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In this article we investigate the topological changes undergone by trajectory networks as a con-
sequence of progressive geographical infiltration. Trajectory networks, a type of knitted network,
are obtained by establishing paths between geographically distributed nodes while following an as-
sociated vector field. For instance, the nodes could correspond to neurons along the cortical surface
and the vector field could correspond to the gradient of neurotrophic factors, or the nodes could
represent towns while the vector fields would be given by economical and/or geographical gradients.
Therefore trajectory networks are natural models of a large number of geographical structures. The
geographical infiltrations correspond to the addition of new local connections between nearby ex-
isting nodes. As such, these infiltrations could be related to several real-world processes such as
contaminations, diseases, attacks, parasites, etc. The way in which progressive geographical infil-
trations affect trajectory networks is investigated in terms of the degree, clustering coefficient, size
of the largest component and the lengths of the existing chains measured along the infiltrations. It
is shown that the maximum infiltration distance plays a critical role in the intensity of the induced
topological changes. For large enough values of this parameter, the chains intrinsic to the trajectory
networks undergo a collapse which is shown not to be related to the percolation of the network also
implied by the infiltrations. (Copyright Luciano da F. Costa, 2008)

PACS numbers: 89.75.Hc, 89.75.Fb, 89.75.-k

‘No one remembers what need or command or desire
drove Zenobia’s founders to give their city this form,
..., which has perhaps grown through successive super-
impositions from the first, now undecipherable plan.’ (I.
Calvino, Inivisible Cities

I. INTRODUCTION

Graphs and complex networks can be classified into
two major categories: geographical and emphnon-
geographical. The former type of networks is charac-
terized by the fact that each of their nodes has a well-
defined spatial position, expressible by respective coordi-
nates. Contrariwise, the nodes of non-geographical net-
works do not have specific positions, or if they have we
do not know what they are. Several real-world networks
are geographical, including power distribution (e.g. [1]),
tourism (e.g. [2]), transportation (e.g. [3]), biological net-
works (e.g. bone structure [4] and gene expression expres-
sion [5, 6]), amongst many others. The connectivity of
geographical networks is often, but not always, affected
or even defined by the proximity and spatial adjacencies
between the nodes, in the sense that nodes which are
neighbors or close one another tend to have larger chances
of being connected. Several models of geographical net-
works have been proposed in the literature (e.g. [7–10]).
A new family of networks, namely the knitted networks,
was proposed recently [11, 12] to include all networks
defined and composed by paths, i.e. sequences of edges
without repetition of nodes.

In this article, we expand the family of knitted net-

works by incorporating structures generated by trajecto-
ries defining paths following a given vector field. More
specifically, a set of nodes is distributed within a given
domain (a 2D space in this article, but the extension to
higher dimensions is immediate), one node is chosen as
origin, and the respective trajectory (line of force) is ob-
tained while the nodes which are closer than a given max-
imum distance to the current point of the trajectory are
sequentially incorporated into the path. This procedure
is repeated several times, yielding a network with connec-
tions aligned to the vector field. In other words, the paths
correspond to approximations of the solutions of the dy-
namical system represented by the vector field. Figure 1
illustrates two trajectory networks obtained from the vec-
tor fields �φ(x, y) = (y, x) and �φ(x, y) = (y,−x) (b).

Trajectory networks are important because they rep-
resent a natural putative model for several real-world
structures and phenomena including the establishment of
neuronal connections under the influence of neurotrophic
fields (e.g. [13–15]), the growth of transportation systems
under geographical and economical influences (e.g. ‘ev-
ery path leads to Rome’), the growth of trees and roots
under influence of trophic factors [16], the development
of channel-based systems such as bone structure and the
vascular system, amongst many other important systems.

The focus of attention in the current work is to in-
vestigate how the topology of trajectory networks, a ge-
ographical type of knitted network, is affected as the
consequence of progressive geographical infiltration. By
geographical infiltration (hence infiltration for short), it
is meant any process which tend to interconnect pairs
of nodes which are spatially close one another. Several
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FIG. 1: Trajectory networks obtained for the fields �φ(x, y) = (y, x) (a) and �φ(x, y) = (y,−x) (b).

real-world systems are exposed to this type of alterations,
such as the appearance of cracks along channels, the es-
tablishment of new local routes between towns and cities,
contaminations between vessels of fibers, gallery build-
ing by parasites, intentional attacks, internal spreading
of diseases, to cite just a few cases. In the current work,
the infiltration process is simulated by selecting nodes at
random and connecting this node to all other nodes which
are closer than a maximum distance Dp. Therefore, the
adopted infiltration corresponds to the progressive incor-
poration of tufts of local connectivity.

