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I. Introduction

In the last decade there has been considerable interest in decentralized
procedures for both choosing the scale of and financing public goods projects.
The literature has focused on two different types of decentralized allocation
schemes: demand-revealing mechanisms (e.g. Green and Laffont, 1977; Groves
and Ledyard, 1977) and dynamic tatonnement planning procedures (Dreze and
de la Valle Poussin, 1971; Malinvaud, 1971; Mas-Colell, 1980). In addition,
despite the free rider problem, voluntary subscription has received some
renewed attention (Brubaker, 1975). Kalai (1980) has proposed a voluntary

contractual procedure which induces cooperative behavior.

IT. Auxiliary Market Mechanisms for Allocating Public Goods

This paper outlines a new method of choosing the optimal quantity of a
public good and financing it. The allocation mechanism combines some of the
features of demand revealing mechanisms, tatonnement planning procedures and
voluntary subscription drives. It is a dynamic tatonnement process which
resembles a Walrasian auction. It has the property that, at each iteration of
the process, participants reveal their true demands for the public good when,
they play Cournot-Nash utility-maximizing strategies. Two aspects of our
mechanism are new: 1) each participant signals his total demand for the public
good as the sum of two different messages; and 2) the mechanism mimics an
auxiliary market for “public goods tickets.” 1In keeping with tatonnement pro-—
cedures in general, no transactions take place out of equilibrium. In essence,
the outcome 1s a contract which internalizes the external benefits of the public
good.

To begin the mechanism, the government or builder of a public good offers

to sell commitments to build units of. the public good at marginal cost. In

what we call the ticket market, each participant is given a personalized ticket



price and asked to state his demand for units at that price. In what we ca11
the subsidized subscription market, each participant is told that if he sub-
scribes to units of the public good at marginal cost, he will receiye a given
per-unit subsidy from the central authority. The subsidy is the'sum of the
personalized ticket prices paid by the other narticipants. A bublic goods -
equilibrium is defined as a quantity of the public good and.;m;éii;;mﬁekgonaqized"
prices, which has the property that, given those personalized prices, each .

individual demands the equilibrium quantity of the public good, defined as the

sum of his ticket and subsidized purchases.

** The operation of the mechanism can be viewed as a market with special
equi Tibrium conditions. Purchases in the ticket market signal demands to
match units purchased in the subsidized market. Person i's ticket price is
'his contribution to the subsidy paid to j. Purchéses in the subsidized sub-
scription market signal supplies to match units purchased in the ticket ﬁarket.
At an equilibrium in the ticket market, demands-by i in the ticket market would
equal supb]ies by all jfirfrom the subsidized subscription market. It-is as
though each subsidized subscription unit came.with a set of personalized.
‘ tickets, one for each other potential user of the public good. The tickets
would provide the assurance to members of society receiving them that the
commitment to build each unit has actually been contracted for. Individua]s'”
wishing to have units of a public good buiit would purchase commitments to
bui1d.and‘simu1taneous1y sell to the other potential users of the public Qood
~ the personalized tickets received with the commitment.

Suppose, for example, that'if the marginal cost of the public good were

éi,.an economy composed of three individuals would demand 15 units, with

Lindahl equilibrium marginal valuations of 3/15 for person j, 5/15 for person



2, and 7/15 for person 3. The following ticket market equilibrium would achieve

the Lindahl equilibrium.

Person Tickets Purchased Units Subscribed to
1 6 9
2 10 5
3 14 1

Thus, person 1 demands 6 tickets and purchases 9 subsidized subscription units.
Along with the 9 subscription units come 9 tickets to be supplied to person 2 and 9
to be supplied to person 3. Person 1’s demand for 6 tickets equals the aggregate
supply of tickets (5 from person 2 and 1 from person 3). In fact, 2°s demand
(10) equals the aggregate supply from 1 and 3 (9+1) and 3 s demand (14) equals
the aggregate supply from 1 and 2 (9+5). Finally, tickets plus subscription
units equals 15, the Lindahl equilibrium, for each person.

