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Abstract 
Diffusions of new products and technologies through social networks can be formalized as 

spreading of infectious diseases. However, while epidemiological models describe infection in 
terms of transmissibility and susceptibility, we propose a diffusion model that explicitly includes 
consumer decision-making affected by social influences and word-of-mouth processes. In our 
computational model consumers’ probability of adoption depends on the external marketing 
effort and on the internal influence that each consumer perceives in his/her personal social 
networks. Maintaining a given marketing effort and assuming its effect on the probability of 
adoption as linear, we can study how the speed of the diffusion depends on the network structure 
and on consumer heterogeneity. First, we show that the speed of diffusion changes with the 
degree of randomness in the network. The speed is low in regular networks, it increases in small-
world networks and finally it becomes low again in random networks. Second, we show that 
heterogeneity helps the diffusion. Alteris paribus and varying the degree of heterogeneity in the 
population of agents results show that the more heterogeneous the population, the faster the 
speed of the diffusion. These results contribute to marketing strategies for the launch and the 
dissemination of new products and technologies. 
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Technological innovation drives the progress of societies. Any time a new technology, a new device, a new 

product appears into a society, its members have the chance to become aware of the innovation and to relate 
themselves to it. In western societies people encounter new inventions and technologies on a daily basis. When the 
innovation is a good whose consumption is individual, single consumers can decide whether to adopt it or not. The 
study of the diffusion patterns of new products into consumers’ societies, from their launch to their successful or 
unsuccessful adoption, closely involves managers and marketers whose interests are in disseminating new products 
in the society. Recently marketers’ attention has focused on the explosion of new fashions [Gladwell, 2000] and on 
the buzz that accompanies these explosions [Rosen, 2000]. Apparently, in highly social susceptible contexts like 
clothes markets, many innovations emerge from minor events that are strongly related with the dynamics of little 
local networks of friends. Then the new innovative fashion trend is adopted by some early adopters which are easily 
influenced by new trends and once the critical mass is reached, the diffusion and the number of adoptions gets at its 
peak. Almost all potential consumers decide to adopt and also laggards and skeptical consumers may decide to 
conform adopting the new product [Rogers, 1995]. 

The main branch of study about innovation diffusion modeling roots in the work of Bass, 1969. The Bass model 
formalizes the aggregate level of penetration of a new product emphasizing two processes of communication: (1) 
external influence via advertising and mass media, and (2) internal influence via word-of-mouth. The decision of a 
consumer is described as the probability to adopt the new product during time and it is assumed to depend linearly 
on two forces. The first force is not related to previous adopters and represents the external influence of mass media 
and the other force is related to the number of adopters and represents the internal influence of word-of mouth. 
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where f(T) / (1-F(T)) is the hazard function defining the probability of a consumer to adopt at time t, p reflects the 
mass media influence which is independent of previous adoption and q reflects the influence due to word-of mouth. 
This basic Bass model fits very well to real data of durable goods and many other variations of the model have 
appeared in order to explain different aspects of the diffusion. (For overviews see Mahajan and Muller, 1979 and 
Mahajan et al. 2000) The model displays a cumulative S curve of adopters and the fast growth is generated by the 
social interaction between early and late adopters [Rogers, 1995]. However, the aggregate Bass model assumes all 
consumers to be homogeneous. It does not specify at the micro level what is the consumer decision-making during 
time and how consumers communicate and influence each other. One of the rare examples of micro-level models of 
diffusion process in a traditional economic framework is the study of Chatterjee and Eliashberg, 1990. This study 
presents an analytical model of innovation diffusion based on an individual decision-making that determines the 
adoption of agents one by one. The decision of adopting depends on the characteristics of the consumers, namely the 
perception of the innovation, the personal preference and the perceived reliability of information. This model allows 
introducing heterogeneity in the individual parameters of the population of potential consumers and these specific 
parameters are tested by a pilot study conducted in an experimental laboratory setting. 
Although Chatterijee and Eliashberg’s model represents a complete framework that links individual decision-
making and the aggregate dynamics of innovation diffusion processes and it generates much interests on the impact 
of heterogeneity on diffusion models [Bemmaor and Lee, 2002], the analytical tractability of the model obliges to 
limited analysis of aggregated variables and of consumers characteristics. This holds both for the estimation of the 
parameters and in the laboratory experiments. 

