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RENT DISSIPATION AND PROBABILISTIC DESTRUCTION OF COMMON POOL RESOURCES:

EXPERIMENTAL EVIDENCE

ABSTRACT

Using experimental methods to test a game theoretic model of destruction in a

common pool resource environment, this paper investigates whether the possibility

of destruction will significantly alter choice behavior in the resulting game.

When there is a nonnegligible probability of destruction at the subgame perfect

equilibrium, the common pool resource is in every case destroyed and, in most

cases, rather quickly. Even when there is a second subgame perfect equilibrium

which is completely safe and yields near optimal rents, subjects do not stabilize

at this equilibrium. The consequence of this destruction is in every case a

significant loss in rents.



I. INTRODUCTION

Common pool resources (CPRs) are natural or man-made resources from which

it is costly (but not necessarily impossible) to exclude potential beneficiaries.

The work of scholars such as Gordon (1954) and Hardin (1968) , argues that when

individuals use such resources jointly, each individual is driven by an

inexorable logic to withdraw more of the resource units (or invest less in

maintenance of the resource) than is optimal from a group perspective. That is,

rents which could be accrued from the resource are dissipated relative to their

optimal level.

The problems that appropriators face can be usefully clustered into two

broad types: appropriation and provision. In appropriation problems, the

production relationship between yield and level of inputs is assumed to be given

and the problem to be solved is how to allocate that yield (or input activities

to achieve that yield) in an economic and equitable fashion. Provision problems,

on the other hand, are related to creating a resource, maintaining or improving

its production capabilities, or avoiding its destruction.1

Our experimental research has concentrated on the investigation of

stationary (non-time dependent) appropriation problems in limited access CPR

environments.2 This paper extends our earlier work by introducing a significant

nonstationarity, the possibility of resource destruction, into the decision

framework. Our previous results demonstrated the significance of the rent

1. See Gardner, Ostrom, and Walker (1990) for further discussion of the
conceptual framework of a CPR dilemma.

2. See Walker, Gardner, and Ostrom (1990) for details of the prior experimental
work related to a stationary CPR decision environment.



dissipation problem in the context of a repeated choice noncooperative decision

environment. Here we investigate the behavioral question of whether the

possibility of destruction will significantly alter appropriation behavior in the

resulting game. Our primary results are that: (1) if there is a unique symmetric

subgame perfect equilibrium involving a high one-period probability of

destruction, the resource is destroyed in six periods or less; (2) if there are

at least two symmetric subgarae perfect equilibria (one of which is clearly better

in payoff space) then group behavior in some instances tends to focus on the

better equilibrium, but in general this equilibrium cannot be sustained and the

resource is destroyed.

Our investigation focuses on a resource which, if there is no human

intervention, has 0 probability of destruction. On the other hand, if there is

appropriation activity, there is a positive probability that the resource is

destroyed. This probability grows with appropriation levels, until it becomes

1 at some upper bound. Clearly such a CPR is time dependent: if it is ever

destroyed, its flow of value from that date on is 0. Alternatively, if

appropriation levels are zero, the CPR's flow of value is zero. Appropriators

then face a tradeoff between jeopardizing the life of the resource and gaining

any rents from it. It is the behavior in response to this tradeoff which we

examine in our experimental environments.

The paper proceeds as follows: Section II describes the decision task

faced by our experimental subjects and summarizes results from our stationary

"baseline" appropriation environment. In section III we discuss the design and

results from our first nonstationary (Design I) environment. Section IV

summarizes results from a second nonstationary (Design II) environment.

Conclusions are reported in section V.



II. THE APPROPRIATION and RENT DISSIPATION PROBLEMS

The Experimental Environment

The theory of rent dissipation follows from a behavioral assumption that

appropriators will ignore the impact of marginal increases in appropriation on

the return other appropriators' receive from their appropriation activities. In

open access environments it follows that such behavior will yield an outcome in

which appropriation continues as long as the average return from appropriating

exceeds the marginal costs of such appropriation (full rent dissipation). In a

limited access environment, the Nash equilibrium prediction is limited rent

dissipation. Our baseline experiments examine the severity of this problem in

a repeated noncooperative decision making environment with limited access.

The full design and results of our baseline experiments are detailed in

Walker, Ostrom, and Gardner (1989 and 1990). The experiments were conducted

using subjects drawn from the undergraduate population at Indiana University.