We employ a 2-good (one public, one private) model with constant marginal
cost. The model can either be thought of as a very simple general equilibrium
model with a linear transformation function or as a “small community” partial
equilibrium model. We outline two mechanisms for organizing a ticket market and
pricing subscription tickets. The first, a linear pricing scheme, is similar to
a Walrasian tatonnement process. An auctioneer, knowing the marginal cost, pre-—
sents each participant with a constant unit price for his personalized tickets,
which he buys from the other participants. The participant responds by indicating
how many units of the public good he will subscribe to himself and the total
number of personalized tickets he will buy from the other individuals (thereby
subsidizing their subscriptions), given the marginal cost, his personalized ticket
price and the demands of the other participants for their personalized tickets
(which he obtains when he subscribes to commitments to build units of the public

good).



If all participants behave competitively (i.e., are price takers in their
personalized ticket prices), the outcome of this process is a Lindahl equili-
brium and is equivalent to a unanimous agreement among consumers about the
size of the public goods facility and the donation each consumer will make.
Fach individual’ s personalized ticket price is his Lindahl price and the
equilibrium allocation satisfies the Lindahl-Samuelson conditions (i.e., the
sum of the marginal willingnesses—to-pay equals the marginal cost of providing
that size facility). ’However, since each individual is the only buyer of his
own personalized tickets there is little reason to believe he would behave
competitively. It is simply too easy to manipulate such a market mechanism by
playing non—Nash strategies. Thus, the monopsony or thin market problem, which
Arrow (1969) discussed in connection with auxiliary markets, remains. Moreover,
there is no unique ticket—-subscription unit equilibrium. To see this, consider
the example described above. The following ticket allocation is also an

equilibrium.

Person Tickets Purchased Units Subscribed to
1 10 5
2 10 5
3 10 5

In fact, because the personalized ticket price and the subsidized subscription
price are the same in equilibrium, there will be an infinity of such equilibria.
The total quantity of the public good will be uniquely determined, but individuals
will be indifferent between any two combinations of ticket and subscription
purchases which sum to the same total quantity

The second mechanism is a non-linear pricing scheme. To begin this pro-
cess each participant is given a non-constant price function for his person-
alized tickets. If a participant buys personalized tickets, he pays the
government the integral of his personalized ticket price function up to the

total number of personalized tickets he buys. The government agrees to pay



each seller of personalized tickets to a particular buyer the product cf the
number of personalized tickets that sellers sells to that buyer and that

buyer’s marginal valuation along his personalized ticket price function, given
all the personalized tickets he buys from all sellers. Given their personalized
ticket price functions and the stated demands and marginal valuations of the
other participants, participants simultaneously indicate how many personalized
tickets they will buy and how many units of the public good they will subscribe
to. The budget is balanced by charging each person times the sum of the
deficits generated by the other nl participants from their purchases along
their non-linear pricing schedules.

Such a scheme has important advantages over other pricing schemes. First,
it eliminates the monopsony problem of the linear pricing scheme by making the
prices paid for inframarginal personalized tickets unaffected by the total
number of personalized tickets purchased. Such a personalized ticket price
function resembles the supply function facing a discriminating monopsonist.
Second, like the Groves—-ledyard (1977) mechanism, the budget i s balanced by
charging each participant a lump sum tax which is not dependent on his own
decisions. Thus, also, like the Groves-Ledyard mechanism, the Nash equilibrium
is both incentive compatible and Pareto optimal and it satisfies the Lindahl-
Samuelson conditions. Third, it has a very desirable new property which we
illustrate with two examples. For at least some classes of utility functions,
there exists a unique equilibrium non-linear pricing function which applies to
all participants and supports a unique equilibrium allocation. With Cobb-—
Douglas utility functions we show that a unique upward-sloping “linear” non—
linear price function defines an equilibrium. We conjecture that such a unique
pricing function exists in general for neo-classical utility functions. Thus,

if any adjustment of the pricing function is necessary to achieve an equilibrium
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only one parameter need be adjusted for all participants. The mechanism is
therefore very simple to implement. In addition, if all participants face the
same non—linear pricing function, each participant has less incentive to try
to manipulate the mechanism by trying non—Nash responses. We conjecture that
the incentive to manipulate is similar to the incentive exhibited by the
competitive mechanism (Hurwicz, 1972). If that is the case, the incentive
should become small as the number of participants gets large (Roberts and
Postlewaite, 1976)