Another big part of the research on innovation diffusion has focused on empirical studies that show the crucial 
factor of the structure of social interactions [Rogers and Kincaid, 1981; Valente, 1995] and on computational models 
that investigate the patterns of innovation diffusion through social networks [Abrahamson and Rosenkopf, 1997; 
Goldenberg et al., 2000; Weisbuch and Staffeur, 2000; Young, 2002]. These models are based on the similarities 
between viral marketing dynamics and disease diffusions [Moore and Newman, 2000; Newman, 2002; Dodds and 
Watts, 2005]. However, while these epidemiological models describe infection in terms of transmissibility and 
susceptibility, we propose a diffusion model that explicitly includes consumer decision-making affected by social 
influences and word-of-mouth processes. In fact the agents of our simulation model both decide according to their 
preference and are influenced by other agents’ decisions according to a threshold rule [Granovetter, 1978]. The 
model allows us to study the diffusion patterns in time for different markets. In particular, we focus our analysis on 
markets that differ in the social structure connecting the consumers, the strength of the social influence of the market 
and the heterogeneity of the consumers. 

 2



The model 
In our innovation diffusion model, all agents are connected in a unique network. The nodes of the network are 

the consumers and each link between two nodes represents a relation of friendship between two consumers. Such 
network can vary from completely regular (r=0) to completely random (r=1) [Watts and Strogatz, 1998]. On one 
hand, when the network is completely regular, agents are very clustered and any information takes long time in 
order to travel from a node to another distant node. On the other hand, when the network is completely random, 
agents are not clustered at all and any information is spread to all other nodes within a very short time. However, in 
the case in between (in the so called small-world area, 0<r<1), the network is both still very clustered and 
information spreads very fast to all the clusters of the network. The penetration of the product in the population of 
consumers is like an infection of a disease that propagates into this network. 

The probability of agent i to adopt the innovation depends on a constant external influence (marketing effort) e1 
and on an internal word-of mouth process: 
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Agents are involved in the word-of-mouth process if and only if at least one of their neighbors already adopted. 

In this case, they use a simple weighted utility of individual preference and social influence: 
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Ui,MIN specifies i’s minimum utility requirement and Ui,j is the utility agent i has if it adopts innovation j. The 
utility has two components that are threshold functions: individual preference yi and local social influence xi of i’s 
personal network; βj weights these two components and it represents how strong the social influence is in the market 
of product j. Concerning the individual part, pi is the individual preference of agent i and qj is the quality of the 
innovation j. Concerning the social influence hi is a threshold which determines the individual agent’s susceptibility 
to its neighbors’ behavior and Ai is the fraction of adopters in the Lth order set of alters of agent i (personal network) 
Agents included in i’s personal network are called alters. Direct friends are first alters (L=1), friends of friends are 
second alters (L=2) and so on. If the fraction of adopters in i’s personal network is higher than hi then the agent does 
feel social influence, otherwise it does not. The rationale of this formalization is the classical threshold mechanism 
of collective action: a consumer does not feel social pressure if just a few people around her/him behave in a 
particular way but once these people reach a certain number then he/she suddenly decide to change his/her mind and 
he/she behaves differently [Granovetter, 1978]. 

Diffusion is introduced in the population by external marketing effort e1 that is assumed to be given and linear 
during the development of the diffusion. During all the diffusion, any non-adopter agent is convinced to adopt with 
probability e1. Once an agent has adopted, other agents connected to it through their personal network become also 
aware of the innovation and they are involved in the word-of-mouth process evaluating their utility according to (3). 
Our analysis takes into consideration only a subset of the parameters’ space of the model. We set e1=0.001 and L=2 
assuming that the word-of-mouth effect is more relevant than marketing effort [Goldenberg et al., 2001] and that 
agents can see behaviors of their friends and behaviors of their friends’ friends. 

In order to compare different speeds under different conditions, we report the variations in the ρ indicator 
defined as 
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where T indicates the total cycles of the simulations, D(t) is the cumulative function of the adopters at time t, 
and f(t) is the number of adopters at time t [Arenas et al., 2000]. The ρ indicator allows us to compare different 
diffusions that reach the same number of adopters. Because the external marketing effort is given and constant, the 
speed of the diffusion is also a good indicator of how strong the word-of-mouth communication is in the market. 

In our analysis we investigate how the speed of the diffusion changes when consumers have very similar or very 
different social sensitivity thresholds. Then we use a beta function in order to vary heterogeneity respect to the 
threshold hi of agents in the population: 
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Notice that the beta distribution allows us to model the heterogeneity of the agent population from the 
homogeneous case (very high value for a and b) for which all agents have the approximately the same threshold to 
the uniform distribution (a=b=1) for which thresholds can vary randomly around the mean value. 

