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ABSTRACT

A voting gane is a non-transferable utility (NTU ganme with a
sinmple gane structure. \hen the Shapl ey- Shubi k index of a sinple game
is strictly positive, then the corresponding voting ganme has a strict
NTU val ue. Moreover, the Shapl ey-Shubik index is the unique NTU val ue
for a certain class of voting games. These results lead to a solution
of the problemof a group choosing its |eader.



1. Introduction.

The situation often arises in which a group must select one of
its members for some position or office, the responsibilities and
powers of which are indivisible. Such is the case for instance when
an academic department elects its charman or a legislative body
elects its gspeaker. An extreme example occurred during the American
Civil Wa, when sore military units elected their commanders. As
in any social choice problem, the outcome depends on the voting rule
and the preferences of the individuals concerned. This paper
analyzes these situations as cooperative ganes with non-transferable
utilit-y (NTU), called voting games, and proposes as their solution
the NIU value.

Besides its social choice interest, the study of the NIU value
of voting games has an additional motive. Recently a series of
articles highly critical of the NIU value has appeared [4,6,7] .

Ore response, as in Auman  [2], is to present instances where the
NIU value leads to reasonable results. This paper shows that the
NIU value of voting games gives results at least as reasonable as
those of the Shapley-Shubik index [9] for simple games. Indeed,
the Shapley-Shubik index is the NIU value of a certain class of
voting games (Proposition_3-). More&&er, a large class of voting
ganes have only strict values (Proposition 1), even though these
games are not covered by either of the axiomatizations of the
strict NTU value which have recently appeared [1,5 ] . It appears
that a comprehensive axiomatization of strict NIU values is still
to come

The paper is organized as follows. The next section formalizes
voting gamnes and their NIU values. Section 3 ‘studies general properties
of the NIU values of such games. The final-two sections compute Lme
specific examples where political powva is evenly and unevenly

distributed, respectively.



2. Model of the QOfficer Election Problem

Let N be a finite set of players, numbered 1,2,...,n. A coalition
S is a subset of N. The group has to choose one of its members for a
certain position, whose powers and responsibilities are indivisible.
Each player has a von Neumann-Morgenstern utility over N. Let
b= (pl,...,pn) be a lottery over the player set. Then player i's

utility function ui(p} is assumed to satisfy:

u lp) = > u..p. (1)
J

u,, = 1 {2)

(2) is a normalization, implying that each player would like to be -
chosen for the position. Condition (1) requires that utility be
additively separable across players. It is convenient teo assume

also that

for all i,j uij = o or 1, (3)
(3) is restrictive; however, most of the results go though under
the assumption that uij 2 ©. The motivation for {(3) is that one
can interpret cutcomes in the model as the probability that a player
approves of the group choice, uij = 1 dencting approval and uij = 0
denoting disapproval of j's choice by i. The matrix U with typical
elenent uij therefore contains all relevant information about
players' preferences.

The voting rules are assuned to induce a simple game structure
with ccalition function w. In particular, w is a strong, proger,
monotonic simple game with at least the grand coalition winning.

A player i is pivotal for coalition S when § is losing but Sw ¢ i}
is winning. The Shapley-Shubik index ¢ w{{i])} is the probability
that player is pivotal for coaliticn § in a random.ordering of N,

-when all random orderings are equally likely. Player i has a veto

if he belongs to every-winning coalition.



The voting game based on U and w has the coalition function
v(S) , telling what the mambas of S can assure themselves of. A
losing coalition S can only assure its membas of utility o. A winning
. coalition can choose the officeholder from amang its om members
Players outside such a coalition have the fixed threat of not serving.
No generality is lost by assuming that a winning coalition chooses
a lottery p over its manbas v (S is thus given by:

'ui, iin 8: u<€Up
i g winning

u, . = o, inot in 8
i P y

vis) = {ui o, all i} S losing.

To compute an NTU value of the voting game v, introduce a vector

of nonnegative weights)\= (-\1, . ..,,\n) . at least one of which is positive.

Define the transfer function V’\(S) such that

—
max & Au,
i1

v (S) .= S winning (4)

v (8}

4

k o S losing.

Then an NTU value of the voting game is a utility vector u in v{N),
such that

(v (it = A, | (5)

for every player i, where "fv,\ is the Shapley value of v\ .
Shapley's result [8] shows the existence of a solution to (5) for

finite games.



