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Image and shape analysis are amongst the most challenging abilities to be replicated artificially.
One of the first important steps along these two tasks consists in obtaining comprehensive represen-
tations of the involved objects, capable not only of representing most of the original information,
but also of emphasizing their less redundant portions. The current work reports an approach to
shape characterization and classification which is based on trajectory networks, a special type of
knitted geographical networks where the connections take into account not only the proximity be-
tween nodes, but also an associated vector field, here assumed to correspond to the electric field
induced by the contours of the shapes. In this way, the original shape is mapped into a trajec-
tory network, so that its measurements can reveal important features of the shapes under analysis.
Optimal multivariate stochastic methods (namely discriminant analysis) are then applied in order
to identify the topological measurements contributing most effectively for the separation between
the objects to be analyzed and classified. It is shown that the weveral topological and geometrical
measurements contribute differently to the separation between the considered set of shapes. The
entropy of the angles defined by the edges, the number of nodes with degree 1, 4 and 5, as well as
an alternative type of entropy, are found to contribute more strongly to the discrimination between
the considered shapes. (Copyright Luciano da F. Costa, 2008)

PACS numbers: 89.75.Hc, 89.75.Fb, 89.75.-k

‘All the rest of the city is invisible. Phyllis is a space
in which routes are drawn between points suspended in
the void.’ (I. Calvino, Inivisible Cities

I. INTRODUCTION

Image and shape analysis remain two of the most
challenging human abilities to be reproduced artificially
(e.g. [1, 2]). While a substantial part of the involved
difficulties are related to the need to integrate previous
information and knowledge about the objects under anal-
ysis, another critical step corresponds to obtaining rep-
resentations of the objects and shapes which not only
encompass the majority of the original information, but
also emphasizes their most important, less redundant,
parts. Such a critical interplay between representation
and discrimination/classification can be better appreci-
ated from the diagram in Figure 1, which shows the basic
steps normally involved in image and shape analysis. We
have from this diagram that the original shape/object
is first transformed into a feature vector, incorporating
measurements about its geometry, which is then fed to
the classification methods. Therefore, a poor choice of
measurements undermines the classification stage. At
the same time, the choice of features should take into ac-
count the results of the specifically adopted classification
methods.

An important aspect which is often overlooked while
solving image and shape analysis and classification is
that the measurements and classification approach are
highly dependent on the specific set of images/objects
to be analyzed. In order to illustrate this important
principle, consider the toy data in Figure 2. Here we

FIG. 1: The main steps along shape analysis involve the cap-
ture of the image, the separation of its constituent objects
(segmentation), followed by the extraction of a meaningful
representation in terms of a set of features as well as the re-
spective identification of the category of each shape.

have 8 shapes which are clearly recognizable by humans.
Higher chances of proper identification of a given shape
as one of the 8 forms in Figure 2 are achieved in case
the representation of the shapes takes into account their
most discriminative features. For instance, a potentially
good feature to differentiate a triangle from a square is
their respective number of vertices, which can be iden-
tified from curvature peaks (e.g. [2–5]). Good features
typically remove the redundancy in the original object,
leaving out only the most important geometrical varia-
tions (e.g. there is little profit in considering all points
between the extremities of a straight line segment). It
is also often expected that a good set of features be in-
variant to specific geometrical transformations such as
rotation, translation and scaling. The unmatched per-
formance of the human visual system is to a great extent
accounted by the incorporation of such principles.

The current work presents a comprehensive approach
to shape representation, analysis and classification based



on complex networks concepts and methods, as well as
optimal multivariate stochastic tools, namely discrimi-
nant analysis [6–8]. In particular, we suggest that the
original objects and shapes be represented in terms of
trajectory networks [9], so that the geometric features
of the shapes under analysis can be quantified in terms
of measurements of the topology and geometry of the
respective trajectory networks. Then, by applying dis-
criminant analysis we identify which of the topological
measurements contribute the most for the separation be-
tween the objects to be classified as quantified by an ob-
jective optimality criterion involving the inter and intra
scattering matrices [2, 6, 7].

