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Under the concept of natural selection, individuals should
respond to their environment in such a way as to increase their
fitness. Not every individual in a population nmay respond the sane
way to the sane environnental conditions. |In the past, individuals
that behaved differently fromthe nost common pattern of behavior were
consi dered nutants of low fitness (Al cock, 1984). However, it is now
recogni zed that there may often be alternative, equally adaptive
responses to selection pressure.

One aspect of natural selection, sexual selection, deals with
acquiring mates. I n frequency-dependent selection, the cost and
benefits associated with a given mating behavi or depend on what the
other individuals do. This paper uses gane theory to address
mal e-mal e conpetition for mates. In evolutionary game theory, mating
phenotypes are treated as alternative nating strategies (Maynard
Smith, 1982). The inportance of alternative strategies is the
hal | mark of the game theory approach to natural selection.

The chief theoretical novelty of this paper is the fornmalization of
a.class of ganes call ed. . conditional A gare is conditional when the
payof f matrix varies systematically with conditions in the
environnent, even though the strategies available to the players do
not. W extend the classical notion of ESS fromganes within a single
condition (unconditional games), to the w der class of conditional
ganmes. This extension is called the Conditional ESS or CESS. A word
of caution is in order here. Dawkins (1980) has already used the term
"conditional" in a narrower sense to refer to the various role
situations which may arise in an asymretric game. Hopefully, no

confusion will result fromour adoption of the same term-



In describing the mati ng behavior of a species, it has been noted
that behavior may vary between popul ations and within a popul ation
bet ween seasons (Emen and Oring, 1977), and within seasons. So far,
ganme theory has been used in studies of frequency-dependent variance
in behavior within a population. This paper takes wi thin-population
variance a step further, and |ooks at the coexistence of alternative
strategies in a fluctuating environnent. Unconditional ganes can help
us understand the coexistence of alternative strategies when it is
adaptive to respond to the average condition. However, many _inportant
factors that affect the fitness of mating behavior change drastically
bet ween seasons, even w thin seasons. The conditional games allow us
to examne mating strategies in a much wider and nore realistic way,
as they allowus to follow a strategy through nmore than one

envi ronmental condition.

Perhaps the richest supply of exanples of alternative male mating
strategies cones fromthe order of anuran anphibians (Wells, 1977).
The typical nmale mating behavior is to signal, in which nales
congregate at the breeding site and attract females vocally.

Al ternative mal e behaviors include satellite, parasite, search,
call-and-m ||, and pass (descriptions in Nelson, et al., 1985).

Several investigators have noted that for anurans, the density of
males at the breeding site seems to effect the type of mating behavior
observed (Wells, 1977). Oher factors that mght influence a male's
behavi or include availability of territories, varying costs to
calling, synchrony of female arrival (or operational sex ratio) and

the mal e size distribution.



Dawkins (1980) states that conditional strategies are

- advantageous because they allow the male to be more flexible,
therefore able to obtain the highest reproductive benefit in each
condition. CESS as we have defined them, formalize this advantage and

apply it to a much wider class of games than has been considered

before.

I, Conditional ESS: the symmetric game case

Let 1 be an index of conditions, i = 1,2, . . ., n. Let Ej(I,J)
denote the payoff in condition i to playing strategy I against
strategy J. The strategy set available to each player does not vary
across conditions. Bach condition i arises with probability p(i).
One can think of conditions as features of the environment, such as
availability of territories or population density, which do not depend
on the strategic interaction of the game. A conditional strategy is a
vector of strategies (Ij), i = 1,2, . . ., n.

One can now define a conditionmal ESS as follows. A conditiomal
ESS is a conditional strategy satisfying the equilibrium property and
the stability property component-by-component. Let (Ij) be a
conditional ESS.
Equilibrium Property. In each condition i, Ei(li,li)ﬁﬁi(Ji,Ii), for
all strategies J;.
Stabjlity Property. In each condition i, if Ej(Jj,I;) = Ei(I;,Ii),
them Ej(1j,31)”Ei(Ji,Ji).