 
Experimental results 

We begin investigating a very social susceptible society (βj=1, hi=0.3). We varied the randomness in the 
network connecting the agents and observed changes in the speed of the diffusion. In Figure 1, each point represents 
the speed of diffusion in a network with a different degree of randomness (r). 
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Figure 1: The speed of diffusion ρ (after 200 time steps) varying the degree of randomness 

in the network 
 

When the network is very clustered, a group of innovators that start the diffusion can influence only local 
neighbors. Such influence is strong because the more clustered the group of adopters is, the higher its influence on 
non-adopters neighbors becomes. Thus, the diffusion travels along the network but it cannot be spread in another 
distant region of the network because of the absence of shortcuts. Consequently if some agents decide to not adopt 
the innovation, the word-of-mouth process dies and the only way to set the diffusion process again is by external 
influence. Then the time needed to convince all agents of the network to adopt is relatively low. The situation 
changes when adding a little randomness into the network. Then shortcuts allow the innovation to emigrate in 
different parts of the network and diffusions can succeed easily and spread very fast. Agents can see the spreading of 
diffusion in other clusters and they can import the fashion in their own cluster. At the same time, social influence is 
still very strong because the network is very highly clustered. We observe the maximum values of ρ for this small-
world area. Finally, when the randomness becomes very high, social influence is dimmed. Agents have a large 
number of contacts, the portion of adopters in their neighborhood is very low and there is a low internal influence on 
them to adopt. During the initial part of the diffusion, they may decide to adopt only because of external influence. If 
the external influence is low, then the critical mass will be reached very late and, only then, the rest of the 
population will be suddenly convinced to adopt. 
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In a following set of simulations we decrease the value of βj in order to study what are the dynamics diffusion 
in different markets, more precisely in markets with less social influence and where consumers decide more 
according to their personal preferences. We set pi=[0,1] and qj=0.5 assuming that agents have equal probability for 
positive or negative preference towards the innovation. (For an analysis of different personal preferences on hits and 
flops of innovations, see Delre, Jager and Janssen, 2004) We also let hi=0.3 assuming that adopters in personal 
networks are relatively more visible than non-adopters. 
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Figure 2: The speed of diffusion ρ (after 400 time steps) varying βi 

 
In Figure 2 the results of this set of simulations are presented. The effects of network structures decrease when 

markets are less socially susceptible. Decreasing the value of βj, the value of ρ depends less on the topology of the 
social network. The small-world area (especially for 0.01<r<0.1) remains the most favorable for the speed of 
diffusion but the values of ρ becomes closer to the speed of diffusion observed in more regular (r≈0) and more 
random (r≈1) networks. 

In the last set of simulation runs, we include heterogeneity in the populations. With the same parameters’ values 
as before, we observe a very high difference in the value of ρ between the homogeneous case and the uniform 
distribution case (hi=0.3  ρ=70.408 and hi=[0, 0.6]  ρ=128.769 after 150 time steps). Then we draw the value of 
hi from beta distributions varying the value of a and b in order to obtain different variance in the population that 
represents different degree of heterogeneity. We find that the more heterogeneous the population is, the higher the 
speed of the diffusion. In Figure 3, we show six S curves of diffusion for different degree of heterogeneity in the 
population of agents (homogeneous population, hi=0.3; a=12, b=28, σ2=0.005122; a=9, b=21, σ2=0.006774; a=6, 
b=14, σ2=0.01; a=3, b=7, σ2=0.019091; uniform distribution hi=[0, 0.6]). It is evident how the time needed to 
complete the diffusion is much smaller as the population becomes more heterogeneous. 
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Figure 3: The S curves of diffusion varying the degree of heterogeneity in the population 
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Conclusions 
Markets differ in many dimensions. Here we have presented a computational model that maintains to explain 

innovation diffusion dynamics in markets that differ according to the social structure that connects their consumers, 
the strength of social influence and the degree of consumers’ heterogeneity about their social susceptibility. 

There are markets, like those of little towns, where consumers are very clustered. This means that if a consumer 
A is a friend of a consumer B and the consumer B is a friend of a consumer C, then it is very likely that also B and C 
are friends. But there are also markets, like those of big cities, where consumers have more various kinds of 
relationships and such transitivity does not occur. Our model suggests that diffusions of new products and new 
technologies develop faster when consumers are connected in networks that are in between little towns and big 
cities. This means that innovations spread faster when in the groups of consumers there are both many internal 
relationships and enough external relationships. Many internal relationships make the influence of initial adopters on 
non-adopters very high and the external relationships facilitate the connections of different groups of friends. 

Moreover there are very high fashionable markets in which consumers communicate and influence a lot each 
others and there are other markets in which consumers decide only according to their personal preferences without 
considering whether others decide to adopt or not. Our innovation model proposes that innovations are more likely 
to emerge and expand faster in markets in which consumers take heavily into consideration what others do. It is 
easier to launch a fashion if the diffusion is set up in high socially susceptible contexts like groups of young friends 
that carefully observe what other peers do. 

Finally there are markets in which individual consumers differ a lot about their preferences and their social 
susceptibility to follow others’ behaviors. In our simulation experiments we can observe that diffusions are triggered 
easier and faster in more heterogeneous networks of consumers. Here a few innovators ignite the diffusion sooner 
than in a homogeneous consumer population because they are sooner imitated by some other consumers. 
Consequently the critical mass is reached sooner and also the innovation can be proposed sooner to other potential 
consumers. 
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