To see that this mechanism yields a unique equilibrium consider the
original example on page 6 with non-linear price schedule 1/30. Marginal
valuations of 3/15, 5/15, and 7/15, translate into 6/30, 10/30, and 14/30.
Figure 1 illustrates that person 1 demands exactly 6 tickets, person 2 demands
exactly 10 tickets, and person 3 demands exactly 14 tickets.

After outlining the linear and non-linear pricing schemes, we show that
the consumer’ s maximization problem under the non-linear pricing scheme
satisfies the second order conditions for constrained utility maximization.

We also outline adjustment procedures for the subsidies and the unique non—
linear pricing function which bring computer simulated markets to equilibrium.

Turning now to our model, we begin our formal presentation with the

linear pricing scheme.



Figure 1

Purchases of Tickets and Subscriptions
with Unique Non-linear Price Function of 1/30

39&0

3's subscription

L9

Marginal Cost

subscr ptwo

/

1's subscr1pt1on

///

b !‘i 1§

Units of the Public Good



11, The Mode]
A. Linear Pricing Scheme

i=1, . .., n represents the consumers

- w; = consumer i's personalized price for a ticket he buys from
another participant '

v. = consumer's "true" marginal valuation for tickets

Yi ~© units of the public good which i subscr{bes to. Note that
B also equals the personalized tickets which i receives

for each j # i

n

Y=z ¢ ¥y = the size of the public goods facility
i=1 . .

t1 = personalized tickets bought by i

py = marginal cost of Y

X; = i's consumption of the private good

'pg = price of the privéte good

U1(Y,x1) = i's neo-classical utility function

Mi = i's money income

By requiring that no trades take-p]a;e out of equ{1ibrium, we impose the
f6116wing equilibrium condition as a constraint:
t, = jii yj | i=1, .. .,n
This %hp]ies that each participant must buy yj tickets from participaht J
before the public good can be built. Another way of stating the
- equilibrium Edndition is to say that i must se11_yi tickets to each j at j's
ticket price,'wj.

Y. T W.
Vg Y

Thus, at equilibrium, i receives as subsidy:

from selling tickets to all j#i. This ensures that all parficipants purchase
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'the same un1ts of the pub11c good as combinations of ticket purchases and
darect subscriptions.

Now, if we assume each consumer takes his personalized ticket price as
given, i's decision probiem is to max1m1ze utility by purchasing private goods

and persona11zed public goods tickets and by subscr1b1ng to units of the

pub]1c good. subject to his budget constraint:

. .. N
Max UT(Y,xi) = U1( I Yy X: )
. i
i=]
subject to: Mi = pyyi + PyXs = Y 351 wJ + wjt
. Note: ,pyyi = i's expenditures on subscriptions to the public good

¥; T wj = i's receipts from selling personalized tickets to j#i
3#
witi'= i's expenditures on personalized tickets.

Subst1tut1ng t, for Y;» can write the Llagrangian:

J#i |
L-j = U-;(ti ‘+ Yi» Xi) A (Mi—pyyi - PXi T w'it"i 7 ji.-l wj) (1)
The first order conditions are:
AL i : :
= = U - Ardlp, - I w.)=0 (2)
3.‘/1‘ y 1YYy e j
oL, ;
-a-.E-:i- = U.y - }11W1 = 0 (3)
al , |
L 3 _
gg - l{x B }‘1px - 0 (4)
. M1 - pyyi T PXy T wity +y; T Wy = 0 (5)

J#i



From (3) and (4):
i
Y
S

From (2) and (4):

3

U, = x{p, - I w;)
y 1‘yjf'i‘3
_o i
Mo %
Py
Therefore:
.
i X
U = = - I W,
y T p Pyt E