Notice that in the case of a single condition, this is equivalent

to the c¢lassical notion of an ESS.



To show this definition captures the notion of a population
stabl e agai nst invasion by a nmutant, suppose that mutant with
frequency e arises in the population. The nutant plays an alternative
conditional strategy (Ji). The payoff to a menber of the popul ation

pl aying the conditional ESS is given by
(1) E p(i)Ei(T;,(1~e)I; + Jj)
whereas the payoff to a mutant is given by

(2) gp(i)Ei(Ji,(l-e)Ii + £Ji).

The mutant is selected against if (1) is greater than (2). Using

the bilinearity of the Ej's, selection against the mutant occurs when
(3} (l-e)fp(i) (Ei(1i,1i) - Bi(J4,11)) +eFpliX(Ei(I4,J1) - Ei(J4,31))>0.

(3) will not hold for all small positive g, all p(i),and all
alternative strategies Jj unless the equilibrium property holds--the
first half of the expression on the left would otherwise be negative.
Suppose then that in condition i,J; is a best reply to Ii so that
Ej(1;,I;) = E{(J;,Ii). Then, unless the stability property holds, the
second half of the expression om the left will be negative. Thus, the
equilibrium and stability properties characterize a conditional ESS.

Define E = Ip(i)E; to be the payoff function of the average

condition. Suppose I is an ESS for this unconditional game. Then I

is a conditional ESS if and only if I satisfies the equilibrium and



stability properties for each condition. Oherwise, | can be invaded
by a mutant playing a conditional strategy which is the sane as | in
every condition except condition i, and better in condition i.

It is useful to knowwhen a conditional ESS is unique. Cearly,
what is required is that a unique strategy satisfy the equilibrium and
stability properties in each condition i. One condition for this is
given by Bishop and Cannings -(1978), Theorem3. |If strategy |
satisfies the equilibriumand stability properties, and every pure
strategy is a best reply to I, then | uniquely satisfies the
equi libriumand stability properties. Another condition for this is
as follows. Let | and J be pure strategies. Strategy | doni nates

strategy J in the gane with payoff function E if E(I,I1)>E(J,I)

E(I,J)2E(J,T)
and at least one of the tw inequalities is strict. If in condition
there is a strategy li which dominates all the others (there can be at

nost one strategy which does this), then it is the only strategy
satisfying the equilibriumand stability properties for that
condi ti on.

Here are some biol ogi cal exanples. Suppose there are two

phenotypes and two conditions. In condition 1, the payoff matrix is
1 0
0 0

while in condition 2, the payoff matrix is



There is a unique conditional ESS, which is phenotype 1 in both

conditions. This follows since phenotype 1 is a dom nant strategy in

bot h conditi ons.

Here is a nore conplicated exanple. The payoff matrix in

condition 1 is

while in conditiom 2 it is

i 0
t] /.
There are two conditional ESS's, nanely (strategy 1, strategy 1) and

(strategy 2, strategy 1). Now suppose that the population is

currently playing the unconditional game with the average payoff

matri x
2p(1) + 1p(2) 0
Then this population will either be at the unconditional ESS strategy

1, or the unconditional ESS strategy 2. |If the population is at the
ESS strategy 1, then it is also at the conditional ESS (strategy 1,
strategy 1) and is therefore stable against invasion by a conditiona

nmutant. However, if the population is at the unconditional ESS



strategy 2, then it can be invaded by a conditional nutant. In this
case, though, only a conditional nutant playing the conditiona
strategy (strategy 2, strategy 1) can invade. This shows that not
every conditional ESS can be reached froman initial population at an
unconditional ESS. This case also shows that in general the CESS
payoffs (3) differ fromthe payoffs in the gane averaged across

condi tions.

W show bel ow that conditional ESS nodels are generally suited to
anal yzing systens where phenotypic plasticity and threshhold effects
are inmportant. Phenotypic plasticity makes possible the playing of
~conditional strategies, while threshholds are often inportant in

di stingui shing conditions.