Complex networks research (e.g. [10–14]), i.e. the
study of graphs with specially intricate connectivity, are
currently among the most dynamic and important scien-
tific and technological areas because of the generality of
networks for representing, characterizing, analyzing and
modeling virtually any natural or human-made system
composed (or decomposable) of discrete parts. Images
are no exception, as they exhibit discrete organization at
all scales of observation. For instance, at the more micro-
scopic level, images are ultimately composed by picture
elements, or pixels. At larger scales, images can be un-
derstood as being composed of several objects. At the
same time as these components have well defined po-
sitions and orientations, the relationships between them
are as much important as far as their identification is con-
cerned. Complex networks can not only represent each
object as a respective node, but also make explicit the
interrelations between the objects by representing them
as edges. In particular, networks whose nodes have well-
defined positions are said to be geographical. Another
important supercategory of complex networks, recently
introduced [15, 16], corresponds to the knitted networks,
characterized by the fact that their connections are given
by paths along the nodes.

A growing number of graph and network-based ap-
proaches to image and shape analysis has been reported
in the literature (e.g. [17–25]). Several approaches are
based in considering pixels or points distributed along
the images as corresponding nodes, while the connections
are established as a consequence of gray-level similar-
ity (e.g. [18, 19, 22, 23, 26]) or proximity/connectivity
(e.g. [24, 25]). At a higher spatial scale, nodes are as-
signed to parts of the images or objects, while the connec-
tions are implemented by taking into account proximity
and adjacent between the parts.

The representation of the visual information suggested
in this article involves mapping shapes into respective
trajectory networks. First, it is necessary to assign a
vector field to each shape, which can be done by es-
timating the respective electric induced by its contour
(e.g. [27]). A set of nodes are uniformly distributed (ran-
domly) inside the object or shape of interest, and trajec-
tories are initiated [9] from randomly chosen nodes. At
each time step as the trajectories unfold, points which are
no further than a maximum distance are chained into the

growing path. Figure 3 illustrates trajectory networks
obtained from the shapes in Figure 2 by using such a
methodology. Though remindful of diffusion-limited ag-
gregation (DLA) [28, 29], the obtained trajectory net-
works exhibit more aligned branches, a consequence of
the locally parallel lines of force.

Once the trajectory networks are obtained for the
shapes under analysis, several measurements can be ex-
tracted from them. We consider two main types of fea-
tures: (i) topological and (ii) geometrical. The former cat-
egory of measurements depends only on the interconnec-
tivity between the nodes, therefore including the node de-
gree, clustering coefficient, assortativity, amongst many
other possibilities [14]. The geometrical measurements
are obtained by considering the geometrical properties of
the network, such as the angles of its edges and lengths
of edges and involved shortest paths.

Because of the virtually infinite number of topolog-
ical and geographical measurements of networks which
can be considered for the respective characterization and
classification, it is important to take into account sound
methods which allow the choice of the most effective fea-
tures. In this work we resource to scatterplots defined by
pairs of measurements as well as to discriminant analy-
sis, which ensures optimal separation of the shapes with
respect to an objective criterion taking into account the
inter and intra-class dispersion between the shapes.

This article starts by reviewing the related basic con-
cepts and follows by presenting the results obtained for
the characterization and classification of shapes. Sev-
eral findings are reported, including the identification of
the features, among those considered in this work, which
most contribute to the separation between the shapes.

II. BASIC CONCEPTS

A. Complex Networks Representation and
Topological Measurements

An undirected, unweighted complex network, namely
a graph with specially intricate structure, can be com-
pletely represented in terms of its respective adjacency
matrix K. The presence of an edge extending from
node i to node j implies K(j, i) = K(i, j) = 1, while
K(j, i) = K(i, j) = 0 expresses the absence of that con-
nection. The immediate neighbors of a node i correspond
to those nodes which receive an edge from i. The degree
of node i can be defined as being equal to the number of
its immediate neighbors. Two nodes are said to be adja-
cent whether they share an edge; two edges are adjacent
if they share a node. A sequence of adjacent edges de-
fines a walk. A path is a walk which never repeats either
edges or nodes. The length of a walk or path is equal to
the number of its constituent edges.