Students were volunteers recruited primarily from principles of economics

classes. All experiments were conducted using the PLATO(NOVANET) computer system

at Indiana University. This interactive system allows for minimal experimental

interaction, across experiment control on procedures, and facilitates the complex

accounting that follows each decision period. At the beginning of each

experimental session, subjects were told they would be making a series of

"investment" decisions, that all individual investment decisions were anonymous

to the group, and that at the end of the experiment they would be paid privately

(in cash) their individual earnings. Subjects then proceeded, at their own pace,

through a set of instructions that described the investment decisions. Below,

we summarize the decision task.



Subjects were informed Chat in each period they would be endowed with a
given number of tokens, which they would invest between two markets.
Market 1 was described as an investment opportunity in which each token
yielded a fixed (constant) rate of output and that each unit of output
yielded a fixed (constant) return. Market 2 (the CPR) was described as a
market which yielded a rate of output per token dependent upon the total
number of tokens invested by the entire group. The rate of output at each
level of group investment was described in functional form as well as
tabular form. Subjects were informed that they would receive a level of
output from Market 2 that was equivalent to the percentage of total group
tokens they invested. Further, subjects knew that each unit of output from
Market 2 yielded a fixed (constant) rate of return.

Thus, our environment most closely parallels that of a limited access CPR (see,

for example, Clark, 1980; Comes and Sandier, 1986; and Negri, 1989).

All experiments were conducted using experienced subjects, where experience

implies that each of the subjects had participated in a similar decision making

experiment. The use of experienced- subjects increases the likelihood that

subjects understand the decision problem and the ramifications of alternative

levels of individual and group investment decisions. Experienced subjects were

recruited randomly to insure that no prior experimental group was brought back

intact.

The parameters for our experimental environment are shown in Table 1.

Conditions were constant within a given experiment. All experiments were

conducted for 20 decision periods.3 Players were endowed with 25 tokens per

period. Each token invested in Market 1 yielded a certain return of $.05. Given

a strategy space for each player of xt e (0,1,2,....,25}, where xt denotes the

number of tokens in Market 2, the within-period payoff for player i UiCx), in

cents, is:

3. Subjects were notified that their cash payoffs would be one half of
their"PLATO" dollars earned during the experiment.



Ui(x) = 125 if Xi - 0 (1)

5(25-Xi) + (Xi/SXiXaS ZXi - .25(ZXl)2) if Xi>0

where x - (x̂ ...̂ ) is the vector of strategies of all players.

Theoretical Predictions for the Baseline Design

This parameterization for our baseline (stationary) games allows for three

theoretical predictions. Figure 1 illustrates group behavior that would be

consistent with these alternative predictions. This symmetric game has a unique

Nash equilibrium with each subject investing 8 tokens in Market 2 (denoted Tl) .4

At the Nash equilibrium, subjects earn approximately 40 percent of maximum rents.

A group investment of 36 tokens yields a level of investment at which MRP - MC

and thus maximum rents (denoted T2) . Conversely, a group investment of 72 tokens

yields a level of investment at which ARP = MC and thus zero rents from Market

2 (denoted T3).

Summary Results: Baseline Experiments

The baseline results are summarized in Table 2 and Figure 2 . Aggregating

across all experimental periods, the average level of rents equalled -3.16

percent. The average tendencies for all three experiments are highlighted in the

top panel of Figure 2. In the bottom panel of Figure 2 we display the across

period rent results for each experiment. Several characteristics of the

individual experiments are important. Similar to results reported in earlier

stages of our research, we observed a pulsing pattern of investments across

periods, where rent is significantly reduced, at which time investors tend to
(

reduce investments in Market 2 and rents increase. This pattern tends to repeat

itself throughout the experiment. We are not implying that we found symmetry

4. See Walker, Gardner, and Ostrom (1989) for details of this derivation.
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across experiments in the magnitude of "rent peaks" or the timing of peaks. The

general cyclical pattern is consistent, however, throughout our experiments. In

no experiment did we find a pattern in which rents converged to the maximum.

Note that low points in the pulsing pattern were at rent levels far below zero.