The effects of progressive infiltration on the topology
of trajectory networks is here investigated by quantifying
the degree, clustering coefficient, size of the largest com-
ponent, as well as the number and length of the chains
present in the network. The characterization of chains
as an important category of motifs in networks was re-
ported recently [17]. As a matter of fact, several real-
world networks incorporate several chains in their struc-
ture in ways which are intrinsically specific to their dy-
namics and organization. The trajectories networks are
possibly the first theoretical model of complex networks
which naturally incorporates a large number of chains.
These motifs are a consequence of the linking of spa-
tially distributed nodes along the trajectories defined by
the given vector fields. Indeed, the chains appearing in
several of the real-world situations which can be modeled
by trajectory networks represent an important structural
feature in the sense of providing relatively independent
(i.e. with few interconnections) routes between possible
destinations. Therefore, it becomes particularly impor-
tant to characterize the structure of trajectory networks
before and after infiltration by considering the number

and length of the existing chains. Interestingly, the ef-
fect of infiltrations can be either bad or good, depend-
ing on each specific system. For instance, the incorpo-
ration of additional local routes is in principle beneficial
for transportation and communication systems. On the
other hand, the addition of local connections in biologi-
cal networks (e.g. bone or neuronal networks) may have
catastrophic consequences. Observe that in the latter sit-
uation the main purpose of the chains/fibers is actually
to provide mutual isolation. In both cases, the quantifi-
cation of the effects of the infiltration over the topology of
the respective networks can provide valuable information
to be interpreted from the perspective of each problem.

This article starts by presenting the basic concepts —
including the generation of trajectory networks and the
geographical infiltrations — and follows by describing the
experiments and discussing the respectively obtained re-
sults.

II. BASIC CONCEPTS

A complex network is a graph exhibiting a particularly
intricate structure. The connectivity of a undirected,
unweighted network can be completely represented in
terms of the respective adjacency matrix K, such that
each interconnection between two nodes i and j implies
K(i, j) = K(j, i) = 1, with K(i, j) = K(j, i) = 0 being
otherwise imposed. The immediate neighbors of a node i
are those nodes which receive an edge from i. The degree
of a node i is equal to the number of its immediate neigh-
bors. Two nodes are said to be adjacent if they share an
edge; two edges are adjacent if they share one node. A



sequence of adjacent edges is a walk. A path is a walk
which never repeats a node or edge. The length of a walk
(or path) is equal to the respective number of involved
edges. The clustering coefficient of nodes i is calculated
by dividing the number of interconnections between its
immediate neighbors and the maximum possible number
of connections which could be established between those
neighbors.

A connected component of a network is a subgraph such
that each of its nodes can be reached from any of its other
nodes [31]. A chain is a subgraph of a network such as
that each of its nodes has degree 1 or 2 and not additional
nodes of degree 1 or 2 are connected to it [17]. The length
of a chain is given by its number of edges. Two measure-
ments which can be used to characterize the chains in a
given network include the number of such chains and av-
erage and standard deviation of their respective lengths.
Chains are naturally related to paths along the network.

III. TRAJECTORY NETWORKS

A family of networks, namely the knitted complex net-
works, was introduced recently [11, 12] incorporating all
networks organized around the concept of paths. Two
main types of knitted networks were initially identified:
path-transformed and path-regular. The former subcate-
gory of knitted complex network is obtained by perform-
ing the start-path transformation [11] on a given network
(star and path connectivities can be understood as duals,
e.g. through the line-graph transformation). Therefore,
networks with power-law distribution of path lengths can
be obtained by star-path transforming Barabási-Albert
networks [18]. The second type of knitted complex net-
works, namely the path-regular networks, is particularly
simple and involves starting with a set of N isolated
nodes and performing several paths encompassing all
nodes. Path-regular networks have been found to ex-
hibit marked similar properties between different config-
urations or nodes in the same configuration (e.g. [12, 19]).
An even more regular version of the path-regular net-
work, with all nodes exhibiting identical degrees, was
later reported in [20, 21].