In this work we consider the number of nodes with
degrees 1 to 5, henceforth abbreviated as k1, k2, k3, k4
and k5, as topological measurements of the trajectory
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FIG. 2: The 8 shapes taken into account for the characterization and classification experiments reported in this article.

networks. Observe that k1 correspond to the number
of extremity nodes of the trajectory networks, while the
nodes with higher degree tend to be located more cen-
trally within the shapes. These measurements can be
immediately obtained at little cost from the respective
adjacency matrices.

B. Trajectory Networks and Respective
Geometrical Measurements

Trajectory networks are a special type of geographi-
cal (e.g. [30]) and knitted networks [16] characterized by
the fact that each of their nodes possesses a well-defined
spatial position while the edges follow an imposed vec-
tor field. Trajectory networks are related to gradient
networks (e.g. [26, 31–33]) – where the connectivity is es-
tablished by taking into account differences between fit-
ness values assigned to nodes, field interactions [21, 34] –
where the connections between nodes in geographical net-
works are defined in terms of imposed fields, and dynam-
ical systems (e.g. [35, 36]) – in which attractors and spe-
cific regions of the phase space are represented as nodes
while the trajectories between them are represented by
the edges.

In the present work, we focus our attention on tra-
jectory networks defined by respective shapes. Given
a shape, henceforth understood as any set of connected
points [2], it can be represented in a digital binary image
by some sampling scheme, so that groups of the orig-
inal points in the shape are represented by respective

pixels set to 1, while the background is represented by
pixels with value 0. The so-obtained digital shapes can
also be understood as sets of connected pixels. Given
a digital shape, its contour or border can be immedi-
ately extracted by marking every pixels which belongs
to the shape (i.e. has value 1) and has at least one of
its 4-neighbors equal to 0. Interestingly, the border of a
shape captures all the information about its geometry, in
the sense that the original shape can be perfectly recon-
structed by filling with ones the interior of the contour.

Given a digital shape and its border, the method
adopted in the present work to generate respective tra-
jectory networks is as follows. In order to define the
respective vector field, each of the pixels along the digi-
tal shape contour are understood as an electrical charge,
so that a field of force is immediately established around
the border. A particularly efficient way to calculate the
vector field along the digital image lattice is to use the
Fourier transform to perform the two convolutions re-
quired to calculate the x− and y−components of the
vector field [27]. Though in the present work we focus
our attention on the field in the interior of the shapes,
interesting results can also be obtained by considering
trajectory networks defined with respect to the electri-
cal field outside the shape. We assume repulsive force
between the border of the shape and probe charges at
each of the interior points, and the so-obtained vector
field is normalized so that every vector has unit magni-
tude (this ensures constant speed magnitude during the
trajectory calculations). Then, a set of N points/nodes
are uniformly distributed (randomly) within the shape,
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FIG. 3: Examples of trajectory networks obtained for each or the shapes in Fig. 2. A total of 1500 poits were distributed
uniformly and Np = 400 paths were obtained by following the trajectories defined by the shape borders after starting from a
randomly chones node. The maximum distance for attaching new nodes to the tip of a growing path was set as Dp = 2.

i.e. the region of the digital image defined by pixels with
value 1. We henceforth fix the value of N in order to
obtain invariance of the measurements to scaling: recall
that trajectory networks obtained from circles (or other
shapes) with different sizes by using the same number
of spatially distributed points will tend to be invariant
to the scale, represented by the size of the circles. A
subset of Np of nodes are then selected as the origins of
the trajectories/paths. For each of these nodes, a tra-
jectory is obtained by following the orientation of the
respective vector field. At each step, the node which is
closest to the current extremity of the growing trajec-
tory, provided it is at a distance not exceeding Dp from
the extremity, is linked into the respectively associated
path. As a consequence of such a network growth scheme,
the obtained trajectory networks present a predominant
branching structure, with paths extending from the pe-
riphery of the network (i.e. close to the shape border)
into its more central portions, which are associated to
the shape skeleton (e.g. [2]). So, to a great extent the ob-
tained trajectory networks present a tree-like structure,
though several cycles are also obtained as a consequence
of connections between adjacent trajectories.