There was, however, some tendency for the variance in rents and the level of rent

dissipation to decrease over repeated decision trials. In fact, if we focus on

the last 10 periods of each experiment, we observe less variation in rent cycles

and a mean level of rent accrual of 21.2 percent. We did not observe, however,

any clear signs that individual investments in Market 2 were stabilizing at the

Nash equilibrium.5

III. EXPERIMENTS WITH DESTRUCTION - DESIGN I

Our Design I and II experiments utilize the same payoff parameters as in

our baseline experiments. The only change in strategy space relates to the way

in which investment decisions affect the probability of ending the experiments

(destruction). The subjects in both of our Design I and II experiments had

previously participated in an experiment using the parameters described for our

baseline experiments.6 Thus, they were experienced in the decision environment

^for a non-time dependent experiment. Prior to making investment decisions in our

Design I destruction experiments, the subjects read an announcement which can be

5. We have conducted other experiments with a similar design in which we allowed
the experiments to run for 30 periods. We still do not observe individual
behavior stabilizing at the Nash prediction. However, at the aggregate level, it
is the Nash prediction which best describes our results. We have also conducted
experiments in which we increased the payoff loss due to rent dissipation. The
general tendencies for rent dissipation are not affected by such parametric
changes.

6. No subject group was brought back intact for the Design I and II experiments.

6



summarized as follows.7

The subjects were notified that the experiment would continue up to 20

rounds. After each decision round a random drawing would occur which would

determine if the experiment continued. For every token invested in Market

2 by any participant, the probability of ending the experiment increased

by one-half percent. For example: if the group invested 50 tokens total in

Market 2, the probability of ending the experiment was 25%. The drawing at

the end of each round worked as follows: a single card was drawn randomly

from a deck of 100 cards numbered from 1 to 100. If the number on the card

was equal to or below the probability of ending the experiment for that

round (as determined by the group investment in that round) the experiment

ended. Otherwise the experiment continued to the next round. (See Appendix

A for the actual announcement).

Note that this kind of destruction environment is more severe than one

which might be experienced in the naturally occurring world. If the CPR is

destroyed here, the experiment ends. In the naturally occurring world, if the

CPR were destroyed we would generally expect alternative investment opportunities

to be available. Thus, our design favors a behavioral result in which the

potential for destruction significantly reduces appropriation from the CPR.

Theoretical Predictions

The change from a stationary to a noristationary environment has several

7. The experimenter reviewed the announcement with the subjects and answered
questions. Note that in the destruction experiments subjects were told explicitly
that the experiments would last up to 20 periods. In the baseline experiments,
no such announcement was made. This information in the destruction experiments
makes the optimization task tractable.



theoretical implications. We focus on two benchmarks: (1) the solution for the

decision strategy which maximizes expected rents and (2) a Nash equilibrium

prediction. We turn first to the maximization problem. Since achieving a

maximum requires coordination among players, assume the existence of a rational

agent who invests the entire group's tokens each period. Denote by X^ the amount

of the group's tokens invested in the resource, when there are t periods

remaining: 0 < X^ < 200 in our design. We solve the optimization problem using

a dynamic programming argument assuming risk neutrality. This requires

determining the optimal value function, ft(Xt) for each time remaining t, t - 1,

2,. . ., 20 in our design.

We begin the solution with one period remaining. Here fi(Xi) is given by:

=• max 5(200-X!) + 23X! - .25X!2 (2)

where the first term on the right represents the payoff from the risk- free

alternative and the remaining terms represent the return from the destructible

resource. A routine calculation shows that the maximum is achieved at Xx = 36

(this is just the monopoly solution from the stationary case). Substituting in

(2), one has: fĵ Xj) - 1972. Now suppose that the decision maker has two periods

to go; we seek f2(X2) . Here, the destructibility aspect emerges for the first

time. The probability that the resource survives with two periods to go, pt —

p2, is given by:

P2 - (200-X2)/200. (3)

If X2 = 0, and no tokens are invested in the resource, it will not be destroyed;

for X2 > 0, there is an increasing probability of destruction. Now the two-



period optimal return function is :

f2(X2) = max 1000 + 18X2 - .25X22 + p2(fi(X1)). (4)
X2

where f̂ X1) is 1972.

The reasoning behind (4) is that if the resource is destroyed, then there is 0

payoff in the last period; otherwise, the resource is exploited optimally with

one period to go, resulting in payoff 1972. The optimal solution to (4) is X2

=16 and f2(X2) - 3038.2. Notice that we observe a drastic reduction in

investment in the risky resource, from 36 to 16. Even though the decision maker

is risk neutral, the value to be gained from not destroying the resource weighs

in heavily against exploiting it in the current period. As we shall now see,

this consideration becomes even stronger with three or more periods to go.