Il. Conditional ESS: the asymretric gane case

This section extends the notion of conditional ESS devel oped
above to asymmetric ganmes. Let (A B) denote a situation with roles A
and B whi ch may appear in a game. For instance, A nmmy be a l|large
animal and B a smaller animal, or Amay hold a territory on which B
intrudes. For the sake of sinplicity, attention will be restricted to
a single role situation, although the results generalize to nultiple
role situations (large territory holder vs. snmall intruder, e.g.).
Moreover, only the perfect information case is considered here; that
is, each player is assuned to know the role situation (A B) and the
role he is playing. This assunption is substantive, although nore

general information settings have been studied (Selten, 1980).

Let 15 represent a strategy played by role A in condition i;

JB,i, a strategy played by role B in condition i. EA i (1A i,JB,i) is



the payoff for role A in condition i when played against strategy J by

role B in condition; likewise Ep, ;(Ia,;,JB,i) is the payoff to role B

in this situation. Strategy Is,i is a best reply to JB,;j if
(4) Ea,i(Ta,i,38,i) > EA,i(I'A,i,J8,3) for all I'a,ifIa,j.

The definition of Jg,i as best reply to Ia,; is analogous. The pair
(IAsi’JBai) is a strong equiljibrjum if Ia,i is a unique best reply to
JB,;i and conversely.

For unconditional asymmetric games, ome can show that an ESS must
be a pure strategy (Selten, 1980). Moreover, in the case of perfect
information, every ESS must take the form of a strong equilibrium pair
of strategies for each role situation (Hammerstein, 1981). To apply
these results to the class of conditional games, notice that the role
situation (A,B) in condition i, for i = 1,2, . . ., n can be
reinterpreted as a sequence of.role situations (A;,B;), each appearing
with probability p(i) in an uncoanditional game. Under either
interpretation, the payoff of an animal playing the strategy (I, ;)

for each i against the strategy (Jg,;) for each i is given by

(5) Ep((Ia,i),(JB,i)) = gp(i)EA,i(IA,i,JB,i).

This formal isomorphism establishes the following characterization of
a conditional ESS in a conditional asymmetric game: a conditional ESS
is a vector of strong equilibrium pairs (I, ;,Js, i), with one such

pair for each condition i.



A necessary and sufficient condition for a unique conditional ESS
in an asymmetric gane is that there be exactly one strong equilibrium
in each condition i. For a given condition i, a sufficient condition
fof a unique condition strong equilibriumis that each role have a
domi nant strategy. Unlike in the symretric case however, the doni nant
strategy needn't be the same for both players.

For the case of two phenotypes, a necessary condition is that at
| east one player have a dom nant strategy.

W now consi der sonme exanples. Suppose that in condition 1, the

payof f matrix is

1 1
.1 .5
0 0
.5 0 *
with the upper entry referring to role A In this condition, the

first strategy is dominant for role A, while the second strategy is

the best reply for role B. In condition 2, the payoff matrix is
1 1
«d 0
0 0
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Strategy 1 is still dominant for role A, but now strategy 1 is also
the best reply for role B. The conditional ESS is therefore the

vect or

(6) (Al = strategy 1, JB, 1 =strategy 2, | A, 2 = strategy 1, JB, 2 =

strategy 1) .

Moreover, this conditional ESS is unique. The payoff to role A at the
ESS, substituting these values into (5), is 1, while the payoff to
role Bis .5. Note that, as in any asymretric game, there is no
reason for the payoffs to the different roles to be equal

Now suppose that the payoff matrix in condition 1 is as before,

while the payoff matrix in condition 2 is

1 0
-] 0
0 .9
0 1/.

