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ABSTRACT

"Public Ownership:  Three Proposals for Resource Allocation”
by John E. Roemer and Joaquim Silvestre, University of California. Davis.

While there is a quite clear picture of the rights that private
ownership bestows upon the owner, it is not clear what property rights
the public have by virtue of their owning a thing collectively. We ask:
how should a planner, whose job is to respect public ownership of some
productive assets, in conjunction with private ownership of some inputs,
allocate resources?

We insist throughout on the desideratum that: (1) the final
allocation be Pareto efficient. We propose three additional desiderata:
(2) equal division of benefits derived from public ownership; (3) equal
returns to the use of privately owned inputs; (4) universal gain from
improvements in the publicly owned asset. No more than one of (2). (3)
and (4) is in general compatible with (1). Each of the three compatible
pairs of desiderata characterizes a proposal for public ownership. We
call the equal henefit solution the one characterized by (1)-(2). the
proportional solution the one characterized by (1)-(3) and the constant
returns equivalent mechanism the one characterized by (1)-(4). A
discussion of these ideas in different institutions (a publicly owned
firm, a cooperative and a common pool resource) leads us to advocate the
proportional solution.

Our main formal results are (a) the existence of proportional
solutions in convex economies with arbitrary consumption sets and many
inputs, outputs and firms and (B) the axiomatic characterization of the
constant returns equivalent mechanism. Some simulations illustrate a
surprising similarity between the proportional solution and the constant
returns equivalent mechanism.

JEL CLASSIFICATION NUMBERS: 021. 022. 614.

KEY WORDS: PUBLIC OWNERSHIP. PUBLIC FIRMS. COOPERATIVES, COMMVON
POOL RESOURCES, PROFIT DISTRIBUTION, GENERAL EQUILIBRIUM.
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requires, first, having a conception of what the allocation of resources should be in an
economy where some assets are publicly owned and some (such as labor) are privately
owned. Socialist theory has not grappled with this question. To wit, suppose an
economic environment is specified, that is, the preferences of the agents, the
technology, and the private and public endowments of the agents are delineated. What
resource allocation would an economist predict, or recommend, as consistent with
these data? If all endowments are private, and the various convexity assumptions,
etc., hold, the prediction or recommendation is the Walrasian equilibrium. We have no
such recommendation when some of the endowments are stipulated to be public, that
is. to belong to everyone.

Walrasian equilibrium is the paradigmatic prediction for a private ownership
economy because it is viewed as the outcorhe of in economy in which the institution of
competitive markets is well established. And we have historical evidence to indicate
that the institution of the market evolves in an economic environment in which
endowments are privately owned. We have very little historical experience, however,
with public ownership; there is no such clear institutional partner to the property
rights of public ownership. In particular, we believe the historical experience of
central allocation is too short to constitute the definitive choice for such a partner.
In this paper, we take a normative approach to the problem of defining the economic
consequences of public ownership. What resource allocation mechanism might one
recommend as respecting the private and public property rights that agents in such a
mixed economy possess?

Sections 2-5 study the problem in a simple economy, with one publicly owned
technology, requiring one private input (labor), and producing one output. Section 6
reports briefly on some simulation results, and Section 7 shows how our proposals

generalize to economies with many inputs, outputs, and industries.



1. INTRODUCTION

Even in capitalist economies, it is seldom the case that all productive assets
are privately owned. And in socialist economies, in which most productive assets are
publicly owned, some factors remain privately owned, in particular, labor.  While
there is quite a clear picture of the rights that private ownership bestows upon the
owner, it is not clear what property rights the public have by virtue of their owning a
thing collectively. Public ownership is procedurally defined in roughly the same way
as private ownership: the public has the right to 'use and abuse' its collective assets
as it sees fit. Because the public is not of one mind, this definition is not very
helpful. Indeed, various impossibility theorems might be interpreted to suggest that
there almost never exist interesting economies in which public ownership is
meaningful.

We shall not delve into these philosophical issues, but c-ontent ourselves with a
more prosaic approach. How should a planner, whose job is to respect public ownership
of some productive assets, in conjunction with private ownership of some inputs, try
to allocate resources? We limit ourselves to a static, complete information world.
The dynamic question of investment, and issues of asymmetric information and
incentive compatibility -- issues that have been the fbcus of the planning literature --
are not our concern here. (How the planner might implement the various proposals
that we discuss is the subject of another paper (Roemer [in press].)

Our interest in this question is in Ilarge part motivated by the economic reforms
that are being introduced in socialist countries. Many observers take the introduction
of markets in socialist countries as equivalent to the introduction of capitalism. We
think this hasty conclusion is based upon the view that public ownership is synonymous
with central allocation. We view central allocation as one way of possibly
implementing a regime of public ownership; there may be more decentralized ways of

implementing public ownership, including the use of markets. But to study this




2. DESIDERATA OF PUBLIC OWNERSHIP

The problem is most simply posed by considering an economic environment
defined as &=z <Wi{.@21....0M1: U1.Uz.... UM:f> . consisting of a population of M
persons, the ith one of whom is endowed with an amount w{; of some homogeneous
private good x,; a production function f(x;) which represents a technology capable of
transforming the private good x; into an output of another good x,: and ordinal
preferences of the people for the goods (X,.X;) represented by utility functions U;.

We postulate that the good xy; is privately owned by the individuals, and that they
publicly own the technology f. { The function { may already inc_orporate publicly owned
productive resources, ) This specification is special in its assumption that there is
only one privately owned good. which has both a use in consumption and production, and
one other consumption good, produced on the publicly owned technology. (We relax
these restrictions in Section 7.)

One interpretation is that the privately owned good is labor?. If agents have
different skill levels. they can be represented by different endowments wj1 of the
input. Thus skill differences in this model take the form of different capacities to
supply labor, which can be commonly measured in efficiency units.‘

We propose four desiderata of a solution that implements public ownership of
the technology f, in conjunction with private ownership of the endowments wj; of the
good x4, in economic environments of the type &.

(1) Efficiency, in the sense of Pareto optimality:

Yt is on occasion natural to view a person's labor time as non-transferable to other persons.
This can be modelled by postulating that the consumption set is a subset of the non-negative
orthant defined by certain inequalities. Of course, a particular solution concept may single out
different allocations in economies that differ only in the consumption sets of their persons.
because the set of feasible (or efficient) allocations may well differ. Our analysis covers all
these possibilities, because it applies to arbitrary consumption sets. The solution concepts
that we propose are, in particular, always well-defined, at least under convexity assumptions
(see Section 7 below).



(2) equal _division of benefits from use of the publicly owned technology;

(3) distribution_of the output X,. produced from the public technology, in

proportion to_individual _contributions of the input (labor) in production;

(4) universal gain_from_improvements in the publicly owned asset.

Desiderata (2),(3) and (4) will be embodied in precise formulations below. We will
insist on desideratum (1) throughout. For the domain of economic environments that
we shall consider, no more than one of (2), (3), and (4) is generally compatible with
(1). This leads to the consideration of three pairs of desiderata, (1) and (2), (1) and
(3). and (1) and (4). Indeed, each such pair will characterize one proposal for public
ownership.

We maintain that these desiderata are suggested by the public and private
property rights we are assuming. Equal benefit means equal gain from the initial
endowment-, gains from the use of the public technology should be the same for all.
Distribution according to individual contribution is a way of recognizing each person's
right to a return to her privately owned input. That all should (weakly) gain from an
improvement in the publicly owned technology seems a natural requirement of public
ownership. This requirement also states that the welfare of no person should rise if
the publicly owned technology deteriorates in quality.

All of (1) through (4) characterize the behavior of the most natural solution to
the public-private ownership problem on the class of linear economic environments
where the production function takes the form f(x;}=Bx,, for some $20. One can
consider our analysis as an attempt to preserve these four properties, which the linear
economies enjoy, on larger domains of environments. For a linear economy , denoted
by <Wiq....0M7: Uy.....Um, BD. consider the ‘autarkic’ allocation which results from
each person having free access to the technology. and using it as much as he pleases.
The autarkic alfocation {(xy;.xy2).....(xM1.XM2)}} is defined as the solution of the

programs, for each {:




max Uilxjq.Xj2)
s.t. xj2= Blwiy-xi1). (2.1)

This solution naturally implements a conception of pubiic ownership of the technolegy
in conjunction with private ownership of the input, because in the linear economies,
there are no positive or negative éxterna!ities from joint use of the technology.
Public ownership suggests, in this case, free access to the technology: private
ownership of x; requires allowing each to use her private endowment as she chooses,

This autarkic solution for the lipear economies satisfies desiderata (1) througﬁ
(4). Clearly it is Pareto optimal. It has the equal benefit property. Benefits for
person | are the difference between the value of the final consumption vector
(xi{1.X{2), and the value of the initial endowment vector (wj;.0). Because we have
Paretc optimality , a natural valuation for these vectors is the vector of efficiency
prices. If we normalize using commodity x; as numéraire, the vectof' of efficiency

prices is (under differentiability ):

(1.p) = {1, (QUj/9x;2)/(3U;/3x{1) . (2.2)
which , when '>0, can also be written as (1,p) = (1,f'). Hence, equality of benefits
requires that:

for ait i, h pxj2+(xj1-@i1) = pxpa+ (Xn1-0hy) . (2.3}

In our case, (1.p)=(1,1/8), and (2.3) is satisfied because it follows from the budget
constraint (2.1) that:
for all i, h Xi2+8{xj1-@i1) = Xp2¢ Blxyy-@pt)

See §3.1 below for alternative interpretations of the equal benefit condition.