For the three-periods-to-go-problem, one solves:

f3(X3) - max 1000 + 18X3 - .25X32 + p3(3038.2). (5)
X3

to find that X3 = 6 and f3(6) = 4046.1.

We are down to only 6 units in the risky investment. We now show that with 4 or

more periods to go, X̂ O. Not only don't you kill the goose that lays the golden

egg, you don't even trim its feathers.

To see that X4 = 0, consider the situation with 4 periods to go. One has:

fA(X4) - max 1000 + 18X4 - .25X42 + 4046.1 - 20.23X4 (6)
X,

where we have explicitly substituted (3) into the expression to make the point

clearer. Since f̂ (X4) is now everywhere decreasing in XA, the optimal solution



is XA ~ 0. Indeed, this will be the case for any Xt, t>4.

We can now calculate the optimal rent to be extracted from the destructible

resource, in expected value terms. During the first 17 periods, the resource is

not exploited at all, yielding an aggregate return of 1000(17) = 17000. During

the last three periods, investment levels are 6, 16 and 36 respectively, with an

expected return of 4046.1. The overall expected return is therefore 21046.1, or

just over $210.

A Nash equilibrium prediction for this environment can be determined using

similar reasoning.8 Let xit denote the investment decision of player i at time

t, when there are t periods remaining: 0<xit<25. Let xt = (xlt, . . . ,x8t) be the

vector of individual investments of time t; uit(xt) , player i's one-period return

at time t when the group strategy xt is played; and fit(xt) , the value to player

i from being in the game with t periods to play. The optimal return function for

player i at time t, fit(xt) , is defined recursively as:

fit(xt) = max ult(xt) + pt(fi.t-i(xt-i)). (7)

0 < xit < 25

where pt is the probability that the resource survives and uit(xt) is the one-

period return function as in (1). In the event that the resource is destroyed,

no further value is obtained. The probability (pt) is given by equation (3) , as

before.

We begin the dynamic programming argument at t - 1. Since this is the last

period, the equilibrium condition is that an equilibrium xit* satisfy:

8. The equilibrium we describe is symmetric and subgame perfect. It shares the
backward induction logic of the optimum. There are other Nash equilibria,
however, which are less compelling, due to their imperfection. There are also
asymmetric equilibria which cluster around this symmetric equilibrium.

10



- 0, for all i (8)

For these designs, equation (8) implies xu* = 8, for all i. Substituting into

(7), one has fiiCxj) - 141 cents. 9 For the decision step at time t, one

differentiates the right hand side of (7) to obtain:

-1/200) (9)

the last term arising from the effect of the probability of destruction on future

earnings. In Table 3, we present the solution to (9) for the entire life of the

resource, given that it lasts at most twenty periods, as well as the optimal

solution. Three features of this symmetric subgame perfect path should be noted.

In contrast to the optimal path, where only in the last 3 periods is there a

positive probability of destruction, here there is a positive and growing

probability of destruction throughout the experiment. At the outset, the 1-

period destruction probability is approximately 27 percent, and it rises to 32

percent by the end. With 1-period destruction probabilities this high, it is

unlikely (probability less than .05) that the resource would last 10 periods

along this equilibrium path. This increased probability of destruction accounts

for the lower overall value of the resource to investors, slightly less than $6

each, or $46 aggregate (8x(575) cents), as opposed to over $200 at the optimum.

Finally, individual value stabilizes at 575 for infinitely long experiments.

Thus, 20 periods is long enough to approximate steady state equilibrium behavior.

9. For ease of presentation, we will assume in this derivation that tokens are
divisible. Working out the recursive equations for the case of indivisible tokens
leads to quantitatively the same result, to the accuracy of 1 token invested, or
1 cent in payoff.

11



Experimental Results

The results of five experiments are summarized in Table 4. All five

experiments yielded investment results well below optimum. The longest

experiment lasted 6 periods. In this experiment, subjects earned only 35% of the

rents which would be obtainable following the optimal path (see column 4) . These

results are striking. In a decision environment with a well-defined probability

and significant opportunity costs of destruction, individual and group

investments in Market 2 were well beyond optimum levels, while being evenly

dispersed around the Nash path. See Appendix B for period-by-period aggregate

investment.

We get a better picture of the behavior in this environment by looking at

the decisions of individuals in the first decision period, summarized in Figure

3. First, only 2 of 40 individuals are playing the safe strategy of investingi
0 tokens in Market 2. Further, the frequency of players investing 10 or more

tokens in Market 2 is high (12 of 40). In each of the 5 experiments, at least

2 players followed a strategy of investing 10 or more tokens.