In condition 2 there are two strong equilibriumpairs. The

conditional ESS's noware (6), as before and

(7) (A, 1 = strategy 1, JB.I = strategy 2, 1A, 2 = strategy 2.JB.2 =

strategy 2) .
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As in the symetric case, if there are multiple conditional
ESS's, which one is reached will depend on the unconditional behavi or
that is first invaded by a conditional nutant. For instance, if the
uncondi ti onal behavior is strategy 1, then it is nore likely to be
i nvaded by an unconditional nutant following (6) than (7), since a
smal | er change in behavior will presumably require fewer nutations.
By the sane token, an unconditional behavior of strategy 2 is nore
likely to be invaded by (7).

Asymetric ganes are especially rich in conditional effects, as

we shall show in section IV.

[11. Evolutionary Mddels of Mting Straltegi es

This section constructs several nodels of the evolution of mating
strategies. All of these npdels are based on the argunment for male
di norphismin Gadgil (1972). Two nmal e phenotypes are posited, one
involving the em ssion of a strong signal to attract a mate, the other
invol ving the em ssion of a weak signal (perhaps no signal). Such a
signal ling nodel has previously been studied by Rubinstein (1980).

Let strategy 1 be the emission of a strong signal; strategy 2,
the em ssion of a weak signal. Consider the strategic interaction of
two mal es conpeting for femal es. Suppose that the emission of a
strong signal will attract an extra fenmale, but at an increase in
cost. For instance, a strong signal may attract increased predation
or weaken a male energetically. Let z be the probability of surviving
to mate after signalling. Then z neasures the net increase in fitness
due to the em ssion of a strong signal. Now em ssion of a weak signal

i nposes no such extra costs, but does not attract an extra female.
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Let 1-m be the probability that a male emtting a weak signal will
nevert hel ess succeed in mating with the extra female attracted by a
strongly signalling male. Finally, normalize all the data so that the
em ssion of a weak signal by both males gets payoff 0. Bishop and
Cannings (1978, Theorem5) show that such a normalization can al ways
be made wi thout |oss of generality. Then one has the foll ow ng payoff

matrix for the unconditional symetric gane:

strong signal weak signal
strong signal z mz
weak signal Lem o
Two types of unconditional ESS are possible. If z > 1-m there is a
nmononor phic ESS with all males issuing a strong signal. If z < 1-m

then there is a polynorphic ESS with signallers of both types present.
At the pol ynorphic ESS, the ESS frequency of each phenotype is such
that both mating strategies receive equal payoff. A population
genetic nodel of such a situation is worked out in the appendi x.

To nmake the nodel conditional, suppose that the cost paraneter z
actual ly depends on a condition suchas density. 1In condition 1, high

density, predation risk is less than it is at |ow density:

(8) z1 > 22.

However, the probability mis assuned not to vary with condition

Then one has the conditional synmetric gane:
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Condition 1 (high density) Condition 2 (low demsity)
z] mzl z2 mz2
1-m 0 l-m 0 .

Three types of conditional ESS are possible in such a nodel:

(9) Condjtjon 1 Condjtion 2
(strong signal, strong signal) when z7 > 1-p
(strong signal, polymorphism) when z] > l-p
but 292 < l-m
{ polymozphism, polymorphism) when 2] < l-m,

In the last ESS, the proportfon of males emtting the strong si gna
will be higher in condition 1 than in condition 2. The discussion
section considers sone biological systems to which this symretric
condi tional nodel appears to apply.

Two asymmetric nodels can be derived from the above conditiona
nodel , dependi ng on whether the role asymetry (A B) is
payoff-rel evant or not. The role asymretry could be (large, small) in
a population with size asymetry or (owner, intruder) in a population
with size asymmetry or (owner, intruder) in a population with a
territorial asymmetry.

If the role asynmetry is payoff irrelevant, one has the

asynmetric conditional gane



Condition 1 (high density)

z]

21

mz}

mz]

l-m

14

Condition

22

z2

1-m

nz?