With respect to desideratum (3), notice that output is distributed in proportion
to input coniributed to productif':n because for all i:

(wi1-%i1) %42 = 1/8,

i.e., a person contributes exactiy the amount of labor embodied in her consumption of x,.

We make desideratum (4) precise by requiring that, as the technology improves

in the sense that the technological parameter 8 increases to ', the allocation
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assigned in the economy {@i;....wM7:U1.....UM:B> should (weakiy) increase the utility
of every agent from what it was when the technology was 8. This is clearly so for
the autarkic solution, as an increase of B to B' is eqguivalent to a fall in the relative

price of output.

Therefore . the four desiderata are simultaneously satisfied in the case of a
linear technology. Ancther special case in which they are simultaneously satisfied is
the case of identical persons { same endowments of x; and preferences }. There is, in
this case, a symmetric allocation that satisfies ail requirements (see proofl of
theorem 4 below).

In the next three sections, we discuss solution concepts on a domain of
economies of this prototype that preserve, along with Pareto optimality, desiderata

(2), (3), and (4), respectively.

3. THE EQUAL BENEFIT SOLUTION
3.1 BASIC IDEA

Consider the prototypical economic environment £=<wq1.....0M1:U71....UM:TD,
where the production function f may now display variable returns to scale.
Productive efficiency now requires:

IpXp2 = H{Ehwpt - Spxpy) - (3.1)

As introduced in Section 2, the equal benefit approach views public ownership as
requiring that all persons benefit equally from the presence of a publicly owned
resource or technology, Le., condition (2.3) must be satisfied in addition to {(3.1).

One can interpret the solution in three different scenarios.

(A) A _market for good xj3
From (2.3) and (3.1), one immediately obtains:
Xi1 *+ P Xjo = @i + WM, (3.2)

where 7T = p (f{Eq@ht ~ Epxp1) ) - (ER@nt - Epxny) are the profits of the firm that

produces and sells xo.



Thus, when t is concave, the solution can be viewed as resulting froem the
operation of markets when the income of the consumers includes an equal share in the
profits of a competitive firm.

1f. on the other hand, returns to scale are increasing, the firm is publicly owned
and distributes equally among consumers the losses derived from marginal cost pricing.

{B) Cooperative production

Interpret xi as leisure, and let Li = wi{ - xj1 be the amount of laber that
person i contributes to a cooperative production process that yields x5. Write
L= ZijLi.Now £ixj2 = f(L) and (3.2) becomes:

pxiz = Li + {p (L} - LI/M,

ie., xi2 /f(L} = Li/pf(L) « 1/M - L/pf(L)M,
ie. xig /1(L) = LLi/Lpf(L) « (1/M)(1 - L/pf(L)).
or: xig /f(L) = X Li/L + (1-x) (1/M),  where XsL/pf(L), (3.3)

i.e..person i's share in the cooperative output (s a linear combination of her labor
share and the “equal division® share 1/M, where the coeflicient X of her labor share

is the ratio of average cost to marginal cost. Hence, as noted in Section 2 above, i's

share in output coincides with her share in labor if there are constant returns to
scale or if her tabor contribution is the average one ( i.e.. if Liy = L/M ) but not
otherwise.

(C) External diseconomies or economies

We consider diseconomies first. Think of the "commons”, where the citizens take
their cows to pasture, or, better, a lake where individual fishermen spend time {good
X1} and obtain fish (good x3). There is no trade in fish. Production is carried out
individually and each fisherman eats his catch. All fishermen are equaily good and
equally lucky: if the amounts of time spent are (Ly.....LpM), then i gets (f{L)/L)L; units
of fish. We assume that the average catch, f(L}/L, is decreasing in L. The laissez faire
solution is given by:

for i = t.., M, xy1 maximizes Uj{xij;. (I{L)/L)0wi1 - x{1)).



where L = Ip {wWh1 - %p1).

As is well known, the laissez fajre solution is inefficient. This fact,
sometimes called hyperbolically the “tragedy of the commons®, is on occasion
marshalled to advocate the privatization of public property: see Weitzman [1974} and
Roemer [in press] for criticisms of this view., An efficiency inducing mechanism
consistent with public ownership is the Pigovian tax-subsidy scheme. Pigovian taxes
can be understood as either paid in commodity t and proportional to the individual
amount of xo obtained, or as paid in commodity 2 and proportiohal to the individual
amount of labor spent.

The Pigovian scheme consists of imposing individual tax rates tj on the amount
of time spent and lumpsum subsidies S;, all paid in fish (smoked?), such that the
government budget balances and an efficient allocation is attained as each fisherman
chooses xj1 in order to:

Max Uj(xjy, Si « (((ILIL) - tiMw@i1 - X1 D).

The first order condition is:

Uj/dxjq - (dUp/dxja)( (L)L) ~ t) = 0,
i.e, ti = (f(L)/L) - (3Uj/79xi1)/( dU;{/3xi2) .
which, together with the efficiency condition:

(dUi/axj1 10 U /dxj9) =17,

yields : t = (f(L)/L) - 17,
l.e., ti = ty = t (same tax rate for everybody). The total tax revenue, equal to the
total subsidy, is tL = £iSj = f(L) - L.

The final consumption vector of fisherman i is {(xj1. Sij + ' - {Wiy - %{1)). For
the final state to satisfy the equal benefit property it must be true that (writing the
price vector as (1, 1/1')) for all fishermen i and h:

Xi1 - @i ¢ {§{/1) + @i1 - Xjj = Xp1 - @WKy + (Sp/T) » @p1 - Xpy,
i.e.. 8i =5 = (1LY - £ LI/M,



i.e,, at the equal benefit solution the revenue created by the Pigovian tax is equally
distributed among fishermen, independently of the number of hours that each spends
fishing, and, hence, of their individual tax burden,

when the externality is positive, f(L)/L is increasing in L. The Pigovian scheme

is then a subsidy rate s and an individualized lumpsum tax T{. Person i's final
consumption vector is (xj1.-Ti«((f(L)/L)+s){wiy- xj1). Now, at the equal benefit
solution, each person pays the same lumpsum tax T independently of the amount of
time worked.

To conclude, let the technology adopt the limit form f{x)):w,, i.e.., x; is a non-
produced commaodity initially available in w; publicly owned units., We call this the
‘manna economy.’” Efficiency now requires:

2h Xp1=Lh ©n1,

Zh Xp2 = Wy, | (3.4)
which, together with (2.2-3) yields xj1+pXi2=wii+ pwy/M. Because
p=(dU;/dxj2)/7{aUi/3xi1), the vector (xj1.xij2) maximizes {'s utility subject to the budget
constraint that i faces when she initially owns wi1 of the first good and w,/M of the
second one. One can thus visualize this solution as resulting from the following
process: the public authority first distributes the available resource w, equally among

the citizens who then trade it among themselves in competitive markets.

3.2 INADEQUACY OF THE EQUAL BENEFIT SOCLUTION

These interpretations lead us to view the equal benefit solution as inadequate
for capturing the notion of pubtic ownership. It rather seems to refiect “equal private
ownership” or “syndicalism.” We review the meaning of the solution in the cases

presented above,
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(i) Production under decreasing returns: a market for xp

The equal benefit solution is indistinguishable from the Walrasian equilibrium in
which each initially owns a 1/M share of the firm {or of the scarce resource that is
at the root of the decreasing returns).

(ii) Production under increasing returns: a market for x»2

Now the losses from marginal cost pricing are distributed irrespective of
consumption. A person who does not care about commodity 2 must suffer a decrease in
her private wealth just because other people like xo and she is forced to “own™ a share
of the technology. (Such a person would indeed be better off were she to abandon
society.)

(iii) Cooperative production

The amount of output obtained is not in line with the amount of effort put into
production. Output is instead distributed according to a particular Qeighted sum {with
endogenous weights) of the amount of effort provided and the equal share 1/M, see
(3.3) above. Schemes of the type

Xj2 /f{L) = o Li/L + {1-a) (1/M).

where of is usually‘ some exogenous parameter, are found in the literature on
cooperatives, see, e.g., Sen (1966), Israelsen (1980) and Kang (1987). These schemes
are sometimes justified as a combination of the principles “to each according to his
work” (this is reflected in the term o Li/L) and “to each according to his needs -
{the term (1-ot) (1/M)). But this interpretation of the second term presupposes that
everybody's needs are alike, and if every person is identical then there is a symmetric
allocation _thatl satisfies all three solution concepts studied in this paper.

Israeisen {1980) defines the polar case « = QO as the "commune®, and the other
extreme, o = 1, as the "collective.” The equal benefit solution is an intermediate
case, with an endogenous o (see (3.3)). The alternative notion of proportional solution

(see Section 4 below) corresponds to the pure “collective.”
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(iv) Externalities
The Pigovian scheme is an instrument to implement efficiency. But here it is
also a redistributive mechanism.
(v) Manna economy

Manna, in principle collectively owned, is first privatized and then traded

against x1 , a transferable good . The solution {s indistinguishable from the
competitive allocation when each initially owns wo/M units of manna: the benefits of
public ownership are actually the trade gains from these equai endowments. Consider
the limit case where consumer 1 does not care about manna . She will still benefit

from manna provided that somebody else likes manna.