Geographical networks are characterized by the fact
that each of their nodes has a well-defined spatial po-
sition. Geographical networks represent an important
category of complex networks because several real-world
structures are inherently embedded into 2D or 3D spaces,
and their connectivities are strongly affected by proxim-
ity and spatial adjacency. Given a set of spatially dis-
tributed nodes embedded in a continuous space to which
a vector field is associated, it is possible to obtain geo-
graphical networks whose connections are a consequence
not only of the proximity between nodes, but also of the
orientations implied by the respectively associated vector
field. Several real-world can be thought as involving a
geographical distribution of nodes and associated vector
fields. For instance, the neurons along the cortical surface

can be represented as a set of geographically distributed
nodes, while their connections are established to a great
extent as a consequence of neurotrophic fields (e.g. elec-
trical or chemical gradients). Systems of streets, roads
and highways can also be understood as involving a set
of spatially distributed nodes (the intersections between
routes), with the interconnections being established in
terms of the spatial proximity between nodes as well as
geographical and economical fields (e.g. the trend to con-
nect to a big city, to avoid a geographical obstacle or
to follow level-sets of height). Several other natural and
human-made complex systems can be modeled by trajec-
tory networks. Trajectory networks are related to gradi-
ent networks (e.g. [22–24]), field interactions [5, 6, 25], as
well as dynamical systems (e.g. [26, 27]). In the present
work, we understand trajectory networks as a particular
case of knitted networks.

The trajectory networks considered in the present ar-
ticle are obtained as follows. First, a two-dimensional
workspace of size L × L is defined, and a vector field
�φ(x, y) is associated to it. For simplicity’s sake we as-
sume that −L/2 ≤ x, y ≤ L/2. All networks considered
henceforth in this work are obtained for the vector field
�φ(x, y) = (y, x). N points are distributed along this space
with uniform probability. A total of Np trajectories are
then performed while obtaining each network. A start-
ing point is randomly selected, and the respective line of
force (always parallel to the vector field) is calculated by
using the Euler leapfrog numerical method (e.g. [28]). At
each current time, if a new node is found at a distance
not exceeding Dp, that node is connected to the previ-
ous node, and so on. As it is clear from the example of
trajectory network shown in Figure 1, the combination
of proximity and orientation constraints while perform-
ing the connections yield networks incorporating several
chains, which closely follow the vector field orientation.
Different degrees of interconnectivity between and along
the chains can be obtained by varying the total number of
points and the parameter Dp. Observe that the number
of chains is is reduced for larger values of Dp/N . Once
all trajectories are performed, the isolated points can be
removed (as adopted henceforth) or not (allowing further
connections).

IV. GEOGRAPHICAL INFILTRATIONS

Given a geographical network, several types of pertur-
bations of its structure can arise as a specific consequence
of its geographical nature, in the sense that nodes which
are spatially closer may interfere one another. For in-
stance, in a neuronal system, unwanted connections may
appear between nearby neurons as a consequence of dis-
eases. In transportation systems, it is only too natural to
incorporate new local connections to the network. Sev-
eral other types of geographical interferences are possible,
including those arising as a consequence of contamina-
tions, attacks, infiltrations, amongst many other.



In this work we incorporate progressive infiltrations to
a given network geographical network by selecting one of
its nodes and connecting to it all other nodes which are
not further than a maximum distance Di.

V. RESULTS AND DISCUSSION

A set of 30 trajectory networks was obtained for the
field �φ(x, y) = (y, x). A total of 1000 nodes was ini-
tially distributed within a squre region of side L = 100
centered at (0, 0), and Np = 100 trajectories were nu-
merically calculated. Starting from a randomly chosen
node, each node at a maximum distance Dp = 2 from
the current growing extremity of each trajectory was suc-
cessively connected. An example of obtained trajectory
network is shown in Figure 1. Each of the 30 networks
underwent progressive infiltrations assuming Di = 5 and
Di = 10. Figure 2 shows four stages (100, 200, 300 and
400) along the successive infiltrations for Di = 5. Ex-
amples of the results of infiltrations with Di = 10 are
depicted in figure 3.

In order to characterize the alterations in the topology
of the trajectory networks as they underwent progres-
sive infiltrations, a set of measurements (e.g. [29]) was
taken along the process. These measurements included
the average and standard deviation of the node degree,
clustering coefficient, size of the largest connected com-
ponent, and chain lengths along successive infiltration
stages. Only chains longer than 3 edges were considered
in the respective measurements. These chains were iden-
tified by starting from each of the network nodes with
degree 1 or 2 and following along both sides (in case of
degree 2) until the respective extremities of the chains
(nodes with degree 1 or larger than 2) were found (each
detected chain was removed from the network in order to
accelerate the processing of the remaining nodes). The
results obtained for Di = 5 and Di = 10 are shown in
Figure 2 and 3, respectively. Figure 6 and 7 show the
above measurements for all the 30 considered networks.