One might conjecture that, after an initial decision round with a

significant probability of destruction, players would fall back to a safe

strategy. In no experiment did all players fall back to cooperative strategies

with' low levels of investments in Market 2. Experiment 1 resulted in the most

significant drop, with investments falling from an aggregate of 80 in period 1

to 32 in period 2. Even in this experiment, investments began to increase after

period 2.

In summary, investments in Market 2 (the CPR) are reduced relative to an

environment with no destruction. This reduction falls far short, however, of

yielding an optimal path of appropriation from the CPR.

12



IV. EXPERIMENTS WITH DESTRUCTION - DESIGN II
l_

Our Design I is unforgiving in the sense that any investment in the CPR

leads to some probability of destruction. Our second design adds a "safe zone"

for Market 2 investment in order to investigate whether subjects might focus on

a clear cut safe investment opportunity. The announcement to subjects for Design

II can be summarized as follows.

The subjects were notified that the experiment would continue up to 20
rounds. After each decision round a random drawing would occur which would
determine if the experiment continued. If the group invested 40 tokens or
less in Market 2, the experiment automatically proceeded to the next
round. If the group invested more than 40 tokens in Market 2, the
probability of ending the experiment increased by one-half percent for
each token invested in Market 2 by any participant. For example: if the
group invested 50 tokens total in Market 2, the probability of ending the
experiment was 25%. The drawing at the end of each round worked as
follows: a single card was drawn randomly from a deck of 100 cards
numbered from 1 to 100. If the number on the card was equal to or below
the probability of ending the experiment for that round (as determined by
the group investment in that round) the experiment ended. Otherwise the
experiment continued to the next round. (See Appendix A for the actual
announcement).

Theoretical Predictions

The solution for maximum rents in this design is quite simple. Since the

allocation of 36 tokens to Market 2 leads to maximum rents and 36 tokens is in

the safe zone, a single player would play 36 tokens each period to maximize

rents. Subgame perfect Nash equilibria can be found using the same dynamic

programming procedure as above. In Design II, the destruction probability is the

same as Design I when Zxlt>41, but otherwise zero. 10

We begin the backward induction with t = 1. Since this is the last period,

10. In the first three experimental runs this upper bound was set equal to 40.
This slight change had no apparent effect on behavior. We have therefore pooled
all runs in the results reported here.

13



the equilibrium condition is that xit* satisfy equation (8) as before:

xii* •* 8, for all i. Substituting into (7), one has fuCxj^) - 141 cents.

For the induction step at time t, one differentiates the right hand side of (7)

to obtain equation (9), once again. Thus, it is clear that the equilibrium path

computed for Design I remains an equilibrium for Design II, since this path never

enters the safe zone.

However, there is another equilibrium path in Design II which is better in

payoff space. This equilibrium path starts with X.±* = 64 with one period to go,

but later switches to the boundary of the safe zone (Xt* = 40) , for some critical

time remaining t. We now show that the critical time is t=-3. Consider fi2(x2) .

Suppose all players except player i are investing a total of 35 tokens. If i

invests 5 tokens, then he gets a sure payoff of ui2(5) + 141, leading to an

overall 2-period expected value of 306 cents. There is no threat of destruction

in this case. Now suppose instead that player i makes the best response in the

destruction zone to 35 tokens invested by the others. This turns out to be 17

tokens, leading to a 26% chance of destruction and an expected 2-period payoff

of 314 cents. Thus, with 2 periods to go, staying in the safe zone is not an

equilibrium. This situation is quite different for t - 3. Repeating the above

calculations, the safe investment yields an expected payoff of 408 cents over the

last three periods, while the investment of 17 tokens (still the best response

in the destruction zone) yields a payoff of only 390 cents. Thus, with 3 periods

remaining, the future value of preserving the resource is sufficient to justify

staying in the safe zone as a noncooperative equilibrium. Finally, since

expected future value grows with time remaining, once this backward induction

14



path enters the safe zone, it stays there.11 Indeed, this equilibrium path

pays nearly as well as the optimum path for Design II (invest 36 tokens each

period and never risk destruction). Optimal value over 20 periods is

approximately $265, while under the good equilibrium path, aggregate value is

approximately $257.