From {6), changing i torj:
g
v = %
SN J
_ U

Substituting (10) into (9):

o

;
;
gl = X

Rearranging (11):

3 - j
U U
oo (_J;)
] p sga tod
UX X Jj#i UX

Therefore:
I
n U

El:z.i

Px =)

- {13) defines the Lindahl-Samuelson efficiency conditions for a public gonds

— |p, - T [P
Y px [Y j#i (x

(6)

(7)

(8)

(9)

(10)

(12)

(13)

equilibrium. Thus, from (6) and {13), we know that Wi = Vi, the "true" mérgina]
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_ _ o i\ (¥,x,)
valuation for i, where vi(Y,xi,px} =1

U: (Y,xi ) Py (14)

fhe mechanism pniy disp]ays this optimality property at an equiiibrium .
when participants behave competitively, however; and, since each individual
faces a different ticket price, participants are never forced to behave
competitively. This is‘thermonohsony prob?eh discussed by Arrow (1969) and
formalized by Hurwicz (1972),1n his work on the incentive compatibility of
the.tgtonnement mechanism for allocating private goods. As Hurwicz shows
for that mechanism, unless the equilibrium price ratio is chosen on the
first interation by a Walrasian auctioneer, players of a competitive game
have an incentive to 1ie about their true demands. With private goods, this
incentive goes to zero as n gets large (Roberts and Postlewaite, 1976), but
that -does not happen in our linear pricing model.

T _ To iT]ustraté the persistence of mbnopsony, consider an n-person mode] in
which each participant deterhines his personalized ticket price by announcing
a_margina1rva1uation, W Assuming downward sloping demands for the public
good, each participant rea]izes-that by increasing his marginal Qa1uation
{and thus his subsjdy to other participants' subscriptions) he increases not
only the equilibrium number of subscriptions to the public good, but alsc his
ticket price for both the mafgina] and a]] inframarginal units. To determine
“his pe%sona1ized ticket price, Wi particﬁpant i assumes a demand furction
for the public good and a ticket price by each other person. Thus, ti,.(the
number of tickets botght by i, representing, in equilibrium, the number of |
units of the public good purchased by i#j) is now a funct&on of w, the
personalized ticket price: |

T (w)

3
Participant i chooses a marginal valuation, Wi, to maximize utility, and demands

t (wi) tickets.
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Replacing t, with t. (w) in equation (1):

= 1 ’ - - -
Ls U(tﬂw)+yiai)+A#Mi PYi = PyXs %tﬂw)

+y. I ow.) | (15
T Y . )

The first order conditions are:

oL, . .
1 1

= = U e (p.- Iz w)=0 (16)
YooY Y g -
aL; ' ; 9ty at,

wo- Yw N [H(W) tWime) =0 (7]
T Yo NptO0 (18)
-é—)q- = Mi - Pyyi - pxX,-I -'Witj(w) + Yy J§1 wj‘ =0 | -(19)

From (17) and (18) we can solve for W the reported marginal valuation

for tickets::

i .
i ot. p . . ,
Uy p, 1 X
ow
therefore:
vt
- A 1
W, ® Py v - - {21)
T
W
Multiplying. t. by w..
o
ow
U.I t, W. '
= —x - —.'-— [ _1- .
1 T S T T | (22)
X — 1
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therefore:
vl &
- X o 2
W, px U1 W, 5 , Where (23}
X t -
; Bti W )
;Et = 5w E; = the elasticity of equilibrium

demands for the public good by all j#i with respect to a changé in W, i's

reported marginal valuation.

Rearranging (23):

U.i si a"i : |

W, = D X t |- V. X (28)
i Xyl | J4e) T gl
X t t

Ui

Y
E; px, when the
X

Thus, i only reports his true marginal valuation, vT

agg;egate'elasticity of demand is infinite. Otherwise, Wi < Vi imblying

that i underreports relative to his "true” marginal valuation.

