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Under the concept of natural selection, individuals should

respond to their environment in such a way as to increase their

fitness. Not every individual in a population may respond the same

way to the same environmental conditions. In the past, individuals

that behaved differently from the most common pattern of behavior were

considered mutants of low fitness (Alcock, 1984). However, it is now

recognized that there may often be alternative, equally adaptive

responses to selection pressure.

One aspect of natural selection, sexual selection, deals with

acquiring mates. In frequency-dependent selection, the cost and

benefits associated with a given mating behavior depend on what the

other individuals do. This paper uses game theory to address

male-male competition for mates. In evolutionary game theory, mating

phenotypes are treated as alternative mating strategies (Maynard

Smith, 1982). The importance of alternative strategies is the

hallmark of the game theory approach to natural selection.

The chief theoretical novelty of this paper is the formalization of

a class of games called conditional. A game is conditional when the

payoff matrix varies systematically with conditions in the

environment, even though the strategies available to the players do

not. We extend the classical notion of ESS from games within a single

condition (unconditional games), to the wider class of conditional

games. This extension is called the Conditional ESS or CESS. A word

of caution is in order here. Dawkins (1980) has already used the term

"conditional" in a narrower sense to refer to the various role

situations which may arise in an asymmetric game. Hopefully, no

confusion will result from our adoption of the same term.



In describing the mating behavior of a species, it has been noted

that behavior may vary between populations and within a population

between seasons (Emlen and Oring, 1977), and within seasons. So far,

game theory has been used in studies of frequency-dependent variance

in behavior within a population. This paper takes within-population

variance a step further, and looks at the coexistence of alternative

strategies in a fluctuating environment. Unconditional games can help

us understand the coexistence of alternative strategies when it is

adaptive to respond to the average condition. However, many important

factors that affect the fitness of mating behavior change drastically

between seasons, even within seasons. The conditional games allow us

to examine mating strategies in a much wider and more realistic way,

as they allow us to follow a strategy through more than one

environmental condition.

Perhaps the richest supply of examples of alternative male mating

strategies comes from the order of anuran amphibians (Wells, 1977).

The typical male mating behavior is to signal, in which males

congregate at the breeding site and attract females vocally.

Alternative male behaviors include satellite, parasite, search,

call-and-mill, and pass (descriptions in Nelson, et al., 1985).

Several investigators have noted that for anurans, the density of

males at the breeding site seems to effect the type of mating behavior

observed (Wells, 1977). Other factors that might influence a male's

behavior include availability of territories, varying costs to

calling, synchrony of female arrival (or operational sex ratio) and

the male size distribution.





To show this definition captures the notion of a population

stable against invasion by a mutant, suppose that mutant with

frequency e arises in the population. The mutant plays an alternative

conditional strategy (Ji). The payoff to a member of the population

playing the conditional ESS is given by



and at least one of the two inequalities is strict. If in condition i

there is a strategy Ii which dominates all the others (there can be at

most one strategy which does this), then it is the only strategy

satisfying the equilibrium and stability properties for that

condition.

Here are some biological examples. Suppose there are two

phenotypes and two conditions. In condition 1, the payoff matrix is
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stability properties for each condition. Otherwise, I can be invaded

by a mutant playing a conditional strategy which is the same as I in

every condition except condition i, and better in condition i.

It is useful to know when a conditional ESS is unique. Clearly,

what is required is that a unique strategy satisfy the equilibrium and

stability properties in each condition i. One condition for this is

given by Bishop and Cannings (1978), Theorem 3. If strategy I

satisfies the equilibrium and stability properties, and every pure

strategy is a best reply to I, then I uniquely satisfies the

equilibrium and stability properties. Another condition for this is

as follows. Let I and J be pure strategies. Strategy I dominates

strategy J in the game with payoff function



There is a unique conditional ESS, which is phenotype 1 in both

conditions. This follows since phenotype 1 is a dominant strategy in

both conditions.

Here is a more complicated example. The payoff matrix in

condition 1 is

There are two conditional ESS's, namely (strategy 1, strategy 1) and

(strategy 2, strategy 1). Now suppose that the population is

currently playing the unconditional game with the average payoff

matrix

Then this population will either be at the unconditional ESS strategy

1, or the unconditional ESS strategy 2. If the population is at the

ESS strategy 1, then it is also at the conditional ESS (strategy 1,

strategy 1) and is therefore stable against invasion by a conditional

mutant. However, if the population is at the unconditional ESS



strategy 2, then it can be invaded by a conditional mutant. In this

case, though, only a conditional mutant playing the conditional

strategy (strategy 2, strategy 1) can invade. This shows that not

every conditional ESS can be reached from an initial population at an

unconditional ESS. This case also shows that in general the CESS

payoffs (3) differ from the payoffs in the game averaged across

conditions.