Thus, there is a dramatic difference in payoffs between the good

equilibrium and the bad one; and if the good equilibrium is played, the

probability of destruction is nil until the endgame effect appears. Note that

this environment gives a clear "focal" point for behavior. By investing 40

tokens the group receives very close to optimal rents (97 percent) and runs no

risk of ending the experiment.

Experimental Results - Design II

The results of seven experiments are summarized in Table 5. In five of the

seven experiments destruction occurred at early periods and consequently led to

rent accrual far from the level consistent with the "safe" investment strategy.

Of these five experiments, the longest experiment lasted 6 periods. All rents

earned were under 30 percent of rents obtainable using the "safe" strategy (see

column 4 of Table 5) . In two of the seven experiments, destruction did not occur

until late in the experiments (rounds 15 and 17). In these experiments, subjects

earned 74 and 84 percent of the rents obtainable with the "safe strategy. At an

aggregate level, it would appear that in these two experiments the possibility

of destruction led to subjects focusing on the safe equilibrium strategy. This

conclusion is somewhat misleading. In both experiments, there were numerous

11. Following Benoit and Krishna (1985), once we have a good and a bad subgame
perfect equilibrium, we can construct many others. These two equilibrium paths
however, seem to us the most salient and the most likely to be observed in the
laboratory.

15



periods in which: (a) a subset of players played well beyond the safe strategy

equilibrium; and (b) aggregate investment in Market 2 was beyond the safe

investment of 40 tokens. What is different about these two experiments is that

in many periods a sufficient number of players made small enough investments in

Market 2 to offset the large investments by others. Second, in periods in which
i

the groups invested beyond 40, a "good" draw led to a continuation of the

experiment. Subjects in these experiments on average made Market 2 investments

below the safe focal point of 40 tokens, but in no period did the groups reach

the safe equilibrium of each player investing 5 tokens in Market 2.

We find these results to be even more striking than those obtained in

Design I. In a decision environment with a well-defined probability of

destruction, with a safe zone in which optimum rents could be obtained (and which

included a "safe" Nash equilibrium path near the optimum): (1) in only two

experiments did groups follow an investment pattern generally in the vicinity of

the good subgame perfect equilibrium (17 of 32 periods strictly in the safe

zone); and (2) in the remaining five experiments groups followed an investment

pattern dispersed around the bad subgame perfect equilibrium. See Appendix B for

period-by-period aggregate investment.

The first period behavior summarized in Figure 4 is revealing. Many

players (43 of 64) did in fact play a strategy consistent with staying in the

safe zone by investing 5 tokens or less in Market 2. However, each experiment

had at least two players investing beyond- the safe strategy. The resulting

outcome led in subsequent periods to an increase in Market 2 investments by many

players who initially followed the safe strategy.

16



V. SUMMARY AND CONCLUSIONS

The results of these experiments are hardly cause for optimism with regard

to CPR survival in environments where no institutions exist to foster cooperative

behavior. In our experimental setting, when there is a nonnegligible probability

of destruction, the CPR is in every case destroyed and, in most cases, rather

quickly. The consequence of this destruction is a significant loss in rents.

Even when there is a focal point Nash equilibrium which is completely safe and

yields near optimal rents, subjects do not stabilize at this equilibrium.

The time dependence problem our subjects face is far simpler than those

faced in naturally occurring renewable resources. In fisheries, for instance,

not only is there a clear and present danger of extinction, but also, the one

period payoff functions fluctuate wildly. As discussed by Alien and McGlade

(1987), these fluctuations are driven by both economic and biological forces. On

the economic side, market prices vary. On the biological side, population

dynamics are much more complex than assumed in standard bionomic models. In such

models, extinction is a limit which is approached slowly, while in reality, many

biological species have a population dynamic that is characterized by sudden

extinction. Our design captures this feature of sudden extinction, without

recourse to other nonstationarities. In the presence of naturally occurring

nonstationarities, the task of learning the payoff functions, much less best

responses, is formidable. In this sense, our designs give survival its best shot.

In the time it takes to learn in natural settings (void of institutions designed

to foster cooperation) the resource may already be destroyed.

17



REFERENCES

Alien, P.M. and J.M. McGlade. 1987. Modelling Complex Human Systems: A Fisheries
Example. European Journal of Operational Research. Vol 30; No. 2: 147-167.

Benoic, J. and V. Krishna, Finitely repeated games, Econometrica 53, 905-922
(1985).

Clark, Colin. 1980. Restricted Access to Common-Property Fishery Resources: A
Game Theoretic Analysis. Dynamic Optimization and Mathematical Economics.
New York: Plenum Press, 1980, 117-132.