4,  THE PROPORTIONAL SOLUTION

The discussion above has pointed towards the need to distinguish "public
oWnership" from "equal private ownership." Private ownership includes the right to
use, destroy and prevent other people from using, as well as the right to transfer
these rights. By "use" we mean "enjoy, benefit from", perhaps without destroying or
depleting. One can benefit from, say, a pure public good without depleting 'it . Hence,
in some cases, the right to wuse can be transferred without transferring the right to
destroy or deplete. Also, the right to use can in principle be transferred without
transferring the right to transfer the right to use (e.g.. usufruct). This suggests that,
when something is publicly owned: (a) nobody has the right to destroy it; (b) everybody
has the right to use it, if the good can be used without depletion.

Public property rights can in principle be transferred to individuals, and. indeed,
some rights must be if what is publicly owned is not a pure public good. But there are

two levels of transference, (i) Privatization occurs when the individual acquires full

ownership-- not only the right to consume but also the right to sell; (ii) allocation_ of

Luse occurs, on the other hand, when the individual acquires only the right to use, but not
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full ownership (e.g.. she does not acquire the right to sell). Conversely, private property
rights can in principle be transferred to society, e.g.. by sale or by expmpriétion.

These ideas reflect G.A. Cohen's [1986] distinction between something not being
owned by anybody (“res nullius®), in which case anybody can privatize it, and being
oublicly owned. in which case privatization requires the explicit consent of society.

The proportional sotution tries to capture this basic distinction between private
and public forms of ownership. We wish to illustrate it with some particular
examples before offering a general definition.

{i} Production of a private good

First we consider our prototypical economy. The proportional solution prohibits
transfers of the privately owned good xq that are unrelated to the consumption of the
publicly produced commodity. We require that i's contribution to the cost of
production of x2 equal the amount of x; embodied in i's consumption of x5. If total

production of xo is Taxpz and i's consumption of x5 is Xj» then the proportional

solution is given by Pareto optimality and the condition:
Zhlwh1-xpy)
x- " ' (40 ])
LhXh2 2

Wit - Xj1 =

The reader is referred to Mas-Colell and Silvestre (in press, Section IV.2) for an
alternative derivation of this condition. We now apply this solution concept to the

‘interpretations of the production economy presented in Section 3.2 above.

(A) A _market for good Xp: the Berkeley Coop

Good x7 is produced and soid at marginai cost, p, by a publicly owned firm.
This generates, under decreasing returns to scale, profits in the amount Tt=p2 pxn2-

2 h{wnhr-xp1). Condition (4.1) can be written as:
Zh{wni-*ny)
Shxhz 2

Xi1 ¢ P Xj2 =i+ (p-
1-e., Xi} * P Xi2 = Qjj *+ T,

where 8 = Xj2/ &4 Xp2
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i.e., profits are distributed among consumers in proportion to their purchases of
commodity xo. This scheme reminds the authors that, when buying at the Berkeley
Coop, the cash register records the buyer's membership number, and any operating
profits that may appear at the end of the year are then distributed among members in
proportion to their purchases.

Under increasing returns to scale marginal cost pricing induces losses that are

then charged to consumers in proportion to their purchases. In either case net pagmenf
equals average cost times quantity.

(B} Cooperative production

Write, as in Section 3 above. Lj = w{y - Xji. the amount of labor that i

contributes, and L = Tplp. Equation (4.1) becomes:
Li '-"f_(‘Lr)- Xi2
ie.. xjo/f(L) = Lj/L .
The proportional solution is a Pareto optimal allocation in which output is
distributed according to labor contribution. This implements the principle “to each
according to his work.” It is the pure "collective” scheme in Israsisen’s [1980] terms.

(C) Externsalities

Now produciion is carried out individually and there is no market, Consider first
the negative externality case. As in Section 3.1, the Pigovian efficiency tax is:
t = (L) -1, (4.2)
and the individualized subsidies must satisfy the government's budget constraint:
EnSustl. Person i's net final consumption of xo is (see Section 3.1. above)

Xi2:Si+1'Lj. Now (4.1) becomes:

L
LN}'{T_"(Si’fLi)-

i.e.,

L [ .
SI =(?Erj" f)L[
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or. using (4.2).

Si=tL .
i.e., person i gets back, as a lumpsum subsidy, exactly the amount that he paid as
Pigovian tax. Contrary to what happened with the equai benefit solution, the Pigovian
scheme has no redistributive implication: it is here just an instrument for
efficiency.
If the externality is positive, the Pigovian scheme consists of a subsidy rate s

and lumpsum tax T; (see Section 3.1 above). The proportional sotution again effects
no redistribution, i.e., T; = sLj.

(ii) The manna economy

The proportional solution efficiently allocates the publicly owned manna without
altering the distribution of the privately owned good, i.e., (i) it does not impose
transfers of the good xy while allocating the rights to use x; (no expropriation), and
(ii) it does not allow for private exchange of the two goods {no privatization). The

proportional solution is here defined by the condition that the M-tuple of consumption

vectors (wiq.x{2) be a Pareto optimal allocation. See Figure 1 for M = 2. In the
particular case where onty person 1 likes good x5 she gets all the manna. |
(iii) A non-produced pure public good initially available in w5 wunits
OQur last example invoives a pure public good. This is at variance with the rest
of the present paper, which Tocuses on private goods2. But it illustrates the

allocation of use without privatization discussed above at the start of Section 4: use

20ur analysis may be extended to the public good case by foilowing Arrow's (1969) technique of
interpreting a public good as M private goods. {If the public good is a produced one then the
corresponding M private goods are perfectly complementary outputs.) The concept of the
proportional sclution actuaily coincides, under some conditions, with the notion of Balanced
Linear Cost Share Equilibrium presented in Mas-Colell and Silvestre (in press) as a
formatization of Lindahl's (1818) solution for economies with public goods. Mas-Coletl and
Silvestre (in press, Section IV.31) covers also purely private goods as well as the intermediate
case of externalities in consumption. Their approach could be used to extend the notion of the
proportional solution to the latter case. '
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can be isolated from the transfer of property rights because use does not require

depletion.
Let x3 be a nonproduced public good initially available in w2 units (i.e.,

f{x1)} = wo for all x1) and let the endowment w5 be publicly owned. The proportional
solution is here a direct transiation of the idea that everybody has the right to use
the good and, hence. nobody has the right to prevent other people from using the good.
This solution here requires:

(xj1. Xj2} = (@j1., w2) .i:=1,.. M
{.e., it permits no transfers of the brivate!g owned good Xxi.
Note the sharp contrast with the notion of equal benefit, which here requires that,
for any pair of agents i,h,

Xi1 - @j1 * Pj. @2 = Xp1 - ©h1 + Ph. ©2,

where pg = (dUg/8x9)/(dUg/d8x%41) . = i.h,
i.e., equal benefit requires agents with higher marginal valuation for the public good
to transfer some privately owned good xj to those with low valuation.

A general definition of the propeortionat solution {for private goods) is offered
in Section 7.3 below. There we prove existence under convexity assumptions, i.e., we
show that one can generally find an allocation that is e'fficient and satisfies a
condition like (4.1). Our existence theorem, moreover, allows for a variety of
assumptions on the supply of labor and on the transferability of labor time among

individuals because it covers arbitrary closed and convex consumption sets.

5. TECHNOLOGICAL MONOTONICITY AND THE CONSTANT-RETURNS-
EQUIVALENT MECHANISM
Public ownership suggests that no person should suffer when the publicly owned
technology becomes more abundant or productive. While the notion of equal benefits
requires each person to gain equally from the initial to final allocation in a given

economy, the notion of universal gain described in desideratum (4) requires everyone to
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benefit by virtue of a change of a certain type in the economic environment, nameiy,
an increase in the endowment of the publicly owned asset. We model this with the
axiom of technological monotonicity, which was introduced in Roemer (1886), and has
peen studied in several other papers (Moulin and Roemer, in press, Moulin, 1987).

Before defining technological monotonicity, we adopt a somewhat different
vantage point from that of §§3,4 . We return to the prototypical economic
environment of §2. Fix the parameters (Wi{.®z1.....0M1.U;....UM)=(w,U) and consider
three domains of economic environments, defined by: £DR{w,U)=
[£354@110een @M1 :Upae Uit [ e DRE ¢ EIR(@,U) = {£240q0e M1 Uy UMD | T2 IRES
and L(w.U) = £0R(w,U) U £IR(w,U) . where DR ={f|f(x;)/x; is non-increasing} and
IR={f | 1(xy)/xy is non-decreasing}. In addition, define the sub-domain of constant-
returns economies as ECR(wU) = {EeZ(w. U] f(x;)=Bx,, for some B>0l. If we now
vary the parameters (w,U), we define, for fixed M:

£ = U Z{ob),
where the union is defined for all non-negative vectors we RM and for all profiles U
in which the M utility functions represent arbitrary, continuous, strictiy monotonic
preferences. EDR and TIR are tikewise defined as the domains of decreasing returns
and increasing returns environments, respectively.

Definition. An allocation mechanism is a function F : Q + R2M | where Q is
some domain of economic environments. F associates to each &¢ Q an allocation3 in &,

We state technological monotonicity as a property of an allocation mechanism
defined on one of the domains £, £0R or £IR, Let the allocation mechanism F assign
bundte Fi(&)= (xj1.xi2) to person i. Define the mapping induced by the mechanism into
utility space :

UF(ED) = (Uy(F(E)), ... UM(FMEEDN].

SMore generally, an altocation mechanism can be a correspondence, so tong as the induced utility
mapping, defined below, is single-valued.
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Technological Manotenicity. (TMON) Let &'=<{wyy, ... @M1 :Vy....UM:TY> and
£2:{Wy1. . @M1:U7...UM:i> be two economic environments (in £(w.U)} such that for
all xy, 1(x7)29(x:). The allocation mechanism F is technologically monotonic if
UCF(E1))2U(F(E2)).