Because geographical networks, such as the trajectory
networks, are characterized by the fact that their nodes
have well-defined spatial positions, it is possible to con-
sider a large number of measurements defined from such

an information. Such geometrical features can be used in
order to complement the information about the network
connectivity provided by the respective topological mea-
surements (e.g. node degree and clustering coefficient).
Two important geometrical information which can be
quantified relates to the angles and distances through-
out the networks. In the case of the currently assumed
trajectory networks, the distances between nodes do not
provide a useful measurement because they are to a great
extent an immediate consequence of the uniform distri-
bution of the N points, and such stochastic distributions
of points are known to have well-defined (e.g. [37]) inter-
point distances depending only on the density of points,
which is assumed fixed in the present investigations. On
the other hand, distances between pairs of points con-
sidering the length of each edge are computationally ex-
pensive to be calculated, so they are also not considered
here. We focus attention on the angles of each of the
edges, which can be immediately calculated from the co-
ordinates of the two respectively involved nodes. More
specifically, for each edges (i, j), we calculate the respec-
tive angle:

a(i, j) = tg−1

{
yj − yi

xj − xi

}
(1)

Observe that such angles are intrinsically related to



the vector field orientations, being almost tangent to the
lines of force.

Because for each trajectory network we have several
angles, we consider their respective distribution, rep-
resented by a relative frequency histogram h(i), i =
1, 2, . . . , H. However, such histograms still imply several
measurements for each network, so that it is interesting
to considering functionals capable of mapping such dis-
tributions into a single measurements. In this work we
resource to the entropy of the angle distribution, defined
as:

e = −
∑

i,h(i) �=0

h(i)log(h(i)) (2)

Interestingly, this functional of the angle distribution
is naturally invariant to the orientation of the original
shape (different orientations will shift the histograms,
but do not change their relative frequency values). In
order to try to obtain additional information about the
geometry of the trajectory networks, we also consider the
two following alternative entropies: (i) the entropy of the
relative frequency histogram of the angles to the third
power; and (ii) the entropy of the smallest relative fre-
quencies. More specifically, the first of these alternative
entropies is given as:

e1 = −3
∑

i,h(i) �=0

h(i)3log(h(i)) (3)

The second entropy, e2, is obtained by sorting the rela-
tive frequency histogram h in descending order and con-
sidering only its second half, i.e. the H/2 smallest rel-
ative frequency values. Therefore, we have a total of 3
geometrical measurements for our trajectory networks:
the classical entropy e and two variations e1 and e2. All
these three measurements can be immediately calculated
from the angle distribution.

C. Inter- and Intra-Class Dispersions and
Discriminant Analysis

Once the trajectory networks obtained for the shapes
under analysis have been obtained and their respective
topological and geometrical measurements calculated, we
typically proceed with the respective characterization
and classification. Among the fundamental questions
which are considered at this stage, we want to know
how the shapes relate one another, in the sense of being
similar or distinct (characterization and analysis). We
may also want to assign a category to a newly presented
shape (classification [2, 6, 8]). Such tasks are often chal-
lenging because of several factors including the statistical
variation of the objects, the effect of the choice of mea-
surements, the high dimensional spaces often implied by
them, as well as the lack of a large number of samples and

prototypes. A particularly effective approach to charac-
terization, analysis and classification of patterns consists
in taking into account the performance of several com-
binations of features as far as the separation of the cat-
egories of objects are concerned. Let C be the number
of involved categories of shapes (each category is repre-
sented as Ci, i = 1, 2, . . . , C), each with respective P (i)
samples, with i = 1, 2, . . . , C. In addition, assume that
each of these samples j, j = 1, 2, . . . , T , has been charac-
terized by M measurements, represented by the respec-
tive feature vector �fj. Observe that T =

∑C
i=1 P (i). The

overall separation of the C categories can be quantified in
several ways (e.g. [2, 6]), for instance by taking into ac-
count the dispersion inside each category as well as the
dispersion between the categories. Usually, one wants
the intra-class dispersion to be small compared with the
inter-class dispersion. These two types of dispersions can
be properly quantified by their respective scatter matri-
ces. The total scatter matrix, S, expressing the overall
dispersion of the measurements is defined as:

S =
T∑

j=1

(
�fj − �μ

)(
�fj − �μj

)T

(4)

where μ is the average feature vector considering all
observations. The scatter matrix for each class Ji is given
as:

Si =
∑
v∈Ci

(
�fv − �μi

)(
�fv − �μi

)T

(5)

where �μi is the mean feature vector of the observa-
tions inside each class Ci. The intra-class scatter matrix
quantifying the dispersion within each class is defined as:

Sintra =
M∑
i=1

Si (6)

The inter-class scatter matrix, corresponding to the
dispersion between categories, is given as:

Sinter =
C∑

i=1

Ni (�μi − �μ) (�μi − �μ)T (7)

Therefore,

S = Sintra + Sinter. (8)

The quality of the overall separation between the cate-
gories can be quantified in several ways (e.g. [6]). One of
the most commonly adopted functionals expressing the
separation between the classes is given as:



J = trace{S−1
intraSinter} (9)

It can be shown that J tends to increase for large
inter-class dispersion and small intra-class dispersions.
Discriminant (or canonical) analysis can be used to ob-
tain the optimal linear combination of the measurements
which maximizes J . The linear transform which maxi-
mizes J is given as:

�Fv = Γ �fv (10)

where Γ = [ �γ1, �γ2, . . . , �γd]T corresponds to matrix com-
posed by the eigenvectors of the matrix S−1

intraSinter, with
the respective eigenvalues to be arranged in decreasing
order. By taking only the R initial eigenvectors, the di-
mensionality of the measurement space can be reduced
while ensuring maximum separation between the cate-
gories as quantified by J . Because J depends on the
chosen measurements �f , we henceforth express j as a
function of the adopted features, i.e. J = J(�f).

III. RESULTS

The experiments reported in this article involved the
generation of 30 realizations of trajectories networks for
each of the shapes in Figure 2. The number of points
uniformly distributed inside each of the shape was al-
ways equal to 1500 nodes, ensuring scale invariance. A
total of Np = 400 trajectories were followed from ran-
domly selected nodes for each realization, and nodes were
attached to growing trajectories provided they were no
further away than Dp = 2 pixels apart from the tip of
each trajectory. Figure 3 illustrates realizations obtained
from each of the 8 shapes in Figure 2. Observe that the
trajectories are not independent one another, in the sense
that one trajectory typically connects to other adjacent
trajectories.

We calculated the following measurements for each of
the realizations of the trajectory networks: (a) number of
nodes degrees with degrees 1 to 5, henceforth represented
as k1, k2, k3, k4 and k5, respectively; (b) the entropy of
the distribution of the angles of the edges (e); (c) the en-
tropy of the values of the distribution of the angles of the
edges to the third power (e1); and (d) the entropy of the
upper half of the angle distribution sorted in descending
order (e2). Therefore, we have 5 topological features (k1
to k5) and 3 geometrical measurements (e, e1 and e2).
Figure 4 shows the scatterplots obtained by considering
several two-by-two combinations of such measurements.

The combinations of k2, k3 and k4 yielded rela-
tively poor separations. More specifically, we obtained
J(k2, k3) = 1.61, J(k2, k4) = 2.90 and J(k2, k4) = 3.90.
It is clear from the scatterplots in Figures 4(a-c) that
the measurement k2 contributes little to the separation
between the classes of shapes, with k3 and k4 providing

increasing levels of separation, particularly regarding the
categories ellipse/rectangle and cross. The other cate-
gories are virtually undistinguishable while considering
k2, k3 and k4.