Cornes, Richard, and Todd Sandier. 1986. The Theory of Externalities.Public
Goods. and Club Goods. Cambridge: Cambridge University Press.

Gordon, Scott. 1954. The economic theory of a common property resource: The
fishery. Journal of Political Economy 62:124-42.

Gardner, Roy, Elinor Ostrom, and James Walker. 1990. Rationality and Society
2:3,335-358.

Hardin, Garrett. 1968. The tragedy of the commons. Science 162:1,243-248.

Negri, D. H. 1989. The Common Property Aquifer as a Differential Game. Water
Resources Research: 25: 9-15.

Walker, James, Roy Gardner, and Elinor Ostrom. 1989. Rent dissipation and
balanced deviation disequilibrium in common pool resources: Experimental
evidence. In Game equilibrium models II: Methods, morals, and markets.
edited by Reinhard Selten. Berlin: Springer Verlag, forthcoming.

Walker, James, Roy Gardner, and Elinor Ostrom. 1990. Rent Dissipation in Limited
Access Common Pool Resource Environments: Experimental Evidence.
Forthcoming Journal of Environmental Economics and Management.

18



APPENDIX A
EXPERIMENT ANNOUNCEMENTS

ADDITIONAL INSTRUCTIONS - DESIGN I

1) Each participant will be paid one half of his/her earnings at the conclusion
of the experiment.

2) The experiment will continue for up to 20 rounds.

3) The actual number of periods in the experiment depends on the overall group
investment in Market 2. After each round, a random drawing will occur to
determine if the experiment will continue to the next round.

a) For every token invested in Market 2 by any participant, the
probability of ending the experiment increases by one-half percent. For
example:

If the group invests 50 tokens total in Market 2, the probability of
ending the experiment is 25%.

- If the group invests 21 tokens total in Market 2, the probability of
ending the experiment is 10.5%.

If the group invests all 200 tokens in Market 2, the experiment
automatically ends.

b) The drawing at the end of each round works as follows:

- A single card will be drawn randomly from a deck of 100 cards numbered
from 1 to 100.

If the number on the card is equal to or below the probability of
ending the experiment for that round (as determined by the group
investment in that round) the experiment ends. Otherwise the experiment
continues to the next round.

4) An Illustration: Assume each of the 8 members of the group invested 5 tokens
in Market 2 (for a total of 40 tokens). The probability of ending the
experiment would be 20Z. If the card randomly drawn had a value of 20 or
less the experiment would end. If the card drawn had a value of 21 or more
the experiment would continue to the next round.
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ADDITIONAL INSTRUCTIONS - DESIGN II

1) Each participant will be paid one half of his/her earnings at the conclusion
of the experiment.

2) The experiment will continue for up to 20 rounds.

3) The actual number of periods in the experiment depends on the overall group
investment in Market 2. After each round, a random drawing will occur to
determine if the experiment will continue to the next round.

a) If the group invests 40 tokens or less in Market 2, the
experiment automatically goes to the next round. (There is no
drawing 'to determine if the experiment ends.)

b) If the group invests 41 tokens in Market 2, the probability of ending
the experiment is 20.5%.

c) If the group invests more than 40 tokens in Market 2, the
probability of ending the experiment increases by one-half percent
for each token invested in Market 2 by any participant. For example:

If the group invests 50 tokens total in Market 2, the probability of
ending the experiment is 25%.

If the group invests 101 tokens total in Market 2, the probability of
ending the experiment is 55.5%

If the group invests all 200 tokens in Market 2, the experiment
automatically ends.

b) The drawing at the end of each round works as follows:

- A single card will be drawn randomly from a deck of 100 cards numbered
from 1 to 100.

If the number on the card is equal to or below the probability of
ending the experiment for that round (as determined by the group '
investment in that round) the experiment ends. Otherwise the experiment
continues to the next round.

4) An Illustration: Assume each of the 8 members of the group invested 6 tokens
in Market 2 (for a total of 48 tokens). The probability of ending the
experiment would be 24%. If the card randomly drawn had a value of 24 or
less the experiment would end. If the card drawn had a value of 25 or more
the experiment would continue to the next round.