It is clear from Figures 4 to 7 that, as could be ex-
pected, the degree and clustering coefficient both in-
creased as a consequence of the addition of the infiltration
tufts. Both such increases are sublinear, with a steeper
decrease in the rate of clustering coefficient increase ob-
served for Di = 10 (Fig. 7). The relative sizes of the max-
imum connected components suffer an abrupt transition
before the 160 first infiltrations (most of the transitions
take place before that value) for both settings of Di, but
is more abrupt for Di = 10. This change is related to the
percolation of the chains in the original network. Another
relatively abrupt change is observed for the path lengths,
most of which stabilizing themselves at a value near 6 for
Di = 5 and 4 for Di = 10. The interval from the start of
the infiltrations until the average length of the chains sta-
bilizes (as observed above) is called the period of collapse
of the chains. Very few networks remained with large
average chain lengths larger after 200 infiltrations. This

confirms the fact, evident from Figure 8, that the tuft
infiltrations tend to quickly eliminate most of the long
chains in the trajectory networks (the chain collapse).
For larger values of Di, after the collapse of the chains,
the vector field influence on the network connectivity can
be hardly distinguished by visual inspection, such as in
Figures 3(b-d). It is important to keep in mind that the
fact that small values of Di tend to imply little effect
over the chain structure of the trajectory networks is ul-
timately related to the number N of initial nodes and the
maximal distance Dp considered for chaining the nodes
during the construction of the networks.

The two involved critical phenomena, namely the per-
colation of the networks and the collapse of the chains,
were investigated further in order to search for possible
relationship between their respective onsets. In order to
do so, transition points along the successive infiltrations
were identified automatically. These points, respectively
Tp and Tc, correspond to the first occurrence of the value
1 for the relative size of the largest connected component
and the first occurrence of the average chain length which
is smaller or equal than 5, respectively. Figure 8 shows
the respectively obtained distribution of Tp and Tc ob-
tained for the 30 realizations of networks with Di = 10.
It is clear from this figure that the two critical phenom-
ena taking place in the considered trajectory networks
seem to be largely independent, in the sense that no cor-
relation has been observed between their critical values.
Interestingly, as shown in Figure 8, the collapse of the
chains can take place before the respective percolation.

VI. CONCLUDING REMARKS

Geographical networks represent an important cate-
gory of complex networks because of their natural po-
tential for modeling a large number of real-world and
human-made complex structures and systems. At the
same time, the category of complex networks build up
by paths, namely the knitted networks, constitutes an
important superclass of complex structures because of
their intrinsic association with the concept of paths (as
opposited to star connectivity) and random walk dynam-
ics (e.g. [11, 12, 19]). In this work, trajectory networks
have been understood to belong to the supercategory of
knitted networks as a consequence of the fact that these
structures are obtained by performing paths (trajecto-
ries) along the nodes. In this sense, trajectory networks
become a special case where the paths tend to follow an
associated vector field. Our main interest in the present
work, however, consisted in investigating how the topol-
ogy of trajectory networks changed as a consequence of
geographical infiltrations. While several types of attacks
and perturbations have been considered and investigated
in complex network research, relatively lesser attention
has been focused on perturbations intrinsically related
to geographical constraints, especially the adjacency and
proximity between nodes. Yet, several important real-
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FIG. 2: The network in Fig. 1 after 100 (a), 200 (b), 300 (c) and 400 (d) infiltrations with Di = 5.

world and human-made systems are prone to this type
of perturbations, ranging from the onset of unwanted
neuronal connections as a consequence of diseases to the
incorporation of new local routes to transportation sys-
tems.

The main contributions reported in this article are
listed and reviewed in the following:

Trajectory networks as a special case of knitted com-
plex networks: We have enlarged the family of knitted
complex networks through the incorporation of trajec-
tory networks. This type of geographical knitted network
corresponds to an interesting case where the connectivity
is the consequence of both the proximity between nodes
and the orientation of the underlying vector field.

New type of perturbation of network structure: We con-
sidered, possibly for the first time, perturbations (or ‘at-
tacks’) to geographical networks which depend on the
proximity between the spatially distributed nodes. We
focused attention on ‘tuft’ infiltrations, where a node i
is randomly chosen and all other nodes which are closer
than a maximum distance Di are connected to node i.
This type of topological change can be related to sev-
eral real-world effects such as unwanted neuronal tangles
as a consequence of diseases, establishment of local con-
nections in transportation networks, contaminations, and
attacks.