2 (low density)
mz2
l-m
0
0 -

Three types of conditional ESS are possible in such 2 model:

(10) Condition 1

Role A

strong signal,

strong signal,

strong signal

weak signal

weak signal,
strong signal,

strong signal,

The role asymretry therefore serves to determ ne which of

FRole 1

strong

strong

strong

strong

strong

si gha

si gha

si gha

si gnal

signal

weak signal

weak signal

Condition 2
Role A

strong signal,

weak signal,

strong signal,

strong signal

weak signal,
strong signal,

weak signal,

Rol e B when
strong signal 72 > 1-m
strong signal z1> > |-m"
and

strong signal Z2° |-m
weak signal z1 < |-m
strong signal
weak signal
strong signal

the two

males will enit the strong signal
Finally, the role asymretry may be payoff relevant. To discuss
this case, sonme further notation is needed. Let zA i be the

probability of surviving the predation risk to role A in condition i,
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and similarly zB,i. The payoff relevant asymmetric conditional game

then is

Condition 1 (high density) Condition 2 (low density)
ZA,1 mz4, ] ZA,2 mza, 2
2B, 1 l-m zB,2 l-m
l-m 0 1-m 0
mzg, 1 0 mzE, 2 0 .

The analogue of condition (8) in this case is

(8)' 24,1 > za,2

ZB,1 > 2B,2
The predation risk differential allows for umequal payoffs, even when

behavior is the same. If role A is more advantageous than role B, ome

also has that

(11) za,; > z8,; for all i,

whi ch we shall al so asssune

The ESS possibilities in this nodel are rather nore conplicated:



(12) Condition 1 (high density)

strong

strong

strong

strong
strong
strong

strong

signal,

signal,

signal,

signal,
gignal,
signal,

signal,

strong signal

strong signal

weak

weak
weak
weak

weak

weak signal, strong

weak signal, strong

signal

signal
signal
signal
signal
signal

signal

16

Condition 2 (low density) when
Role & Role B

strong sigral, strong signal zg,2 > l-m

stroug signal, weak

strong signal, weak

weak signal, strong
strong signal, weak
strong signal, weak
weak signal, strong
strong signal, weak

weak signal, strong

gignal zg,2 < l-m

but other z's > ]l-m

signal  2p,; < 1-m

both 1

but z4,; > l-m

signal only zj,] > lem
signal

signal ZA,]1 < 1-m
signal

signal

signal

Thus, the payoff-relevant modd offers a welter of conditional ESS's.

This modd is particularly relevant for the study of sexual

parasitism, when the role playing a parasitic strategy is at a

definite disadvantage.

IV. Examples and Discussion

In this section we discuss three biological examples of the

conditional models.

Evidence for some of the examples is more
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conplete than for others. Exploring these systens nakes it evident
that conditional ganes are useful in many situations. All cases
assune that the strategies are discrete and that a pairw se gane

appl i es.

Condi tional ESS. _the symmetric game case

Exanpl e A

The green treefrog Hyla cinerea provides a good exanple of a
synmmetric contest. Perrill et al. (1982) have shown that nmales will
switch mating strategies within a given evening. Sone nales call,
while others terned satellites, sit quietly near a caller and attenpt
to intercept the females attracted to the calling male. In this
study, males were induced to smjtch'strategies by either renoving the
calling male froma satellite-caller association (satellite sw tched
to calling in 11 out of 19 trials), or presenting a calling male with
a recorded conspecific call (caller switched to satellite in 5 out of
8 trials). The probability that a mal e switched strategi es was not
correlated with size, suggesting that the biology fits a symetrica
nodel. It is always difficult to prove that a gane is symetrical
since the gane could be asymmetrical based on sone variable not yet
detected. For anurans, however, male size is the variable nost often
considered to deternine role asymetries.

This game nmay beconme conditional if we consider the contests at
high and Iow densities of males. At higher densities, a nale is nore
likely to encounter other callers. Perrill et al. state that a
calling male is nmuch nore prone to shift strategies fromcall to

satellite if he has first been exposed to several encounter calls
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(Perrill, et al., 1982). Increased encounters at higher densities
could increase the cost to calling, thus naking the satellite strategy
nore viable. Encounter calls would be energetically costly and
probably increase the probability of being preyed on by meking a nmale
nor e conspi cuous (Howard, 1978). Therefore, the CESS is pure call in
condition #1 (low density, lower cost to calling), while in condition
#2 (high density, higher cost to calling) one encounters the m xed ESS
of call-satellite. The CESS is thus a phenotypically plastic strategy
that responds to density in such a way as to procure a higher fitness

than a strategy based on the average density.