Neither the equal benefit solution of $3 nor the proportional solution of §4
satisfies TMON4. The equal benefit solution is seen to violate TMON by the following
example. Consider an economy with two people, who have initial endowments w,; and
wz; of the private good x;. The equal benefit solution assigns to each person a .5
share in the profits of the public firm. Suppose that the first person has preferences
U(xy.x2) = Xy and that the technology is linear. There are zero profits at equilibrium,
Because the first person’s budget constraint is x;y + pxy3 = w;; and he does not care
for the x; good, his final consumption, is (w¢;,0). Now suppose the technology
deteriorates to some concave production function everywhere dominafed by the previous
linear technology. In the new economy there wiil be positive profits; the first
person's consumption will increase to (w,,+.5T, 0} where T is total profits. Thus
the equal benefit solution violates technoiogical monotonicity.

It is only slightly more difficult to describe an example showing that the
proportional solution {PS) also violates TMON. Consider an economic environment with
two persons and with the linear technology fy(x4)=fx1. The second person’s
preferences are U,(Xjq.Xz3)sxg9: the first's preferences are Uj(Xqy,Xig)={B-E)xiq+%ys -
- he is willing to trade 1 unit of good one for f-e units of good 2, where e is smalt
and positive. With the technology f,, both persons contribute all of their input to

production and consume only good 2. Now consider a technological change to a

4|ndeed, TMON is only well-defined for allocation mechanisms that are single-valued in utility
space, which the egqual benefit solution and the proportional solution are not. Even when these
solutions are single-valued for a pair of economic environments that differ only in their
technologies, however, TMON need not hold.
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production function f, which is piece-wise linear; for x,<.9w,;, 2 has a slope much
steecper than $, and for x,>.9wj , f2 has a slope «<B-g, and furthermore, f,> fy for
the reievant domain of Xy. With technology f,, person 2 still puts all his input into
.production; this guarantees that the marginal rate of transformation will be o which
is too small to induce person 1 to contribute any of his endowment of good 1 to
production. Thus person 1, who contributes no input, gets no share of the profits
under PS. His utility, in the second environment, at the PS is U;(w;y.0). Because the
allocation (wy,.0) was available to him in the first environment, but he did not choose
it, his utility there was greater than in the second environment under PS. Hence PS
viclates TMON for the first person.

what ailocation mechanisms satisfy TMON, are Pareto optimal, and a.ssign on
the sub-domain TCR the autarkic allocation? (The autarkic allocation for linear
economies was defined in §2; we argued that it was the clear implementation of
pubtic ownership on linear economies.) We state this last condition as an axiom:

Free Access in Linear Economies (FALE) Let &e £CR. Then F(£) is the

autarkic solution.

Theorem 1. There is a unigu ation hanis fined he domain T
(atternatively, OR or IR ) that satisties Pareto optimality. TMON and FALE. We call
it the ‘constant-returns-equivalent (CRE)' mechanism.

Proof: Appendix.

The CRE mechanism is described as follows. Consider any economic environment
E*={w:U:f> and the associated domain of const.ant returns economies £CR(wU). By
FALE, F is defined on ZCR{w,U), and U(F{E)) traces out a strictly monotone increasing
path in utility space as & ranges over the domain ZCR{w,U). There exists a unique
linear economic environment & in £CR(w,U) such that U(F(Z)) is on the Pareto frontier
of £*. F(E*) is defined as the (or any one of the) allocations in £* which induces
that utility allocation. The name "CRE" describes the property that the mechanism

chooses, for any environment £*, an allocation which is Pareto optimal and Pareto
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indifferent to what the same persons, defined by (w,), could achieve by free access

in some linear economy. See Figure 2 for a representation of CRE in a manna economy.

The CRE solution arises in other contexts. It was studied by Mas-Coleil (1980)
and Moulin(1987), and Moutin and Roemer(in press). Indeed, Theorem 1 is only a

stightly reformulated version of Moulin's(1987) Theorem 1, and his subsequent

discussion in that paper.

B. SIMULATIONS

We have highlighted three solution concepts : the equal benefit solution (EBS),
the proportional solution (PS), and the constant-returns-equivalent mechanism (CRE).
Each coincides with the autarkic solution for the prototypical linear economies. Each
chooses an efficient, symmetric allocation (perhaps among others) when all individuals
are identical. This section reports on simuiations which give some feeling for the
behavior of these solutions,

our ‘empirical work' consisted of computing each solution for various parameter
values of the two person economic environment {wiq,w3y:Uy,Usif>. The parameters of
the economy are as follows: |

Ur{xi1Xp2) = XqqPxqpt -0

Uz(X21.X22) = X21€x2217C,

Wyy E [0.1].
Wy = 1-Whyy.
f(x) = (.5x)2.

An economy of this type is specified by the vector ¥={a,b.c,wi1). We simulated the

three solution concepts for twenty-two choices of 7.
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The striking observation was the similarity between CRE and PS when the
allocations produced by the two mechanisms are graphed in utility space®. (We did
obtain an example in which the PS violates TMON.) CRE and PS differ significantly
from EBS. This is most easily seen when b is taken to be close to zero and c close to
1. The first person can be called Industrious, as his relative preference for output
over leisure will induce him to work long hours, while the second person can be called
Lazy, due to her preference for leisure. Suppose Lazy and Industrious have equal
initial endowments of labor. Under CRE and PS, Lazy either gains very little in final
utility, or loses a bit, as the technology improves. But under EBS, she gains
significantly from the technological improvement. This is because she shares equally
in the profits, which are produced mostly by the labor of Industrious on the public
technology. One feels that under EBS Lazy is exploiting Industrious. Indeed, if we
view a person as exploited when his share in total labor supplied is greater than his
share of output, as suggested by the Marxian definition, then Industrious is
consistently exploited by Lazy in EBS. The solution which, by definition, avoids
exploitation is the PS: for in the PS each agent consumes an amount of output that
embodies exactly the amount of input that he contributes to production, where the
amount of input embodied in a share o* of the output is defined to be equal to o* times

the input expended in producing the total output.

7. ECONOMIES WITH MANY INPUTS AND PRIVATE FIRMS
7.1 A GENERAL ECONOMY

| The purpose of this section is to present definitions of the equal benefit and
propositional solutions in general economic environments, and to prove the existence

of these solutions under standard convexity assumptions.

*We checked the robustness of the similarity of the PS and CRE solutions by simulating economies
where u; and U, (a) CES utility functions, with independently varying parameters, (b) quasi-
linear utility functions, both linear in the output, (c) quasi-linear utility functions, with one
linear in the output and the other linear in the input. In each of these cases, the similarity of
the two solutions holds.
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There are N commodities partitioned into two groups: the private sector
commodities, indexed 1 to K, and the public sector commodifies, indexed K+1 to N.

The defining distinction is that commodities in {1,...K} are either initially owned by
individuals or produced by privately owned firms, but neither collectively owned nor
produced by a publicly owned firm.®

There are F privately owned firms, indexed 1 to F, and one publicly owned firm
("the public productive sector®), with production sets Yi,...,YF and Y. respectively
(*C* for "collectively owned”). We assume:

A.1 If yr e Yy and k € {Ke1,... N}, then yrg < 0, f=1,...F.

A.2 IfyceYc and k € {1,...K], then yck < C.

N
A.3 Ffor g=1...F, C, Yg is closed, displays free disposal (i.e., Yg - R_ C Yg)

. N
and satisfies Yg n R_ = {0}

F

A.4 1If yge Yg, g=t...F, C, and T yf +» yc > 0, then yg = C, g=1....F, C.
f=1

There are M persons. Person i is endowed with an initial vector

N .
wj ¢ R, and nonnegative shares djf in the profits of private firm-f, f=1.....F,

satisfying: & dif = 1. The next assumption agrees again with our partition of the
i

commodity space.
A5 If k e {K+1,....N}, then wik = 0, i=1,... M.
We assume that person i's consumption set Xj is a closed and convex subset of

N
R,. The reader is referred to Arrow-Hahn (1871, Chapter 4) and Newman (1987) for

interpretations. We note that the description of the consumption set may capture not

only constraints on the combinations of labor services that an individual may supply

® This partition of the commodity space entails no loss of generality, since one ¢an still cover
economies with, say, 2 good that is produced by both pubtic and private firms by introducing two
perfect substitutes, one in {1....K} and the other one in {K+1,...N}
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but also on the amounts of leisure that a person may enjoy. As Arrow-Hahn (1871,

A.4.2, p. 77), we assume:
A.B6 For iz1,...M, there exists a consumption vector Xj & Xi such that X < wj

and Xij < wij if @jj > O.
Person i's preferences are represented by a continuous, concave., nondecreasing
and non-satiated utility function Uj : Xi = R that agrees with the convention:

A.7 For is1...M, Ui(X}) = O.

The public sector initially owns the nonnegative vector we, satisfying:
A.8 If k e {1..K} then wcg = 0.

We also assume that:

I 4

F
A.9 There exists aJe I Yy« Yo suchthat T+ X i+ ¢ is strictly
f=1 i=1

positive.
Definition. An allocation is vector s = (X1....XM. Y7.....4F.uc) & RN(M+F+1)
such that: (i) «xj € Xi, i=1,..M ;
(ii) yge Yg, g=1....,F, C.

Dencte by S the set of allocations. Wwrite

M F M
2:5+RN:2(s)= £ xj-Z yr-yc- Z wj-w¢.
i=1 f=1 i=1

Definition. An allocation s is feasible if 2(s) < 0.