Identification of drastic variation of the effects of the
infiltrations: The progressive infiltration of a trajectory
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FIG. 3: The network in Fig. 1 after 100 (a), 200 (b), 300 (c) and 400 (d) infiltrations with Di = 10.

network was investigated in a systematic manner, consid-
ering 30 realizations of networks obtained for the same
configuration with respect to the vector field �φ(x, y) =
(y, x). The changes in the networks topology was mon-
itored by taking several measurements including the de-
gree, clustering coefficient, size of the largest connected
component, as well as the particularly relevant lengths
of the existing chains. The latter measurements are es-
pecially important because the trajectory networks are
inherently composed by chains. While the degree and
clustering coefficients underwent relatively smooth in-
creases, the size of the largest component and average
chain lengths were subjected to relatively abrupt varia-
tions related to the percolation of the network (in the
case of the largest connected component) and to the col-

lapse of the chain structure (in the case of the average
chain lengths). The value of Di was found to be have
great influence on such topological changes induced by
the infiltrations, with values much larger than Dp im-
plying particularly intense changes, especially regarding
the chain structure. After the collapse of the chains, the
effect of the original vector field on the network connec-
tivity could hardly be discerned. Such findings are partic-
ularly important for a large number of real-world struc-
tures underlain by trajectory networks and geographical
infiltrations.

Independence of percolation and collapse of chains:
The progressive infiltration of trajectory networks in-
volves two critical phenomena: its percolation and the
collapse of its chain structure. Interestingly, no clear re-



FIG. 4: Measurements of degree, clustering coefficient, size of the largest connected component and chain lengths in terms of

the number of infiltrations (identified as ‘time’) with Di = 5 for a network obtained for the vector field �φ(x, y) = (y, x).

lationship between these phenomena has been identified
by considering the critical times Tp and Tc. This implies
that the collapse of the chains can not be predicted from
the percolation of the respective network, and vice-versa.
As a matter of fact, it has also been observed that the col-
lapse of the chains can take place before the percolation
of the respective network.

The several possibilities of future work include but are
not limited to the following:

Other types of vector fields: It would be interesting
to investigate how the patterns of topological changes
observed in this work extends to trajectory networks ob-
tained by considering other vector fields, as well as other
configurations of the involved parameters.

Orthogonal infiltrations: In this work we focused at-
tention on tuft infiltrations. It would be interesting to
study the topological changes of trajectory networks with
respect of other types of geographical perturbations, such
as connecting points according to proximity and orienta-
tions orthogonal to the vector field (possibly also through
trajectories).

Infiltration by increasing distances: While the infiltra-
tions implemented in this article consisted in selecting

nodes followed by tuft interconnection, it would be par-
ticularly interesting to investigate the topological alter-
ations of trajectory networks while all pairs of nodes are
joined according to successive distances. Such a type
of infiltration is guaranteed to completely eliminate the
chains after a critical interval.

Application to real-world networks: It would be inter-
esting to quantify the alterations of real-world networks
expressible by trajectory networks, including trans-
portation networks, power distribution, communications,
tourism and neuronal systems.

Application to Image and Shape Analysis: The analy-
sis of images containing objects and shapes has remained
a great challenge (e.g. [25, 30]). It would be particularly
interesting to consider the application of the concepts
and methods reported in the current work to such prob-
lems. More specifically, trajectories can be obtained in
gray-level images by considering their respective gradi-
ent fields. So, by distributing points through the image
and interconnecting them while taking in to account tra-
jectories driven by the gradient fields, it is possible to
obtain respective network representations incorporating
a great deal of the intrinsic geometric features. Shapes



FIG. 5: Measurements of degree, clustering coefficient, size of the largest connected component and chain lengths in terms of

the number of infiltrations (identified as ‘time’) with Di = 10 for a network obtained for the vector field �φ(x, y) = (y, x).

represented by their contour can also be mapped into
trajectory networks by considering vector fields induced
by their borders (e.g. electrical or distance fields). The
topological properties of the respective measurements are
expected to provide valuable features for image and shape
analysis and classification. Signatures obtained by con-
sidering the evolution of several measurements of the so-
obtained networks as the consequence of geographical in-
filtration can provide additional features for visual char-

acterization and classification.
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