated in section A4.4. 
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APPENDIX 5 
 

OTHER DYNAMICAL SYSTEMS COMPUTER PACKAGES 

Some other packages are available for analyzing dynamical systems. Part of the following list can be found in 
Allgower and Georg(1992). 

1. ALCON (Deuflard et al. 1987). This is a continuation method for algebraic equations . Limit 
points and simple bifurcations can be computed on demand. 

2. BIFPACK (Seydel 1991). This is an interactive program forcontinuation of large systems of nonlinear equations. 
Bifurcation points are also detected. 

3. DYNAMICS (Nusse and Yorke 1994). This package iterates maps, solves differential equations, and plots 
trajectories. It runs on both IBM PCs and UNIX workstations that support X-windows. 

4. LOCBIF (Khibnik et al. 1993). This is an interactive program designed for multiparameter bifurcation analysis of 
equilibrium points, limit cycles, and fixed points of maps. The original package is set up for IBM PCs, but a UNIX 
version has recently been incorporated into DSTOOL. 

5. PATH (Kaas-Petersen 1989). This software package for dynamical systems can apparently handle much larger 
systems of ordinary differential equations than AUTO. 

6. PHASER (Hale and Koçak 1989). This package generates phase portraits for continuous and discrete dynamical 
systems. It runs on IBM PCs. 

7. PITCON (Rheinboldt and Burkardt 1983a, 1983b).This is a Fortran subprogram for continuation of equilibrium 
points and for detecting limit points.  
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