Denote by § the set of feasible allocations.

Assymption A.10. § is compact.

Definition. An allocation s ¢ § is Pareto optimal if there does not exist

another feasible allocation s’ such that: Uj(xj) > Ui (xj). i=1,...M, with strict

inequality for at least one i.

The notions of equal benefit solution and proportional solution were defined in

the prototypical economy by the conditions of Pareto optimality and an extra condition
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involving the (2 dimensional} vector of efficiency prices. Efficiency prices will play
an even more important role in the generalized definition of this Section since they
will be used for aggregating inputs or outputs.

Because no differentiability assumptions are imposed in this Section and
because production sets may in principle be nonconvex, the definition of efficiency
prices must appeal to elaborate mathematical concepts. Guesnerie (1975) originally
used the polar of the cone of interior displacements; here we will insteady apply the
more recent notion of Clarke's_normal cone to a production set Yg at point yg, that

we denote N(Yg.ug). see Clarke (1983) and Cornet (1987) for definitions and

interpretations. When Yg has a2 smooth boundary., N(Ygq.yq) is simply the gradient of
the production function defining such boundary. When Yg is convex and possible
nondifferentiable, N(Ygyg) is simply the set of price vectors for which yg maximizes
profits over Yg, i.e.,

N , .
N(Ygryg) = {p e R, | p.yg 2 payg for all yg e Ygl

see Clarke {1983, Proposition 2.44, p. 52) and Cornet {1887, Remark 2.2, p. 4). Ore

can visualize N{Yg.yg) in general as the set of convex combinations of vectors that are
orthogonal to Yg at yg.

N
Definition. The nonzero vector p* ¢ R_ is_a vector of efficiency prices for

the Pareto optimal allocation s* if

(a) p*xi® < p*xj for all xi € Xj such that Ui(x{) > Ui(x;), i=1,..M;

] »
(b} p*e N(Yg.yg) for g = 1., F. C. where N(Yg, ggl is Clarke’'s normal cone

to Ygq at Yg and

(c) »p* - Z(s*) = 0.
~ The existence theorems for the equal benefit solution and for the proportional
solution will require assumptions like the ones used in proving the existence of

competitive equilibrium. We shall in particular need to guarantee that expenditure
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minimization implies utility maximization. For this purpose we shall use Arrow-
Hahn's (1871, p. 117-118) "indirect resource reiatedness.” It is not the simpilest
alternative, but it is the most adequate for our problem. On the one hand, because
the public sector commodities K+«1,...N are not initially owned by any particular

o
person one cannot use an assumption like "there is an x, in X;j such that xjj < wij for

all j.* (See Debreu, 1959, Section S.7). On the other hand, an assumption like

N . . :
*Xi = R_ and Ui is strictly increasing in all its arguments” could not cover situations

where leisure time is assumed to be non-transferrable among consumers, see footnote
1 above.

Definition. Person i’ is resource related to person i* if for every feasible

allocation s there exists an allogcation s’ and a vector Aw such that:
M F ) ) M
(a) X %2 Z Yoo+ L 0+ 0C + A0,
i=1 fz1 izl

(b)  Un(xp) 2 Un(xp). hel,..M |
(¢)  Uir(x;s) > Ui=(x{*)

(d) Aw >0,

(e) Awj >0 onlyif wi'j>0.

In words, {' is resource related to {" if by increasing the endowments of some
of the commodities that i' initially owns it is possible to make (" better off without
making anygbody worse off. |

Definition. Person i' is indirectly resource related to person i* if there is a

(n+1} sequence of persons hy, v=0....n, with hg = i’, hn = 1" and hy resource -retated to
hy+1. (v=0,..,n-1).
ss tio 11. Every person is indirectly resource related to every other
person.
Special existence theorems will cover the extreme case where all consumers

are identical.
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Definition. All consumers are identical if they have the same preferences,
represented by the utility function U, and the same initial endowments, denoted by

wij. and if dif = 1/M, for i=1,.. .M, f=1,...F.

7.2 A GENERAL FORMULATION OF THE EQUAL BENEFIT SOLUTION
Definition. An allocation s* is an egqual benefit solution if:
(i) s* is Pareto optimal;
(ii) There exists a vector of efficiency prices p* for s* such that, for any

pair of consumers i, h,
F F

p"-x; pwi- I dig p“-u; = p'-x; ~pwn- T da p'-u:.
=1 =1

Remark. Note that the prototypical and manna economies of §§3-8 are special
cases of the one in §7.1, and that this general definition agrees with out previous
descriptions of the equal benefit solution.

Our next Theorem and the proof of Theorem 3 make precise the eguivalence of
the equal benefit sotution and the Walrasian solution for equal endowments of public
resources and equal shares in the profit of the public sector.

Theorem 2. Assume that for g=1....F, C, Yy is convex. Let s* be an equal

benefit soiution with associated efficienc ices p*. Then:

(i} for g=1...F, C, Ug maximizes p*.yg on Yg.

(i1) for i=1...M. X, maximizes Ui{x;) subject to:
F

- - i - - ]
pXi=p @+ X dirp -y +lp
f=1 :

L »

Yo ¢+ P @cl

Proof. Appendix.
Theorem 3. Let Y4 be convex, g=1...F, C. Then an equal benefit solution
exists.
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Proof. Easy consequence of the existence of competitive equilibrium for the
private ownérship economy £ where @i = i + (1/M) w¢ and where consumers own
equal shares of the firm labelled C, i.e., dic = /M.

Theorem 3 covers convex technologies only. The presence of increasing returns
to scale is sometimes the rationale for public ownership of firms. The gquestion of
existence for nonconvex techneclogies is, however, beyond ’_the scope of this paper. But
we wish to emphasize that the concept is in principle applicable to nonconvex
technologies. We offer, to this end, an existence theorem for the special case of
identical consumers without restrictions on the technology.

Thecrem 4. If consumers are i i then a s ric equal benefit
solution exists.

Proof: Appendix.

7.3 A GENERAL FORMULATION OF THE PROPORTIONAL SOLUTION
To motivate ocur next definition, rewrite {4.1) above as:

Xi2

LhXh2

X{] = Wiy + Eh(Xh1-Wnt)l. ' (7.1)

i.e., i's consumption of the privately owned good equals his endowment minus a
fraction xja/Enxp2 of the inputs {costs) of the public sector. The fraction xi2/EZnXp2
is the ratio of i's consumption of public sector output to the total output of the
public sector.

Here the vectors of net outputs and inputs of the public sector are defined as

follows. Given a feasible allocation s, define, for j £ {1,....N}.

. M M F

tj = max {0 T xij - wij - Z yrj t.
i=1 i=1 f=1
M M F

tp=min {0, £ xij- L wij- Zyrjl.
i=1 i=1 f=1
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and write: t*(s) = (t7(s),...ty(s)) and t=(s) = (t;(s).....ty(s)). One can interpret

t*(s) (resp. t-(s)) as the vector of net quantities that the public sector delivers to
(resp. obtains from) the private sector. These quantities will be aggregated by means

of a vector of efficiency prices.

Let consumer i own private firm f. If firm f uses inpuls from the public

sector, then the value of such inputs should be included in i's use of pubtic sector

goods. This motivates the following general version of the ratio xi2/(X xy2) in (7.1).

h
Definition. Given (p,s) ¢ RT'x 5. i's proportional share &i(p,s} is
N F N
& pixij- £ dir & Pjyr]
j=K+1 f=1 j=K«1
8i(p,s) = () . if p-t*(s) > 0,

/M, if p-t*(s} = O.

Clearly ei(p,s) > 0 since for | € {K+1...nl, -~ yrj > 0. Moreover, feasibility

implies that t;(s) + ti(s) < ycj + wcj. Hence, if tj(s) > O, then ycj » wcj > O, which,

by our assumption on the partition of commodities, implies that j e {K+1,....N}L.
M

Therefore, 2. ©i(p.s) = p-t*(s)/p-t*(s} = 1, {.e., the definition of &ij(p.s) guarantees
i=1

bona_fide shares,
Second, we add to person i's initial endowment w{ of private sector goods the
(net) output of such goods produced by the firms that i owns. This leads to:
Definition. An allocation s” is a proportional solution if:

(i) s" is Pareto optimal;
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(i1) there exists a vector of efficiency prices p* for s* such that for

every consumer i,
F K

K L] - L ] - - - -
3 PiX:; = P -Wj + b dir b ‘Yoo + 8i(p .5 )p -t (s ).
. 3] . I<1

j=1 f=1 3=

Theorem 5. Let Ygq be convex, g¢=1,...F, C. Ihen a proportional solution exists.

Proof. Appendix.

Our next Theorem makes precise the equivalence of the proportional solution and
the Walrasian solution when the endowments of public resources and shares in the
profits of the public firm are proportional to the coensumption of public sector
commodities.

LI N y . .
Theorem 8. (A). If {p.s7) € R, x S satisfies:

»
(i) for f=1,..F, C, Ug maximizes p'-gggg Yg.

-+
(ii) for i=1...M, x; maximizes Uj(x{) subject to:

L] - »

F
P X{=p @+ dirp
f=1

dr + 8ilp s ) Ip Yo + p el

then s" is_a proportional solution with efficiency prices p®.
(B). The converse of (A) is true if Y4 is convex, g=1,...F, G.

Proof. Appendix.

As in § 7.2, we study the identical consumer case with the aim of providing a
spectal existence result for nonconvex technologies.

Theorem 7. Let consumers be identical. Then a symmetric proportional

solution exists.
Proof. Appendix.