We show below that conditional ESS models are generally suited to

analyzing systems where phenotypic plasticity and threshhold effects

are important. Phenotypic plasticity makes possible the playing of

conditional strategies, while threshholds are often important in

distinguishing conditions.

II. Conditional ESS: the asymmetric game case

This section extends the notion of conditional ESS developed

above to asymmetric games. Let (A,B) denote a situation with roles A

and B which may appear in a game. For instance, A may be a large

animal and B a smaller animal, or A may hold a territory on which B

intrudes. For the sake of simplicity, attention will be restricted to

a single role situation, although the results generalize to multiple

role situations (large territory holder vs. small intruder, e.g.).

Moreover, only the perfect information case is considered here; that

is, each player is assumed to know the role situation (A,B) and the

role he is playing. This assumption is substantive, although more

general information settings have been studied (Selten, 1980).

Let IA,i represent a strategy played by role A in condition i;

JB,i, a strategy played by role B in condition i. EA,i(IA,i,JB,i) is





A necessary and sufficient condition for a unique conditional ESS

in an asymmetric game is that there be exactly one strong equilibrium

in each condition i. For a given condition i, a sufficient condition

for a unique condition strong equilibrium is that each role have a

dominant strategy. Unlike in the symmetric case however, the dominant

strategy needn't be the same for both players.

For the case of two phenotypes, a necessary condition is that at

least one player have a dominant strategy.

We now consider some examples. Suppose that in condition 1, the

payoff matrix is

with the upper entry referring to role A. In this condition, the

first strategy is dominant for role A, while the second strategy is

the best reply for role B. In condition 2, the payoff matrix is
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Strategy 1 is still dominant for role A, but now strategy 1 is also

the best reply for role B. The conditional ESS is therefore the

vector

(IA.l = strategy 1, JB,1 = strategy 2, IA, 2 = strategy 1, JB,2

strategy 1).

Moreover, this conditional ESS is unique. The payoff to role A at the

ESS, substituting these values into (5), is 1, while the payoff to

role B is .5. Note that, as in any asymmetric game, there is no

reason for the payoffs to the different roles to be equal.

Now suppose that the payoff matrix in condition 1 is as before,

while the payoff matrix in condition 2 is

In condition 2 there are two strong equilibrium pairs. The

conditional ESS's now are (6), as before and

(IA, 1 = strategy 1, JB.l = strategy 2,1A, 2 = strategy 2.JB.2

strategy 2).
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As in the symmetric case, if there are multiple conditional

ESS's, which one is reached will depend on the unconditional behavior

that is first invaded by a conditional mutant. For instance, if the

unconditional behavior is strategy 1, then it is more likely to be

invaded by an unconditional mutant following (6) than (7), since a

smaller change in behavior will presumably require fewer mutations.

By the same token, an unconditional behavior of strategy 2 is more

likely to be invaded by (7).

Asymmetric games are especially rich in conditional effects, as

we shall show in section IV.

III. Evolutionary Models of Mating Strategies

This section constructs several models of the evolution of mating

strategies. All of these models are based on the argument for male

dimorphism in Gadgil (1972). Two male phenotypes are posited, one

involving the emission of a strong signal to attract a mate, the other

involving the emission of a weak signal (perhaps no signal). Such a

signalling model has previously been studied by Rubinstein (1980).

Let strategy 1 be the emission of a strong signal; strategy 2,

the emission of a weak signal. Consider the strategic interaction of

two males competing for females. Suppose that the emission of a

strong signal will attract an extra female, but at an increase in

cost. For instance, a strong signal may attract increased predation

or weaken a male energetically. Let z be the probability of surviving

to mate after signalling. Then z measures the net increase in fitness

due to the emission of a strong signal. Now emission of a weak signal

imposes no such extra costs, but does not attract an extra female.
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Let 1-m be the probability that a male emitting a weak signal will

nevertheless succeed in mating with the extra female attracted by a

strongly signalling male. Finally, normalize all the data so that the

emission of a weak signal by both males gets payoff 0. Bishop and

Cannings (197 8, Theorem 5) show that such a normalization can always

be made without loss of generality. Then one has the following payoff

matrix for the unconditional symmetric game:

Two types of unconditional ESS are possible. If z > 1-m, there is a

monomorphic ESS with all males issuing a strong signal. If z < 1-m,

then there is a polymorphic ESS with signallers of both types present.