5) Remember, if the group invests 40 tokens or less in Market 2, the
probability of ending the experiment is zero. The experiment automatically
proceeds to the next round.
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APPENDIX B

ACROSS PERIOD BEHAVIOR: TOKENS INVESTED IN MARKET 2

PERIOD

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

BASELINE

MEAN 92 74 74 66 71 79 72 73 75 63 64 67 75 67 69 67 65 61 65 68

DESIGN I

EXPERIMENT 1 36 36 44 25
EXPERIMENT 2 80 32 51 57
EXPERIMENT 3 49 60 72
EXPERIMENT 4 47 45 54 51 61 60
EXPERIMENT 5 70 60

DESIGN II

EXPERIMENT 1 45 40 41 44 36 51
EXPERIMENT 2 62 59 58
EXPERIMENT 3 78 45 63 64 67
EXPERIMENT 4 58 75 87 44 46 58
EXPERIMENT 5 50 21 28 45 30 28 38 36 34 38 44 50 42 40 37 42 42
EXPERIMENT 6 41 30 32 55 32 45 43 28 30 41 36 40 37 36 43
EXPERIMENT 7 55 50
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Table 1

EXPERIMENTAL DESIGN BASELINE
Parameters for a Given Decision Period

Experiment Type: ^ 25 Tokens

Number of Subjects 8

Individual Token Endowment 25

Production Function: Mkt.2* _ 23 (aq) -. 25 (Sq

Market 2 Return/unit of output $.01

Market 1 Return/unit of output $ . 05

Earnings/Subject at Group Max.** $.83

Earnings/Subject at Nash Equil. $.70

Earnings/Subject at Zero Rent $.63

bq — the total number of tokens invested by the group in market 2.
The production function shows the number of units of output produced
in market 2 for each level of tokens invested in market 2 .

Subjects were paid in cash one -half of their PLATO earnings. Amounts shown
are potential cash payoffs.



Table 2

DESCRIPTIVE STATISTICS: BASELINE
PERCENTAGE OF MAXIMUM RENTS ACCRUED
(mean - standard deviation - range)*

1X25: 5.32, 65.28, (-160 to 75)
2X25: -28.22, 106.40, (-382 to 97)
3X25: 13.41, 50.97, (-109 to 63)
Pooled: -3.16, 78.64, (-382 to 97)

All decision periods are used in calculating the descriptive
statistics. All experiments lasted 25 periods.



Table 3

DYNAMIC PROGRAMMING PATHS, DESIGN I

Optimum Path Subgame Perfect Equilibrium
Path

Periods
Remaining

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Aggregate
Investment

36.0
16.0
6.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

Optimal Value
Per Capita

246
380
506
631
756
881
1006
1131
1256
1381
1506
1631
1756
1881
2006
2131
2256
2381
2506
2631

Aggregate
Investment

64.0
61.5
59.7
58.3
57.3
56.6
55.9
55.5
55.1
54.8
54.6
54.4
54.3
54.2
54.1
54.0
53.9
53.8
53.8
53.8

Equilibrium
Value

141
243
318
375
419
453
479
500
516
529
539
547
554
559
563
566
569
571
573
574



Table 4

CPR INVESTMENTS IN DESIGN I EXPERIMENTS

EXPERIMENT

1

2

3

4

5X

AVERAGE TOKENS
INVESTED

35.25

55.00

60.33

53.00

65.00

NUMBER OF PERIODS
BEFORE DESTRUCTION

4

4

3

6

2

PERCENTAGE OF
OPTIMAL INCOME EARNED

18.8

22.06

16.45

35.43

10.52

NOTE: 1) COLUMN 4 - ACTUAL INCOME EARNED/ INCOME USING OPTIMAL PATH
2) X - SUBJECTS EXPERIENCED IN A DESTRUCTION EXPERIMENT



Table 5

CPR INVESTMENTS IN DESIGN II EXPERIMENTS

EXPERIMENT

1

2

3

4X

5

6

7

AVERAGE TOKENS
INVESTED

42.96

59.68

63.41

61.34

37.95

37.95

52.48

NUMBER OF PERIODS
BEFORE DESTRUCTION

6

3

5

6

17

15

2

PERCENTAGE OF
OPTIMAL INCOME EARNED

29.59

13.39

20.91

25.02

83.94

74.22

9.52

NOTE: 1) COLUMN 4 - ACTUAL INCOME EARNED/ INCOME USING OPTIMAL PATH
2) X - SUBJECTS EXPERIENCED IN A DESTRUCTION EXPERIMENT



FIGURE 1

THEORETICAL PREDICTIONS: BASELINE DESIGN
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