It may be of independent interest to establish that, in the identical consumer
case, an equal benefit solution is basically a proportional solution. (The converse is,

however, false.)
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Theorem 8. Let all consumers be identical, assume that 0 ¢ Xi, i € {1,....M}
and let s* be an equal benefit solution. Then there exists a proportjonal solution s
“
such that U(Xj) = Ulxi). i = 1., M.

Proof. Appendix.

7.4 DIFFICULTIES IN GENERALIZING THE CONSTANT-RETURN-EQUIVALENT

MECHANISM

How does the axiomatic characterization of the constant-returns-equivalent
mechanism fare in economic environments with many commodities? With several
private inputs and one publicly produced output, the FALE axiom can be reformulated to
specify the autarkic solution when the technology is linear, not only constant-returns.
(With several inputs, it is only on the linear technologies that no producer creates
any externalities for others.) TMON is reformulated to require that if the production
set in one economy includes the production set from another, then all agents (weakly)
benefit in the more ‘'advanced' economy.

Theorem 9. For the domain of economic environments with some fixed number

of private inputs greater than one, there is no allocation mechanism_which satisfies

Pareto optimality. TMON and FALE.

Proof. Appendix.

Thus the CRE mechanism does not generalize to the case of many inputs as do
the previous solutions. Furthermore, in the several input case the motivation of
TMON as 3 requirement of public ownership in the presence of private ownership of
factor inputs dissolves. For suppose your endowment of two private inputs is
(w17.w12) and mine is {w2), w22)., where w2 is much larger than wz1. Suppose, in
the first technology, the input x2 is very impertant, but after the technological
inprovement, X2 becomes almost useless in production. If private ownership of inputs
is respected, there is no reason to require that my welfare improve under the

aliocation mechanism which respects the required property rights. [ may lose by
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virtue of the devaluation in my endowment of the privately owned good. This problem
did not arise with a single input which varied only in one dimension (say, skiII. level,
but not type of skill).

In the case, however, where there are several private inputs but all individuals
are identical, TMON continues to be a salient requirement for public ownership: the
above critique does not apply. Furthermore, on the domain of economic environments
consisting of identical individuals, the CRE mechanism is characterized by Pareto
optimality, TMON and FALE, and it chooses a symmetric allocation.

An impossibility result also obtains for the case of many outputs and a single

input.

8, CONCLUSION

Of the three solutions, we believe that the proportional solution best
implements public ownership of some resources in the presence of privately owned
inputs. The equal benefit solution is an interesting point of reference, but we think
it is more in the spirit of equal private ownership than of collective ownership. It
is especially hard to justify when production is characterized by increasing returns,

as it inflicts losses upon people who do not consume the publicly produced good.

Technological monotonicity is an appealing notion, but it is probably too strong
a requirement to insist upon for public ownership in the general case, as the CRE
mechanism does not generalize to the several commodity case. Even in the case of
purely private ownership', a similar monotonicity condition is too strong. The
utilities arising from Walrasian .equilibrium are not monotonic in the endowments of
the agents, but that fact does not cause us to view markets as transgressions of
private ownership.

We must, in any event, emphasize the appropriate jurisdiction for these models.
"Primary' goods, such as education or health, are not financed according to use in

countries where their availability is taken to be a right. (In Canada and Great
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Britain, for instance, the national health service is supported out of general

revenues.) In addition, distributional concerns may motivate a government to support

a public transportation system, for example, by a property tax which falls mainly on

people who never use the subway. We do not impugn these public policies. Our

concern has been to distinguish conceptually between public and private ownership of

economic resources.



A.1
APPENDIX: PROOFS

Definition: Llet F be an allocation mechanism defined on a domain of economic
environments Q. F is a monotone utility path (MUP) mechanism on Q if there is a

fiied montone path in utility space such that for any &eQ, the induced utility

aliocation u(F(£}} lies on the path.

Lemma 1. Let F be an allocation mechanism defined on 5 (respectively. 3 PR or
T IR) which satisfies Pareto optimality {PO) and TMON, Ihen F is_a monotone utility
path mechanism on each subdomain ¥F(w\). The same s true if ¥ is replaced by 3.°° or

SR,

Progf. It suffices to show that for any &', £2 & Y(w,U), either U(F(ET)) >
UCF(E2)) or UGF(E2)) > U(F(E1)). I &1 = (wiUsf) and 82 = (w;Uig), define:

h{xi1} = max (f(xy), g{xy)).

and, noting that h is an admissible production function, consider &£" = {w:Uh) £ T(w,U).
If &', £2 € TOR (or TIR) then h inherits the DR (or IR) property from f and g, and so
E™ ¢ 3OR (TIR, respectively). Since h > f and h > g, it foilows by TMON that U(F(&"))
> UF(EY)) and UFE™)) > U(F(£2)). But by definition of h, F(&") is feasible for at
least one of &1 or £2 -- say &1. Then by PO, it follows that U(F(E™)) = U(F(&1)), and
so U(F(&T)) > U(F(E2)).

Llemma 2. If F satisfies FALE on J(w,\U), then F is a monotone utility path

echanism_on Y CR{w,U).

Progf: By FALE, F chooses the autarkic allocation on linear economies, whose
production functions are fg(x1) = Bx1. Define &g = (w:Uifg). Since U is strictly
monotonic, U(F(&g)) is strictly monotone increasing in all its components with

respect to increases in B.

Proof of Theorem 1: (after Moulin, 1987). It is easy to verify that the

Constant-Returns-Equivalent mechanism satisfies the three axioms. We prove that
onty the CRE mechanism satisfies them. For any (w,U), by Lemma 1, F is a monotone

utility path mechanism on 2 (w,U). But the path is determined by the behavior of F on
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the linear economies, by Lemma 2. F(&) {s therefcre the allocation"deterrnined by the
intersection of &'s utility frontier with the monotone path determined by the
linear economies. Note that all points on the monotone path Pareto dominate
(Ui{w11.0), Uz{wz21,0)), and also that any such allocation must be (strictly) Pareto
optimal in &: so.F(&) is PO. It follows that F on Z(wU) is the Constant-Returns-
Equivalent mechanism.

Remark. The same proof suffices for F defined on SPR(w.U) and T!R(w.U),
since the classes of DR and IR production functions are closed under the binary max
operation. Note this is also true for the class of convex production functions (and so
Theorem 1 is true on that domain), but it is not true for the class of concave
production functions.

We turn now to the economy of Section 7.

Definitign. A utility allgcation is am M-vector u = {(u1.....uM) such that

Ui{xi)} = uj for some Xj € Xj. i=1....M.

Definition. Given a utility allocation u, the set of u-feasibie allocations is:
W) = {s £ § | Ujlxp) = vy, i=1,...M}h
A utility allocation u is feasible if there exists a feasible allocation s such
that Ui(xi} = uj, i=1,....M. A feasible utility allocation u is weakly Pareto_optimal if

there does not exist another feasible utility allocation u’ such that uy; > uj,

i=1,..., M.” Denote by U the set of weakliy Pareto optimal utility allocations.
P . . N .
Definition. The nonnegative price vector p € R_, p # O, supports the utility

allocation u if p-z{s) > O for all allocations satisfying Uj(xj) > uj. i=1....M.
Lemma 3. Assume that Yg is convex, g=1....F, C. Let u be 5 weakly Pareto

. - . . N
optimal utility allocation. Then there exists a p € R, that supports u.

Proof: Standard; see, e.g., Arrow-Hahn (1971, Th. 4.4(a)-{b), p. 93).

7 Note that, contrary to standard usage, Arrow-Hahn (18€71) write "Pareto efficient™ for
"weakly Pareto optimal.”
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Lemma 4. Assume that Yg is convex, g=1.....F, C. Let p* ¢ RT. support the

weakly Pareto optimal utility aliocation u”, and let s ¢ w(u™). Then:

(i) p" is a vector of efficiency prices for s”.

(ii) p Ug 2P Yg for all yg e Yg. g=1...F, C.

Proof: See Arrow-Hahn (1971, Th. 4.4(d), p. 93). As noted in 7.1 above, when

3
Yg is convex, the condition p” € N(Yg.ug)is equivalent to profit maximization.

-~

Lemma 5. If (p".s™)e RT x S satisfi

{(ii) »p Ug 2P Yg for all yg e Yg. g=1....F, C.

Ciii) p s ) = 0.

then p Xy > 0 for some h.

proof: By {ii), (itl) and Assumption A.9 and {i{) we have that

M F M

M - »* L] » -
Pr 2 X{=Pp-| Z Werwce+ L Yrrle|2p|Z wj+wce+y|>0.
i=1 i=1 f=1 i=1

» N . . : .
Lemma 8. Let p” e R, support the weakly Pareto optimal utility atlocation u”,

let s € W(u ) and assume that for some consumer i, p 'x; >0and p -{x; - wj) 20,

»

Then x; maximizes Uj subject to p 'xj < p -x;.

Proof. Wwe use the proof of Arrow-Hahn (1871, Lemma 5.1, p. 108) to show

that p Xy > P X and hence, since ':':'i e Xi, that X4 does not minimize p -x{ on Xj.
Utitity maximization wiil then follow from standard arguments (Debreu, 1859, (1)

of 4.8, p. 69 or Arrow-Hahn, 1971, Lemma 4.3, p. 81).
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By Assumption A.6, p"+«(wi-X{) 2 O and p"(wi-Xj) > O if and only if p*-wi > O.