3. Strict NTU Values of Voting Games

An NTU value is called strict if it i{s strictly positive. The
strictness of the NTU value of a voting game is implied by the strict
positivity of the Shapley-Shubik index of w. A player is called a dummy
if his Shapl ey-Shubik index is o¢. O©One has the following:

Proposition 1. BSuppese that no player in a voting game is a dummy.

Then every NTU value of the voting game is strict.

Proof. It follows from (1)-(5) that VX(N} 2 0. i.et 5 be the least
coalition containing player i, such that vx(S) » 0. Clearly, S must

be winning. Now order the players in S in such a way that player i

is pivotal. Then playerthas a positive marginal product, hence a
positive expected marginal preduct ‘?vA{ £i1). {5) then implies

that u, ard )‘i are pecsitive. Since no player is a dummy, the argument

holds for every player i and an NTU value must be strict.

it is mteresting\_that one has here an entire class of games with
strict values, despite their peclyhedral character (which excludes them
from the axiomatization in 1) ). The result {5,Theorem 2.6] proving
the existence of strict values for pql;yhedral games also does not
aprly to voting games, since they do; not in general satisfy the condition

of keing neormally closed. Taken = 2 and U = I, the identity matrix.

Let plaver ! be a dummy., Then the NTU wvalues are ¢f the form u' = (1,0},
A= (X, ,0), X >o0. This also shows that Proposition 1 cannot be

1 1
extended.

The next result gives bounds on any NTU value of a voting game:

Proposition 2. Suppose that no player is a dummy. Then any NTU value

satisfies the following bounds:
Hw(1id) fui.f 1. {e}

Proof. The upper bournd follows immediately from {1)-(3). As for the
lower bound, player i pivots with probability fw({iJ ). Moreover,

the value of his marginal product when he pivots is at least Ai‘



since v\(s}; A Therefore the expected value of 1's marginal product

-
is at least

,\it{w({i})i ‘(v)\ (i3 =,\iui.

Since )x_i is pesitive, one has the lower bound in (8).

Of special interest is the case when the lower bound in (6) is
attained for all players i; then the Shapley-Shubik index is itself
an NTU value, The relevant result is the following:

Proposition 3., Suppose no player is a dummy, and U = I. Then the
Shapley-Shublik index is the unique NTU wvalue,

Proof, First, the Shapley-Shubik index is an NTU value. Let \ be a

vector of 1's. . Then vy S W, whence it follows that

¢ vy o Lw = u.
If there were another NTU value, then for some player i, ui> 'fw( tiy ).
Since u = Ip on the boundary of v(N), one then faces the
contradiction-

'Z'_ui"?l =§_pi = iui.

This result shows that the Shapley-Shubik is not restricted
exclusively to transferable utility situations. Powa can be indivisible,
as in a voting gane and the index can still apply. Wret is crucial
is that preferences be selfish, in the sense that each player wants
to see himsdf (and only himsalf) in the position of power.

It is clear that even if there are dmmy players, the Shapley-
Shubik index is still an NIU value, athough no longer strict. In
auch cases, there mey be other NIU values.



4. NTU Values when Power is Equally Divided

This section computes explicit values for woting games
when power 1s equally divided. Such games arise under unanimity
rule, when only the grand coalition is winning, as well as all forms
of majority rule, strict or qualified. Before proceeding, some additional
motation is necessary, For each player i, let A, denote the set of

i
players that i approves of:

A, = {3en uij=1].

Let Bi be the set of players that approve of, or back, player i:

Bi = {jeN:uij=.13 .

Finally, let P dencte the set of strong Pareto optimal players.
Player i 1is strorngly Pareto optimal if there is no player j such
that Bj > Bi and the inclusicn is strict.

No generality is lost by rmormalizing A such that VA{N) =1,
One can now characterize an NTU value for any voting game based on

unanimity rule:

Proposition 4, An NTU value for a voting game based on unanimity

rule satisfies the following conditions:

4 -

for every player i, 4\; 2-_ Py = 1/n (7
kea,
i
for every i in P, 5 Ay = 1 (8)
ke Bi
zp = L (9
kep

Procf. Consider the linear programming probles max \UP
p

subject to pi; o, £pi = 1,



Dencote the i-th column of U by U The dual linear programming

i
problem is min z, subject to z3 /\Ui. If player i is Pareto
infericr to player i, then ,\Ui < ,\Uj + In the primal, complementary
slackness implies p, = o. This establishes (2). The common value
of both these programs is 1, from which (8) follows. (7) follows
from the fact that

Yv,(€131) = 1/n = <w(ti}),
since v, = w.