Asymmetrical conditional (payoffs relevant)

Most pairwi se contests are likely to be asymetric, in the sense
that some pefceiVed di fference between the contestants will be used as
a cue to settle the cont est (Maynard Smith, 1982). The best evidence
of an asymretrical conditional game in anura comes from Howard's work

with bullfrogs (Rana catesbeiana). Sone areas around a pond provide

hi gher survival and faster developnent for egg masses. Howard has
shown that nore fermales are attracted to the larger males on the
better sites (Howard, 1978). Smal ler males will either defend
suboptimal territories or parasitize a larger male. A parasite wll
sit quietly near a calling territorial nale and attenpt to -intercept
the females the larger male attracts. Females can detect |arger males
‘as they make deeper, nore resonant calls as conpared to the higher,
relatively hollow calls of the snaller nales (Howard, 1978). The
guestion then becones, when should a small nmale defend a territory as

conpared to behaving as a parasite? In Howard's study, there was an
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absence of larger males in 1977, possibly due to increased
overwintering nortality during the harsh winters of 1976 and 1977
(Howard, 1980) and snall nales joining the chorus adopted territoria
behaviors for nmost of the season. In conparison, in 1978 the variance
in mle size was significantly greater, with two distinct size

cl asses, and small mal es behaved as parasites for the entire season
Larger males attract nmore females and are nore heavily parasitized.
Smal ler territorial nales never have parasites. For a small male to
have a higher probability of stealing a nmate than attracting one, he
needs to parasitizela mal e that is attracting a lot of females. |If
the variance in male size is low, then females will be nore evenly

di stributed across the population of calling males, and it would be
better for a snall male to call. Therefore, the asymetric CESS in
condition #1 (lowvariance in male size) is pure call, while in
condition #2 (high variance in nmale size) larger males call and
smal | er mal es behave as parasites. The CESS in this case is for

larger males to call in both conditions, but for smaller males to play

call in condition #1 and parasite in condition #2.

Asymmetric conditional (irrelevant payoffs)

In the above exanple, the asynmetry of larger nmales attracting
nore females affected the payoffs in such a way that |arger males
al ways had a higher payoff. It is possible to have an asymetry upon
which a contest is decided, but which does not necessarily affect the
payoffs. In the bullfrog exanple (Howard, 1978), the low variance in
mal e si;e in 1977 could cause the payoffs for all calling males to be

equal in condition #1. Although feral es have been shown to be able to
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choose between mal es that vary greatly in size (Ryan, 1980), there
will be alimt to any female's ability to discrininaté bet ween nal es
that do not vary greatly in size. The asymmetry may have only been
used by the contestants to pick their roles, but was irrelevant to the
payoffs in the condition where the variance in size was snal |
The last exanpl e nakes clear the difficulty in interpreting
conditional nodels: the theory takes as given an asymetry
i ndependent of the conditions, when the condition itself nay influence
the asymmetry. Thus, the variance of the size distribution of nal es
may itself be density dependent. Qe nmay have to refine further the
notion bf condition in order to better understand such rel ationshi ps.
The CESS will differ fromthe unconditional ESS when a strategy
that is phenofypically pl astic, switching when necessary to obtain the
hi ghest fitness in each condition, has a higher fitness than a
strategy based on the average condition. V¢ would expect the
evol ution of phenotypic plasticity in populations which are regularly

exposed to fluctuating environnents.