] L - » »

Hence, since "p *X; > 0" implies that either “p «@j > 0" or p -(xi—coi) > 0, we have

that 'p'-xi > 0 implies that either “p"-(wi-Xj) > 0 and (by hypothesis) p -(x;-wi) = 0

or *p +{x;-wi) > 0 and p -(wi-X{) > 0. In either case, p -(x;-Xi) is the sum of a

-
positive term and a nonnegative term, and hence positive. Thus, p X; > p X{.

Lemma 7. Let Yq be convex. g=1...F, C. Let p” ¢ RT support the weakly
Pareto_optimal utility allocation u* and let s™ e W(u®™). If i’ is indirectly resource

- - - * ] E ] »
elated to i", p -x;" > 0,2and p -x;* 2 p -wj, then p -x;- > 0.

Proof. (We adapt the proof of Arrow-Hahn, 1971, Lemma 5.4 and Corollary 5.1,
p. 118-119). We first consider the case where i is (directly) resource related to i".

By A.11, there exists an attocation s and a vector Aw such that:

(a) thf_zgfogc-rzmhi-(l)(:c-ﬁﬁ).
(b) Uh(xi;) 2 Un(xp) . hoe {1..M

(e)  Uirlxi+) > Ui'(x:»).

{(d) Aw >0,
(e) Awj> 0 oniy if wij > 0.

- »

Because p supports u , (b) implies, by Lemma 4(i), that p - xp > p ‘X

h e {1,..M}. Moreover, by Lemma &, Xi= maximizes Ui~ subject to p xi- < p'-xi..

L »

- . - - -
Therefore, by (). p - Xj* > p - x;.. It follows that p -Txp > p™-Txy,.

Because Yg is convex, yg maximizes p"-yg on Yg. g=1....F, C, (Lemma 4 (ii)), i.e.,
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F . ) F .
p-|Zur+ruct2p-| 2y +ye
f=1 f=

Because p * z(s )} = 0, we have that

» H * - F » ] - M

p " L Xp=p ZUp cyc|ep -] T wyrog
h=1 f=1 h=1

R J
Thus,

- H - 1 r-'F " o- - M

P Z x%>p | Zyreyci+p | T opreg
h=1 f=1 h=1

N
But from (a) and because p ¢ R_, we have that

Mo F. . . M
p * Z Xp2P Zyr+yctep - th**@c*ﬁco
h=1 f=1 h=1

- »

i.., p "Aw > 0, and thus, p;Awj > O for some j. But by (e) this implies that

L ] L] L - -

p]-mi-j >0, e, P T PRt 2 p]-coi-] > 0. This concludes the proof for the case

where i'is (directly) resource related to i*. Repetition of the argument yields the

result for the assumption of indirect resoiirce relatedness.

Proof of Theorem 2. As noted in section 7.1 above, (i) follows from the

convexity of Yg. Moreover, from (ii} in the definition of an equal benefit solution

we have that, for i=1.....M, :
F - M M F

" = - - - » - 1 - -
Pxg-p-@i- X dithYp=gp-| L x-2on-2 y[=5p -Werwc)
f=1 h=1 h=1 f=1

|~

‘the last equality following from the definition of efficiency prices, i.e.,

L] F . " »*

] " 1 - )

Prxi=p Wi+ Z difP'Uf‘ﬁ[P'Hc*P'wc].
f=1
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[ » -

which in particular implies that p -x; > p -w@j, i £ {1,....M}, because maximum profits

] L]
are nonnegative. By Lemma S, p « x|, > 0 for some h, and thus, by A.11 and Lemma 7,

=* -

p 'x; >0 for i e {1,..M. Lemma 6 in turn guarantees utility maximization.

i
Proof of Theorem 4. Define Y = E(Z Yt + Ye). Consider the
f=1

maximization problem: Choose (x", U } in order to maximize U(x) subject to:

1 .
Xz +o e+ Y Yev.
M
By Assumption A.10, the constraint set of this problem is compact, and thus a solution
F
. - . - . 1 - - - - ]
(x", y ) exists. By the definition of Y, 4y = " (2 4y + Yc) for some (Yy....4g. Y¢)
{=1

M vectors
= 7 . wr " =

L]
such that Ug & Yg. g=1....F, C. We want to show that s = (X ....x . Yj....4¢. Uc) is
an equal benefit solution. Efficiency is easily proved by contradiction. Let s’ Pareto

dominate s". Then it {s easy to show, by the concavity of U, that

N SR -
Ulg Z xi |>UV (x").
i=1
M. Foo. .
1 1 e .
and that the vector (-';1- z %, vy {2 yr * Yc)) satisfies the constraints of the above
i=1 =1

maximization problem, contradicting the assumption that. (x™.J ) solves it. Thus, s”

is efficient. By Cornet (1987, Theorem 3.3., p. B) a vector of efficiency prices p”

exists. Moreover, by the definition of (x™, y*)., we have that:
- 1 1 L] L]
X =wl+§mc+ﬁ-(2gf*ucl.
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- - 1 L)
ie., P X -por-7ZPp -

F " 1 = ® 7
4r = 4P ‘[mC'Uc].
f=

1

proving that condition (i) in the definition of an equal benefit solution is also

satisfied.

Lemma 8. Assume that Yg is_convex, g=1...F, C. Then the correspondence

P: U=~ AN-T: P(u) = {p £ AN-1 | p supports ul, (where U js_the set of weakly Pareto
N

optimal utility atlocations and AN-1 = {p e R':l | = pj=1Dis upper-hemicont inyous
j=1
with non-empty, compact and convex values.
Proof. Arrow Hahn (1971, Theorem 4.6, p. 99; the nonemptiness of P{u) for

ue U is guaranteed by Lemma 3.)

Lemma 9. Let Yg be convex, g=1....F, C. WriteU =Un RT for_the set of

weakly Pareto optimal. nonnegative utility allocations. and AM-1 for the simplex
M
M
fveR,| £ vi=1kL
i=1
(A) TIhe mapping: V: U = AM-T: V(u) = (1/Z up) u, is_a homeomorohism:
h

depote its inverse by .

(B) The correspondence: W: U = $ is upper-hemicontinuous, with nonemptu,
convex and compact valyes.

(C) S is convex.
Proaf: (A): Arrow-Hahn (1971, Section 5.2, p. 111-114). (B): Arrow-Hahn

{1971, Section S.3, p. 114). (C): Arrow-Hahn (1971, Theorem 4.2, p. 88).

Lemma 10. J{s¢E §. thep for any p ¢ RT and for i=1,....M,

N F N

o opixij~ L dir L pjyurj - 6ilp,s) pet*(s) = 0.
j=K+1 f=1 j=K+1
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Proof. If p-t*(s} > 0, then the equation follows immediately from the

definition of ei{p.s). So let p-t*(s) = O, which in particuler implies that

N

2 Pj’t}(S) = 0. Because wjj = O for j ¢ {K+1....NL. this can be rewritten:
j:K+I

M F

N
Z pj| Zoxij-Z yry|=0.
=K +1 i1 121

1

But each term in the sum is nonnegative, because -yr; > O for f e {1,....F} and
j € {K«1,...NL. Hence, pjxjj = pjurj = O for f € {1,...F} and j £ {K+1,...NL
Proof of Theorem 5. We adapt to our problem Arrow-Hahn's (1971, Chapter

5) proof of existence of competitive equilibrium. First, define ©: AN-1 x § = RM:

e(p.s} = (81(p,s).....em(p.s)), if p-t*(s) > O.
e{p.,s) =
AM-Totherwise.

Because © is continuous and single valued on {(p.s) £¢ AN-1 x § ] pet*(s) > O}, ©
is ubper hemicontinuous and convex valued on its domain AN-1 x §. which is mapped by
@ into AM-1,

Second, define V: AN-1 x AM-1 x § & AM-1,

Vip. ®, s) = AM-V nive RM | vi = 0 it oilp. 8, s} < Ol
F K K
where - gilp. &, s) = pr@j « X dir X Pjyrj - & Pjxij + 8ip-t=(s).
=1 j=1 j=1

Clearly, V(p. ®, s) is a compact and convex set. It is nonempty, because of the
definition of t=(s) and the fact that Tej = 1,

M

2 oilp, 8.8 =0, (9.1)
i=t

and therefore on(p, ©, s} > 0 for some h.
we claim now that V is upper-hemicontinuous.
Let: Ip¥ o¥.5%} = (p.8.s) , (p¥ g¥.s¥) € AN-1 x AM-1 x §,

vV v, vV E V(pY g¥,sV),



and let oi(p .8 ,s) < 0. Because ¢j is continuous, cj(p¥, &%, s¥) < O for v large
enough, i.e., V]; z 0 for v large enough and hence vi = 0, i.e.,, vi = 0 whenever

ailp. 8, s) < 0 and therefore v £ V(p, 8, s). We conclude that V is upper-

hemicontinuous.
Consider .now the correspondence
& AN-T x AM-T x AM-T w § & AN-T x AM-1 y AM-T x § |
(p. v. 8, s) = P(GV) x V(p, 8, s} x ©(p, 5) x W(U(V)),
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an upper-hemicontinuous and nonempty, convex and compact valued correspondence of a

compact, convex set into itself (by Lemmas 8-9). By Kakutani's theorem it has a

fixed point (p*. v*, o*, s®), i.e.,
p*® & P(O(v*)),
v* ¢ V(p*, &% s*},
8% € O(p*, s*),

s* € W(U(v*)).