On the other hand, as it is clear from Figures 4(d-
f) the angle entropy e allowed a much better separation
between the classes of trajectory networks. More specifi-
cally, we obtained J(e, e1) = 13.49, J(e, e2) = 12.18 and
J(e, k1) = 12.84. Basically, the left-hand half of the scat-
terplots in Figures 4(d-f) corresponds to ellipses, rhom-
bus, circles and triangles, while the right-hand half con-
tains the squares, pentagons, crosses and circles. Observe
that the latter categories corresponds to more circular
shapes, which tend to produce a more uniformly varying
distribution of trajectory orientations and, consequently,
higher entropies. On the other hand, the less circular
objects in the former categories tend to imply heteroge-
neous angle distributions, decreasing the respective en-
tropies. Interestingly, the alternative entropy e1 allowed
further separation between the left-hand group, namely
grouping triangles together with rhombuses and ellipses
together with rectangles, which are indeed geometrically
similar as far as their elongations are concerned. The sec-
ond alternative entropy, e2, had little effect in increasing
the separation between the shape categories. Interest-
ingly, the consideration of the measurement k1, shown in
Figure 4(f), allowed a marked separation of the crosses
from the remainder categories, but contributed little to
the separation of the latter. This effect can be explained
as a consequence of the fact that the number of nodes
with degree 1 (i.e. extremity nodes) tend to be propor-
tional to the perimeter of the respective shapes, and the
cross had the longest perimeter (relatively high values of
k1 are also observed for rectangles and ellipses, while the
smallest perimeters have been obtained for the circles).

So far we have only considered two-by-two combina-
tions of the 8 topological and geometrical measurements.
We now apply discriminant analysis over all these mea-
surements, obtaining the scatterplot shown in Figure 5
with respective J(discr) = 24.58 (considering only the
two canonical variables v1 and v2). In case all 8 the mea-
surements are taken into account, we have J = 27.98, so
that the two-dimensional projection retains most of the
maximum separability that would be allowed by consid-
ering the full original measurement space. It is clear that
the consideration of all the 8 measurements allowed a
substantial improvement in the separation between the
trajectory networks. The weights of the linear combina-
tions yielding the canonical variables v1 and v2 are given
in Table I. In order to allow a more direct interpretation
of these weights as corresponding to the contribution of
each measurement for the separation between the cate-
gories, the measurements were standardize [2, 6]. Such
a standardization corresponds to subtracting each mea-
surement from its average and dividing by the respective
standard deviation. The new measurements are guaran-
teed to have null average and unit standard deviation,
with most of the values falling within the interval from



-2 to 2. Therefore, the weights provided by the eigenvec-
tor components correspond to the larges absolute value
eigenvalues express to the contribution of the respective
measurement to the canonical variables. We have from
Table I that the angle entropy e provides the most impor-
tant contribution for the separation of the considered tra-
jectory networks, followed by the number of nodes with
degree 5 (k5) and 4 (k4), and the first alternative entropy
e1. The number of extremity nodes (k1) also contributed
strongly for the second canonical variable v2. The contri-
butions of the other measurements are relatively smaller.

The distribution of the samples of the several cate-
gories in the scatterplot in Figure 5 can be interpolated
by the Parzen windows approach and used for Bayesian
decision theory [2, 8, 14], allowing optimal correct classi-
fications given the provided data. More specifically, such
optimal performance is allowed also as a consequence of
the proper choice of measurements identified by the dis-
criminant analysis. In other words, it is this integration
between the choice of measurements and classification
stages that make the overall approach particularly effec-
tive.

IV. DISCUSSION

It is clear from the obtained results that the trajec-
tory network representation of the original shapes does
allow clear discrimination between the involved shape
categories. We found that each of the considered topo-
logical and geometrical features contributed quite differ-
ently to the separation between the trajectory networks.
In particular, the angle entropy allowed the overall best
discrimination, followed by the number of nodes with de-
grees 4, 5 and 1, as well as the first alternative entropy
corresponding obtained from the third power of the angle
relative frequency histograms. Interestingly, except for
k4 and k5, all other features are directly or indirectly re-
lated to the geometrical properties of the original shapes.
For instance, all angle entropies are direct geometrical
measurements, while the number of extremity nodes (i.e

TABLE I: The values of the weights of each of the 8 stan-
dardized measurements in the linear combinations yielding
the canonical variables v1 and v2.