At the polymorphic ESS, the ESS frequency of each phenotype is such

that both mating strategies receive equal payoff. A population

genetic model of such a situation is worked out in the appendix.

To make the model conditional, suppose that the cost parameter z

actually depends on a condition such as density. In condition 1, high

density, predation risk is less than it is at low density:

(8) Z 1 > z2.

However, the probability m is assumed not to vary with condition.

Then one has the conditional symmetric game:
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Three types of conditional ESS are possible in such a model:

In the last ESS, the proportion of males emitting the strong signal

will be higher in condition 1 than in condition 2. The discussion

section considers some biological systems to which this symmetric

conditional model appears to apply.

Two asymmetric models can be derived from the above conditional

model, depending on whether the role asymmetry (A,B) is

payoff-relevant or not. The role asymmetry could be (large, small) in

a population with size asymmetry or (owner, intruder) in a population

with size asymmetry or (owner, intruder) in a population with a

territorial asymmetry.

If the role asymmetry is payoff irrelevant, one has the

asymmetric conditional game



The role asymmetry therefore serves to determine which of the two

males will emit the strong signal.

Finally, the role asymmetry may be payoff relevant. To discuss

this case, some further notation is needed. Let zA,i be the

probability of surviving the predation risk to role A in condition i,

(10) Condition 1 Condition 2

Role A Role 1 Role A Role B when

strong signal, strong signal strong signal, strong signal Z2 > 1-m

strong signal, strong signal weak signal, strong signal z1> > l-m

and

strong signal, strong signal strong signal, strong signal Z2 < l-m

weak signal, strong signal strong signal, weak signal z1 < l-m
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and similarly zB,i. The payoff relevant asymmetric conditional game

then is

which we shall also asssume.

The ESS possibilities in this model are rather more complicated:



Thus, the payoff-relevant model offers a welter of conditional ESS's.

This model is particularly relevant for the study of sexual

parasitism, when the role playing a parasitic strategy is at a

definite disadvantage.

IV. Examples and Discussion

In this section we discuss three biological examples of the

conditional models. Evidence for some of the examples is more
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complete than for others. Exploring these systems makes it evident

that conditional games are useful in many situations. All cases

assume that the strategies are discrete and that a pairwise game

applies.

Conditional ESS: the symmetric game case

Example A.

The green treefrog Hyla cinerea provides a good example of a

symmetric contest. Perrill et al. (1982) have shown that males will

switch mating strategies within a given evening. Some males call,

while others termed satellites, sit quietly near a caller and attempt

to intercept the females attracted to the calling male. In this

study, males were induced to switch strategies by either removing the

calling male from a satellite-caller association (satellite switched

to calling in 11 out of 19 trials), or presenting a calling male with

a recorded conspecific call (caller switched to satellite in 5 out of

8 trials). The probability that a male switched strategies was not

correlated with size, suggesting that the biology fits a symmetrical

model. It is always difficult to prove that a game is symmetrical,

since the game could be asymmetrical based on some variable not yet

detected. For anurans, however, male size is the variable most often

considered to determine role asymmetries.

This game may become conditional if we consider the contests at

high and low densities of males. At higher densities, a male is more

likely to encounter other callers. Perrill et al. state that a

calling male is much more prone to shift strategies from call to

satellite if he has first been exposed to several encounter calls
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(Perrill, et al., 1982). Increased encounters at higher densities

could increase the cost to calling, thus making the satellite strategy

more viable. Encounter calls would be energetically costly and

probably increase the probability of being preyed on by making a male

more conspicuous (Howard, 1978). Therefore, the CESS is pure call in

condition #1 (low density, lower cost to calling), while in condition

#2 (high density, higher cost to calling) one encounters the mixed ESS

of call-satellite. The CESS is thus a phenotypically plastic strategy

that responds to density in such a way as to procure a higher fitness

than a strategy based on the average density.