(8.2)
(9.3)
(9.4)
(9.5)

We now show that condition (ii) in the definition of a proportional sclution is

satisfied. By Lemma 4{i), (9.2) and (9.5) imply

p-2(s)=0, (9.8)
that, recalling the definition of t* and t-, can be rewritten as:
polt (s)et(s)-ys-we)=0. (9.7)
M
We claim that oj(p®, ", s*) = 0, i=1,...M. By (9.1), ¥ oi(s* p* ") = 0
- i=1

hence, it suffices to show that oi{p®, e*, s*) > 0 for i=1,....M. Suppose not, i.e

cilp®, 8*, s*) < 0 for some i. Then by (9.3), Gj{v*) = 0 < Uj{wj). Again by (9.2) and

(3.5), Lemma 4 (i) implies that

» - -

p 'xiip'wi’

and, by Lemma 4 (ii) and Assumption A.3,

(9.8)
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P -yg2 0, g=1....F, C. (9.9)
or. combining (9.8) and (5.9),
F
PXi<p @i+ & Gif P Yr. (9.10)
f=1

By (9.7) and (8.9), p*-t*(s*} + p*.t~(s*) > 0, and because, by the definition of t* and

t- we have that p®-t*(s*) > 0 and - p*-t-(s*) > 0, we obtain:

p*.t*(s*) = 0 2 p*t-(5*) = 0, {g.11)
and
.y -p"t-(s”)
pit*(s")> 0= s ¢ [0, 11 {9.12)

Consider first the case where p*-t*(s*) = 0. By Assumption A.1, y*rj < 0 for

j=Ke1, N, f=1,...F, which, together with the facts that, by (S.11), p*-t-(s*) = 0,
K

- "
and that p "t > Z Pj%ij . yields, using (9.10),
i=
X - = F K - =

i.e, oilp*, 8%, s*} > O, contradicting the supposition that oi(p*. 8%, s*) < 8. Hence,
ci{p®, 8%, s*) = @, i=1,..M, if p .t*{s") =
Consider now the case where p"-t*(s") > 0, and assume again that

oilp*, 8*, s*) < 0. We can rewrite {8.10) as:

K " w : F K * » N - " F N L
ij l,_p ‘0 + deerJy,] z PiXj - dit T Py
j= f=1 i= j=K+1 f=1  jsK+d

Again by Assumption A.1, the term in brackets is nonnegative and thus, using (9.12),

F K N

K . » » " -p'.t-(s'J [T F N *

S oOPiXi <P+ L ditr & pilUyy - T E pix -2 dif X Pg
t (g™ i

jer 1Y =1 a1 1D TG T ke l

(9.13)
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but, by (8.4} and because p"-t*(s”) > O,

N »* W F N [
EopiXi- Z dit L Py
ek D Y
8, = - o '
! pret*(s7)
ang (9.13) becomes
K .. . F K e ww . .
Z pjxjSP @i X dit 2 pjygj ¢ 0Pt (s),
j=1 f=1 j=1

i.e., oilp*, €%, s*} > 0, contradicting the supposition that oi(p*, 6%, s*) < O.
Hence, oi(p*, ©*, s*) = 0, for i=1,...M. This together with the fact that, by (9.11),
p"-t-(s") = 0 whenever p~-t*{(s") = 0, yields condition (ii) in the definition of a
proportional solution.

The proof will be completed after showing Pareto optimality. By the just

proved condition (ii) and by Lemma 10, we have that for i e {1....,M}
- L L3 F - » - - » »
Pxy=p -0+ Z dirp -4y +0i{p s )p -lycrwel, (8.14)
f=1
and because, by Lemma 4, profits are nonnegative, we have that for i & {1,...M}L

L] - L - g

P Xj2p wi. By Lemmas 4 and 5, p Xp > 0 for some h, and thus, by A.11 and

Lemma 7. p -x; > 0 for i e {1,..M}. Lemma 6 in turn guarantees utility
maximization subject to a budget constraint where weaith is defined by the right

hand side of (9.14). Pareto optimality now follows from the First Ffundamental

Theorem of Weifare Economics.
{ of Theorem 8. Equation (9.6) above holds under the hypothesis of (A)
or (B) and thus, by Lemma 10, the budget constraints in (A) and in the definition of a
proportional solution are identical.
(A) Pareto optimality follows from the First Fundamental Theorem.

{B) The argument in the last paragraph of the proof of Theorem S shows
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-+

Iv

w

profit maximization and utility maximization subject to p -xj < p -x

Lemma 11. Let all consumers be identical and let s™ be a summetric equal
- -
benefit solution (i.e., x; = ¥, for all i, h=1...M). Then s* is a proportional solution.

Proof. First, notice that 8i(p*.s*) = 1/M (if p*-t*(s )} > O, then 8i(p*.s*) =

enlp*.s*), i, h=1....,M, and therefore, 8i(p*,s*) = 1/M, i=1.....M). Second, by symmetry and
M
- i » 1 L] 1

feasibility, for j=1,....N, Xjj 2wy fa it H Uej * i @i whereas by (¢} in fhe

F
- = 1 - * »*
definition of a vector of efficiency prices, p x; = VLR Mo; + 2 4y + Yo » wcl
fz1
- L] - ‘| F - 1 »
Thus, P, X:i = P; (@1 + = Z Ye3 + = Up; + Ocil j=1....N
D Y } F* N (o] ' Mo ji el
R S FooK ., e ..
- jg} LI Ei FE] Pj¥ry * Gilp s dp -t (s ).

Proof of Theorem 7. By Theorem 4, a symmetric equal benefit solution

exists and hence, by Lemma 11, it is a symmetric proportional solution.

-

Proof of Thecrem 8. Because s is an equal benefit solution, for all

h e {1,..M we have that:

F F
» » - 1 “ » 1 " - ™ . =
p.xh_p.@l-ﬁZp.gr::ﬁ p -2 XI-HD'QI'Zp'gf
f=1 =1 f=1
‘ ™ »* 1 - -»
i.e, p-xhzgp-le, (9.15)
1
and moreqver,
- M L J F » L J
P-l X Xp-Mor-Z yp-yo-wcf=0
h=1 f=1

which, together with feasibility, yields:
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M F u -

E Xpj o Mo~ 2 Yy - Yoy - oy p= 0§ e {1 N (9.186)
hs1 f=1

Pj

CASE _1: p X 4 = 0 for some h,

By (8.15), p -xy = 0, which in particular implies that:

p; K 20 L iEleM, felN, (9.17)
which, by (9.18) yields:
K . L S S
EI Pien ngl }El i b _El ¢ (Uc:j ’ mcj)= o (9.18)
By (8,17), ei(p'.s*) = eh(p‘.s'). i, b € {1....M}, and hence ettpb.s“) = ]F for all

" -
ie {1,..,M. Moreover, by (9.16) if pjt]-(s ) < 0 it must be the case that

pjt-j(s ) = pjlycj + ®cy) and that either w;j > O or yrj > O for some f € {I....Fl ie.,

- - K »* L]
jell....Kbh Thus,p -t(s)= X2 Pj (UCj + wcj). Therefore, (9.18) implies that the
j=1

right hand side of condition (ii) in the definition of a proportional equilibrium is

zero. Because (9.17) implies that the left hand side is also zero, it foilows that such

a condition is satisfied.

" o ’
CASE 2: p -x ho> 0 for h=1,....M.

Define the allocation s by keeping Ug = Ygs 9=1.....F.C, and by setting all

M. "
consumption vectors equal to X = & X n/M. Because 0 & Xh, x ) does not minimize
h=1
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p -xj on Xn and therefore, by standard arguments (see, e.g., Debreu 1959, (1) of 4.9, p.

- - - »

69, or Arrow-Hahn, 1971, Lemma 4.3, p. 81) x ., maximizes U subject to p -xp < p ~x b

Thus, by (8.15). ﬁ(x Rl = U ;) for all h, i, and hence, by the concavity of U, U0x) >

- »
U h). h=1,....M. But because s is Parefo optimal and s is feasible, we must have

.l - - ’ .
that U(x) = Ulxy), h=1....M, which in particular implies that § is Pareto optimal, It

is now easy to check that 5 {s a symmetric equal benefit solution and, hence, by

Lemma 11, § is a proportional solution.
Before proving Theorem 9, we must formulate the proper version of FALE for a
domain of economic environments with several inputs. Suppose there are two inputs, X

and x2, privately owned, and the endowment of the ith person is (w11, w12). Denote an

environment £ = (©,U.f), where f(x1.x2) = x3 and © = (W11,012.021.622.:...,0M1,OM2).

{t | for some & B > 0. f(xy.x2) =

Consider the class of linear production functions ¢
oxy + Bxg). Let T wU) = {LeT(w,U)|fed). 1f several persons work simultaneousty on
a technology in ¢, they produce the sum of what they produce separately for the same
factor inputs. This is true only for fe$. Thus, the appropriate domain for the free
access axiom is T%.

free Access in Linear Economies (FALE): If F is an ailocation mechanism

defined on &£eT?w,U) then F(E) is the autarkic atlocation.

Proof of rem 9. For any (wU). Lemma 1 continues to hold on Y (w,U),
with the same proof. But F fails, in general, to be a montone utility path mechanism
on most subdomains T?(w.U) under FALE, and so no allocation mechanism satisfies PO,
TMON, and FALE on 2 2, the class of environments with two private goods. Consider a
two person environment, and let f(x1.x2) = X7 ¢ 8x3. Choose another pair of
coefficients (#.5) which does not dominate (o,8) nor is dominated by («,B8), a profile

U = (Uy,U2) and endowments w such that, under autarky, the utility of the first person
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increases in moving from f to g(xq{.,x2) = ¥x1 + §x2 and the utility of the second

person decreases. This is always possible. It follows that on S{w,U) F is not a

montone utility path mechanism.
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