Measurement v1 v2

entropy e 0.86 -0.96

alt. entropy e1 0.22 0.22

alt. entropy e2 -0.11 0.14

k1 -0.12 -0.29

k2 0.10 0.01

k3 0.11 0.05

k4 0.24 0.24

k5 0.33 0.27

k1) is related to the perimeter of the original shapes.
Among the topological features, we found that the nodes
with higher degree tend to be more discriminative. We
did not consider higher degrees because they become in-
creasingly less represented and unstable in the trajectory
networks. For instance, nodes with higher degrees tend
to appear sporadically in trajectory networks obtained
from a same original shape, implying statistical noise.

At this point in our work, it is interesting to identify
the main advantages and disadvantages of the trajectory
network approach to shape analysis. Among the advan-
tages, we have:

* Simplicity: Contour detection and trajectory follow-
ing are easy and fast to obtain, and the 8 adopted mea-
surements can be immediately calculated at low numeri-
cal cost;

* Invariance: The trajectory network approach to
shape analysis is naturally invariant to scaling, orienta-
tion and translation.

* Few involved parameters: Only three parameters are
involved: the number Np of trajectories, the number N
of spatially distributed points, and the distance Dp con-
sidered while joining new nodes into the growing trajec-
tories/paths.

* Integration of complex networks and shape analysis:
The trajectory network approach to shape analysis nat-
ural and intrinsically integrate the two important ma-
jor areas of complex networks and image analysis. This
paves the way for intense cross-fertilization between these
two fields, allowing not only complex networks concepts
to be applied to shape analysis, but also the other way
round.

The disadvantages of the approach are mainly related
to the fact that distinct, though intrinsically similar, tra-
jectory networks are obtained for the same given shape.
This is a consequence of the random distribution of the
N points. The consideration of fixed sets of nodes implies
a certain level of orientation anysotropy.

V. CONCLUDING REMARKS

The current article has reported an integrated ap-
proach to shape analysis based on two principal concepts:
(i) representation of the original shapes in terms of re-
spective trajectory networks, and (ii) the integration of
choice of measurements and discrimination/classification
between the categories. It has been shown that trajectory
networks do provide enough information about the origi-
nal shapes so as to allow their discrimination in terms of a
reduced set of topological and geometrical measurements.
High quality separation (with respect to the quality func-
tional J) can be obtained by considering the two canon-
ical variables identified by discriminant analysis. These
two variables have been found to be predominantly influ-
enced by the angle entropy, number of nodes with degrees
1, 4 and 5, as well as the alternative entropy obtained by
considering the third power of the histogram of relative



frequencies of the angles of the edges. It has been found
that the number of nodes with medium degrees (except
for the number of extremity nodes, which is also impor-
tant) tend to contribute more intensely to the discrimina-
tion between the trajectory networks. In brief, we have
shown that it is possible to discriminate between shapes
represented in terms of respective trajectory networks.
We have also identified among 8 topological and geomet-
rical measurements, those which contribute the most to
the separation between the categories. However, the con-
tributions of this work extend further than classification
of shapes. More specifically, wider contributions and im-
plications of the reported concepts and methods include:

Integration of complex networks and shape analysis:
The combination of complex networks and shape analysis
concepts and tools allows two-direction cross-fertilization
between these two areas, allowing not only concepts from
complex networks research to be applied for shape anal-
ysis, and vice-versa. For instance, it would be interest-
ing to consider the application of methods such as skele-
tonization [2] and watersheds on complex networks. Pre-
liminary steps in the integration of mathematical mor-
phology, an important area in shape and image analysis,
and complex networks have been provided in [38]. The
use of the transition probabilities obtained by assuming
some specific dynamics, such as self-avoiding walks, has
also been found to allow the identification of the borders
of networks [39, 40].

Alternative entropies: The entropy of a distribution
provides a particularly relevant summarization of its
overall structure. In the case of the shape analysis prob-
lem addressed in the present work, the angle entropy al-
lowed invariance to rotation of the shapes as a conse-
quence of the fact that such rotations only shift the re-
spective relative frequency histograms, but do not change
their respective intensities, which are the only values con-
sidered during entropy calculation. In addition, entropy
is naturally connected to information (e.g. [41]). Because
of such special properties of the entropy of a distribu-
tion, it becomes interesting to devise means to obtain
additional information from the original distribution by
considering alternative definitions of entropy. Two such
variants have been considered, possibly for the first time,
in the present work. The first alternative entropy cor-
responds to the calculation of the entropy of powers of
the original distribution values. Such a measurement
was found to enhance the separation between some cat-
egories of the considered shapes. The second type of en-
tropy used in this work is obtained by sorting the relative
frequency values and calculating the traditional entropy
only of half of the so-obtained distribution. Though this
type of entropy was verified to contribute little to the sep-
aration between the trajectory networks associated to the
8 categories of shapes taken into account in this work, it
is possible that such an alternative definition of entropy
can provide valuable results in other occasions.