Sumar y

Conditional ESS, or CESS, is an extension of the notion of ESS
in games with a single condition to a wider class of ganmes, conditional.
A game is conditional when the payoff matrix varies systematically with
conditions in the environment, even though the strategies available to
the players do not. One exanple of conditionality is density-dependence.,
The CESS will differ from the unconditional ESS when a strategy that is
phenotypi cal ly plastic, swtching when necessary to obtain the highest
fitness in each condition, has a higher fitness than a strategy based
on the average condition. W woul d expect the evolution of phenotypic
plasticity in populations which are regularly exposed to fluctuating
~environments. CESS theory is illustrated in a sexual selection nmodel .
Sel ection acts on mal es alone, and tw nating phenotypes are present.
A popul ation genetics result underlies the game theoretic analysis:
in the one-1ocus, two-phenotype case with inconplete penetrance, a

phenotypic equilibriumis a genotypic equilibrium
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Appendi x. A CGenetic Mdel of the Evolution of Mating Strategies

0'Donald (1980) has argued strongly that gafre theoretic nodel s of
sexual selection be grounded in a genetic nodel. The purpose of this
appendi x is to exhibit such a nodel. |Indeed, the nodel will be based
on O Donal d's nodel of selection of males alone. Another closely
related analysis for randomnating is found in Lessard (1984).

Let Aand a be alleles a a single locus. Genotype AA plays
strategy 1 with probability 1; denote the frequency of this genotype
by u. Genotype Aa plays strategy 1 with probability 1-k; denote the
frequency of AAby v. " Finally, genotype aa plays strategy 2 with
probability 1; denote the frequency of this genotype by w O Donal d
considers the case of A domnant, in whichk - 0. W allowfor
i nconpl et e doni nance as wel | .

Let p (respectively, q) represent the frequency of allele A
(respectively, a). 1t follows from what has just been said that

P=u+v/2 q=w+v/2,

Finally, let x be the proportion of males using strategy (phenotype)
- 2. Clearly,

x =y + kv,

Let g(x) be the probability that phenotype l mates, given x.
(The functional dependence of g on x will be suppressed in the
notation, when no confusion will result.) One can also see that g
measures the proportion of all matings made by phenotype l:

(proportion of phenotype 1)(probability of mating)/(proportion of

population) = (u + (l-k)v)g/(l-x) = g,
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Li kewise, 1-g is the proportion.of all matings made by phenotype 2.

Assumi ng an equa

gi ven mal e phenot ype,

sex-ratio and randommating across fermales for a

one has the frequencies of matings:

MALES
AA Aa Aa aa
(phenotype 1) (phenotype 2)
9g - | kel =g w(l = g)
1 -x l - x I X X
| |
FEMALES : |
M ou | w2g £1 = Kuvg kuv(l = g) aw(l - g)
: -x 1 -x | x x
Aa v | _uvg (1 - k)v2g ' kvl(l = g) vl = g)
I 1 -x 1-x X x
aa w | MU 1~k | kvw(l = 2) w21 - 2
: 1 - x 1 -x | x x

This assumption rules out assortative matings between the sexes.

Using the frequency of matings data, one can compute the updated

frequency of allele A, p':

p' = pg +px+kw[l-g~_g ]
1 - x 2 x 1 - x
At a Hardy-Winberg equilibrium p' = p. A sufficient condition for
this is that 1-g = x. W now show that 1-g = x also characterizes an

ESS
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Fromthe matrix gane

one has the following payoffs to each strategy in a polymorphic ESS:

E (strong signal, x strong + l-x weak) = xz + (l-x)mz.

E (weak signal, x strong + l-x weak) = (l-m)x.

At a polymorphic ESS, these payoffs must be equal. Moreover, each
payoff represents the probability of mating for the given phenotype.

Denote the common value of the payoffs E. Then one has

phenotype | matings/all matings = (1-x)E/{{1-x)E + xE) = l-x = g,

the proportion of phenotype l. Thus, at a polymorphic ESS, each
phenotype mates with a success probability equal to its frequency in
the population. In case of a monomorphic ESS, ome has either p' = p =
]l when x =1 and g =0, or p' = p = 0 when x = 0 and g = 1. Thus, in

every case as ESS corresponds to a Hardy-Weinberg equilibrium as well.
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