A

Unanimity rule and majority rule are the same when there are two

players; hence, so do their NTU values, Their NTU values continue

to coincide when there are three plavers:

Propositicon 5. For n = 3, the NTU value for the voting game based on

unanimity coincides with that for the voting game based on majority

rule, Moreover, these NTU values are unique,

Proof. It suffices to consider only those U for which no player i

has backing 13i = N, Tables 1 and 2 gummarize the relevant calculations.

NTU values for other U follow from those given by symmetry. A routine

calculation shows that these are the only NTU values.

It is possible to push Proposition 5 scmewhat further. A sufficient
condition for the coincidence of majority and unanimity rule voting
game NIU wvalues is that for every winning ccalition §, vk(s) = 1.
Fowever, the coincidence cannot hold in general, as the following

example shows. Let U be the symmetric matrix with u 1,

127 227 W5 T
all other uij above the diagonal = @, One can show that the NIU value
u, u3 =18/3¢, U, = ug = 12/30; whereas
Q

1
under majority rule, v = u, =uy = 17 /30, B, = ug = 12/30. The

discrepancy arises berause for a coalition like f_l,2,4"3 R vk(f1,2,43 1< 1,

1]

urder nnanimity rule is u, =

Call a voting game symmetric when some NTU value has u, the
same for all players. A class of symmetric voting games can be
generated in the following manner. Arrange the players in order
around a circle. Let each player approve of himself and the next

k-1 players to his right. For instance, when n= 4 and k = 2,



iloe

U = Jollo represents such preferences. It is easy to check
coll
lool

that the NTU value for this voting game under either majority or
i 1/2, with Xi = 1/2 for all i.
This example can be generalized as follows. Suppose that for

unanimity rule is u

all players i, there exists a positive k such that
k = |af = {Bi{, (|- | denotes cardinality)
and moreover for each pair (i,3J)
Ai§§ A, and B % By -
Call such preferences symmetric of order k. One has the following:

Proposition 6. The voting game based on majority rule with symmetric

rreferences of order k is symmetric.

Proof. Let s be the size of the smallest majority. Consider first the
case s 2 k, Take 5\1 = 1/k., Then for any majority coalition, v}‘(S) =1,

since a majority must contain all the supporters of some ' Pareto player.

1.1'}s = w, and both are symmetric., ©One has the symmetric wvalue ui = k/n.
Next, consider the case s <« k. '?a.ke the same '\i as before,

For 5 winning, one has v)\(S) = mini 7 Sl/k,l}, since all the members

of S must support some Pareto player. . v, is symmetric,

and cne has the same NTU value ui as before. A

It is clear that Propositicon € holds for any form of gqualified
majority rule, including unanimity rule.

As a final example, call preferences consecutive if players
can be crdered on a line in such a way that each player approves of
the player to his immediate right, but no further.I This nomenclature
is inspired by that used in Greenberg and Weber [ 37} . One can imagine
such an crdering taking place along an ildeolcgical spectrum for
example, Under majority rule and an even number of players, consecutive
preferences lead to a symmetric voting game., Bowever, if the number
~ of players is odd and greater than 3, consecutive preferences lead
to an asymmetric véting game. For n = 5, the unigue NIU value is

ui = 1/3, i odd and u, = 1/2, i even, The intuition behind this



is that the all odd-numbered coalitiont{l,3, 5} is composed of the two
"extremists" incapable of supporting each other, or of supporting or
being supported by player 3 in the middle. This cannot happen to any
major ity containing an even-number player; at least one player must

have another supporter,
5. NTU Values with a Veto Player

This section studies voting games where one player has veto power,
with the remaining power being distributed evenly among the other
players. In particular, suppose player 1 has this veto, and that any
cealition containing player 1 and having at least g members, 1 <€g<n,

is winning. The Shapley-Shubik index is:

Yw( {1} (n~g+l) /n
tw( $il) (q-1) /ni(n-1), for i 1,

Player 1 is considerably more powerful than the rest.

It i= instructive to consider first the case g= 2, n= 3,
and compare the results obtained with those of Proposition 5. One has
the following:

Proposition 7. For g = 2, n = 3, the yeto player does better than his

counterpart without veto power, or in both cases his NTU wvalue u, = 1.

Proof. The relevant calculations are summarized in Table 3, whose

results should be compared to those of Tables 1 and 2.