New type of geographical knitted network: Though tra-
jectory networks have already been addressed [9], the

derivation of such networks from respective shapes pro-
vide a new subcategory of networks which is interest-
ing for several reasons. In particular, these networks are
mostly tree-like and have their extremity points closely
related to the borders of the original objects, so that
trajectories with specific geographical structures can be
easily designed from the respective shapes (e.g. a ‘spiral’
network can be easily derived from the shape of a spiral).
This approach can also be considered for modeling real-
world systems, such as the establishment of roads in an
Island or growth under influence of boundary conditions.

A new way to transform a shape into a network: The
use of vector fields defined by the shapes in order to ob-
tain the respective network representation corresponds
to a new way to map a shape into a graph. Previous
approaches (e.g. [21]) involved the distribution of nodes
along the borders of the shape. The transformation sug-
gested in this work is simple and involves little computa-
tional efforts, especially if the spectral methodology re-
ported in [27] is adopted.

Several are the possibilities for future work motivated
by the concepts and findings reported in the current ar-
ticle. These possibilities include:

Other topological and geometrical measurements of
networks: Though we considered 8 relevant measure-
ments of the topology and geometry of trajectory net-
works in this work, it would be interesting to take into
account other measurements (e.g. [14]). Of special in-
terest would be to obtain hierarchical measurements
(e.g. [14, 38]) for several of the nodes of the trajectory
networks and investigate the respective potential for dis-
crimination between the networks.

Other types of fields: Vector fields other than electrical
can be associated to a given shape. Of special interest
are fields defined by other powers of the distance from
the border, as well as the consideration of distance fields
(e.g. [42]).

Preferential trajectory networks: Given a shape, it is
possible to obtain a respective network representation by
considering preferential attachment. This can be done
by distributing N nodes within the interior of the shape
and then connecting these nodes to the points along the
shape contour with probability varying inversely with the
respective distances. So, the points which are closer to
high curvature points tend to become more connected
to the border. Once such connections between the N
points and the respective shape contour are established,
it is possible to apply the rich get richer attachment pro-
cedure to obtain the whole network. It would be partic-
ularly interesting to investigate whether such networks
allow better separation between the respective shapes by
applying the methodology reported in the current article.

Systematic investigation of alternative entropies for
pattern recognition: The two types of alternative en-
tropies proposed in this work seem to present potential
for providing additional information about the respective
distribution while retaining the advantages of traditional
entropy, namely its invariance with permutations of the



values considered for the calculation of the relative fre-
quencies. It would be interesting to consider such alter-
native entropy measurements in other types of pattern
recognition problems, as well as considering other sets of
shapes, in order to better evaluate the potential of such
alternative features.

Extension to gray-level images: Though we have fo-
cused our attention on trajectory networks obtained by
considering vector fields defined by shapes, it is immedi-
ate to extend such an approach to gray-level image anal-

ysis by considering the respective vector fields to be given
by the gradient of the scalar field of gray-level intensities.
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FIG. 4: The scatterplots obtained for the 30 realizations of trajectory networks obtained for each of the 8 considered shapes
while considering several two-by-two combiations of the 8 adopted topological and geometrical measurements.



FIG. 5: The distribution of the 30 realizations of each of the
8 trajectory networks types (obtained for each of the 8 shapes
in Fig. 2) as derived by discriminant (canonical) analysis con-
sidering all the measurements (i.e. the number of nodes with
degree 1 (k1), 2 (k2), 3 (k3), 4 (k4) and 5 (k5), the angle
entropy e, as well as the two alternative entropies e1 and e2.