Asymmetrical conditional (payoffs relevant)

Most pairwise contests are likely to be asymmetric, in the sense

that some perceived difference between the contestants will be used as

a cue to settle the contest (Maynard Smith, 1982). The best evidence

of an asymmetrical conditional game in anura comes from Howard's work

with bullfrogs (Rana catesbeiana). Some areas around a pond provide

higher survival and faster development for egg masses. Howard has

shown that more females are attracted to the larger males on the

better sites (Howard, 1978). Smaller males will either defend

suboptimal territories or parasitize a larger male. A parasite will

sit quietly near a calling territorial male and attempt to intercept

the females the larger male attracts. Females can detect larger males

as they make deeper, more resonant calls as compared to the higher,

relatively hollow calls of the smaller males (Howard, 1978). The

question then becomes, when should a small male defend a territory as

compared to behaving as a parasite? In Howard's study, there was an
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absence of larger males in 1977, possibly due to increased

overwintering mortality during the harsh winters of 1976 and 1977

(Howard, 1980) and small males joining the chorus adopted territorial

behaviors for most of the season. In comparison, in 1978 the variance

in male size was significantly greater, with two distinct size

classes, and small males behaved as parasites for the entire season.

Larger males attract more females and are more heavily parasitized.

Smaller territorial males never have parasites. For a small male to

have a higher probability of stealing a mate than attracting one, he

needs to parasitize a male that is attracting a lot of females. If

the variance in male size is low, then females will be more evenly

distributed across the population of calling males, and it would be

better for a small male to call. Therefore, the asymmetric CESS in

condition #1 (low variance in male size) is pure call, while in

condition #2 (high variance in male size) larger males call and

smaller males behave as parasites. The CESS in this case is for

larger males to call in both conditions, but for smaller males to play

call in condition #1 and parasite in condition #2.

Asymmetric conditional (irrelevant payoffs)

In the above example, the asymmetry of larger males attracting

more females affected the payoffs in such a way that larger males

always had a higher payoff. It is possible to have an asymmetry upon

which a contest is decided, but which does not necessarily affect the

payoffs. In the bullfrog example (Howard, 1978), the low variance in

male size in 1977 could cause the payoffs for all calling males to be

equal in condition #1. Although females have been shown to be able to
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choose between males that vary greatly in size (Ryan, 1980), there

will be a limit to any female's ability to discriminate between males

that do not vary greatly in size. The asymmetry may have only been

used by the contestants to pick their roles, but was irrelevant to the

payoffs in the condition where the variance in size was small.

The last example makes clear the difficulty in interpreting

conditional models: the theory takes as given an asymmetry

independent of the conditions, when the condition itself may influence

the asymmetry. Thus, the variance of the size distribution of males

may itself be density dependent. One may have to refine further the

notion of condition in order to better understand such relationships.

The CESS will differ from the unconditional ESS when a strategy

that is phenotypically plastic, switching when necessary to obtain the

highest fitness in each condition, has a higher fitness than a

strategy based on the average condition. We would expect the

evolution of phenotypic plasticity in populations which are regularly

exposed to fluctuating environments.



Summary

Conditional ESS, or CESS, is an extension of the notion of ESS

in games with a single condition to a wider class of games, conditional.

A game is conditional when the payoff matrix varies systematically with

conditions in the environment, even though the strategies available to

the players do not. One example of conditionality is density-dependence.

The CESS will differ from the unconditional ESS when a strategy that is

phenotypically plastic, switching when necessary to obtain the highest

fitness in each condition, has a higher fitness than a strategy based

on the average condition. We would expect the evolution of phenotypic

plasticity in populations which are regularly exposed to fluctuating

environments. CESS theory is illustrated in a sexual selection model.

Selection acts on males alone, and two mating phenotypes are present.

A population genetics result underlies the game theoretic analysis:

in the one-locus, two-phenotype case with incomplete penetrance, a

phenotypic equilibrium is a genotypic equilibrium.
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Appendix. A Genetic Model of the Evolution of Mating Strategies

0'Donald (1980) has argued strongly that game theoretic models of

sexual selection be grounded in a genetic model. The purpose of this

appendix is to exhibit such a model. Indeed, the model will be based

on O'Donald's model of selection of males alone. Another closely

related analysis for random mating is found in Lessard (1984).

Let A and a be alleles a a single locus. Genotype AA plays

strategy 1 with probability 1; denote the frequency of this genotype

by u. Genotype Aa plays strategy 1 with probability 1-k; denote the

frequency of AA by v. Finally, genotype aa plays strategy 2 with

probability 1; denote the frequency of this genotype by w. O'Donald

considers the case of A dominant, in which k - 0. We allow for

incomplete dominance as well.
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Likewise, 1-g is the proportion of all matings made by phenotype 2.

Assuming an equal sex-ratio and random mating across females for a

given male phenotype, one has the frequencies of matings:

At a Hardy-Weinberg equilibrium, p' = p. A sufficient condition for

this is that 1-g = x. We now show that 1-g = x also characterizes an

ESS.
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From the matrix game

z mz

1-m o
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