It is interesting to compare the NTU values for U = I and

U= f11 0o\ in Table 3, These situations differ solely in the
alo

ool
value of u One can interpret this difference as player 1's

12°
throwing his support to playsr 2, In terms of either the probability

of being elected or the probability of approving of the outcome,this
support from player 1 is worth 5/6-1/6 = 2/3 to player 2. Indeed,
this notion of the value of additional support makes sense in any

context where a single uij changes from o to 1, or wvice versa. Even
though utility is non-transferable, the value of such support can be

measured.
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To see the effect of the power asymmetry on an otherwise symmetric

situation, suppose preferences are symmetric of order 2, q= 3, and n = 4=

- 0 0 -
OO0 =
O~ +—0
- =0 0

(3/4, 472, 1/4, 1/2y, with A= (2/3,1/3,2/3,1/3).

The veto player is now most likely to approve of the cutcome. Even

The NTU value is u'

among the weaker players, the NTU value is no longer symmetric. Player
2 does better because of plaver l's hacking, while player 4 does
better because of his support for player 1.

As a final example, suppose the power distribution is the same
as that just given, but preferences are consecutive. The NTU value
isu'= (2/3,2/3,1/3,1/3), with X= (3/4,1/4,1/2,1/2). Again, player
2 is benefiting from the veto player's support.

It pays to have veto power and to back or be backed by scmeone

with veto power.
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Table 1. NTU values for majority rule voting games, n = 3.

u_ A p__ w
100 1/3- 1/3
010 (1,1, 1/3 1/3
001 1/3 .1/3
110 x72,1/2,) 0 2/3
010 2/3 - 2/3
001 1/3 1/3
111 0 1
010 (1/3,2/3,2/3) 1/2 1/2
001 1/2. 1/2.
110 0 “1/2
011 (1/2,1/2,1/2) 1/2 i
001 1/2 ' 1/2
110 ) , ax - 2/3
110 (1/2,1/72,1) 2/3-a 2/3
001 1/3 1/3
111 © pEE - 1
010 (1/3,273,2/3) 1/2 1/2
101 1/2=b- 1/2
101 /3" .2/3
110 (1/2,1/2,1/2) 1/3 2/3
011l 1/3 2/3-
*0< a< 2/3,

**%0< be¢ 1/2.



Table 2.

v DD OO0 OO, OO
- — — +a -

-0 0

— O
o

*Q

RN

Ll =N -0 0

- O

b O

= N

<azx2/3

£b < 1/2.

13

(1,1,1)
(1/2,1/2,1)
(1/2,2/3,2/3)
(2/3,1/3,2/3)
(1/2,1/2,1)
(1/3,2/3,1/3)

(1/2,1/2,1/2)

- 1/2
“1/2

1/3
1/3
1/3

2/3°

'1/3

172 -
172 )

'2/3-3;

1/3

hak -

1/2
1/2-b

173 .
1/3

3.

NTU values for unanimi:y rule voting games, n = 3,

1/3
1/3
/3

2/3 -

2/3
173

/2
/2.

1/2

- 1/2

2/3 -
273
113

1/2
172

2/3 -
2/3
- 2/3.
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Table 2. NTU values for the veto player games, n = 3,{Player | has a veto.)

) A, P u
‘100" 2/3 2/3°
|0 1 0 ] (1’1'1) ) 11’6 1/6 :
001 . . 1/6 /6]

110; 0 516
‘010" (4/5,1/5,1) .5/6 516
001, 1/6 1/6
100, 2/3 - 27/3.
1011 1,1/2,1/2) .0 1/3

001/ L1300 “1/3.
111: 0 1
‘010 . (2/3,1/73,1/3) T1/2. 172
001 1/2 V172

100 475 4/5°

111 (5/6,1/6,5/8) : 0 1

001 1/5 1/53

110 . 0 5/6°

011 (4/5,1/5,1) 5/6 576

001 1/6 1/6

110 ak - - 5/6"

110 (47/5,175,1) 5/6=-a 5/6

001 o 1/6 1/6
11 pak I

010 (2/3,1/3,1/3) 1/2 172
10 1. 1/2=b 1/2
101 crrk 4/5)
010 ] (5/6,5/6,1/6) /5 1/5 ]
111 4/5-¢ ¢ 1

101. 2/3 5/6

119 (4/5,175,1/5) 176 576

011 ' 1/6 576

*) < a < 5/4,
**(Q) < b < 1/2,

*ex() < ¢ < 4/5.