B.. - Non-linear Pricing Scheme:

We turn now‘to a modé] which.a]1ows non-linear, government-subsidized
pricing functions. In this model each buyer pays the govefnment for person-
alized public goods tickefs along a personalized non-Jinear pricing function, wi(t).
Eacﬁ seller of tickets, however, receives from the‘government each buyer's
marginéT valuation for each personalized ticket the seller sells to that
buyer. To balance the budget we charge each participant a 1uﬁp sum tag‘of F}T
times the budget deficit generated by all the other participanfg.

The "market" is organized as fd]]ows. The government assigns a personalized

non-]inéar pricing function, wi(t) to each participant and "initializes" the
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> B

market with a set of tj's and wj(tj)'s for each j#i and a set of lump sum taxes

to use as parameters for the first round. To purchase ti personalized tickets, 1 pays

t;

J[ wi(t)dt, Individuals still subscribe to units of the public good at
o ' . ' ,
marginal cost, py. Each individual maximizes utility by choosing personatized

public goods tickets.and private goods, and by substfibing to units of the public
good, gifven py. Pyr My wi(t), i's Tump sdm tax, and the tj'ﬁ‘and wj(tj)'s reported
by the other participants. The government then agrees to pay each ticket seller
gach buyef;s stated-marginal va1uation,.wj(tj), for each personalized ticket that
buyer has demanded. Eéch buyer pays the government according te his pzrson-
'a1ized non-linear pricing schedule.
| Participant i's problem is:
Max Ui(ti + Yy xi)
subject to: M, = p x, + [py - .E; wj(tj)] Y;
| JF1
t. t.

i 1 J
+f W.i(t)dt +'n—_"'=l‘J§1 [WJ(tJ) * tj 'I Wj(‘t)dt]

o

The first order conditions are:

R Iow(ty) (25)
— = U <A tp. - I w.(t:;)t =0 25
a.V-i Y 1 [ y j#i Jd ]
5Ly i
ol .
_._1.- = iy - = ?_
axi Ux Ai px 0 (27)
3L, | NS
—_— = M, - p b p Z W, . ] y. -
a>\_i 1 X [ Y J#.‘ J" ] i

t. t.

' 15 (t:) « t ’ (t)dt| =0 (28
o] 0 :
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From (25) and (26) we can solve for wi(ti)’ the marginal valuation along

wi(t)rimpTied by a choice of t,:
| E;. R
wilty) = -, (29)
_ Uy

Therefore, from (10), (14) and (29), we know that,

wilty) = vi(Y,xi,p,) (30)
the “true” marginal valuation.

The non-linear pricing scheme for personalized tickets eliminates the
monopsonistic incentive for 1 to underreport relative to his true marginal
valuation, by making him able to behave like a discriminating monopsonist.

The monopsonist treats the non-linear price function as the supply function
for personalized tickets and picks the marginal ticket price which corresponds
to his true marginal valuation since he does not have to pay for all person-—
alized tickets at that price. Like the discriminating monopsonist, he can pay
for each unit at the limit price for that unit along the supply function for
tickets. He only pays his marginal valuation for the last unit he purchases.

While this scheme solves the classic monopsony problem which comes when
all units must be purchased at the same price, it does not preclude the kind
of manipulation discussed by Hurwicz (1972) and Green and Laffont (1979).

As long as participants exhibit myopic Cournot-Nash behavior (i.e. take as
given the behavior of other participants), the Nash equilibrium satisfies
the Lindahl-Samuelson conditions. If, however, participants can affect the
equilibrium outcome to their own benefit by playing non—Nash strategies,
there continues to be an incentive to misrepresent preferences. This

incentive goes to zero an n gets large under the competitive mechanism for
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allocating private goods because all participants face the same price ratios
(Roberts and Postlewaite, 1976). If, somehow, all participants in a public
- goods allocation process were to face the same non-Tinear price function, we
conjecture that that incentive to misrepresent would also go to zero as n
became large.

For example, suppose the non-linear pricing function, which applied to
all participants, was a linear function of t with slope «. 'The auctioneef

would only have to change.a'if any adjustment were needed. Thus,

wi(t) = at, ¥i, | (31)
, ti at?

f w'i(t)dt = =s— ¥, and

0

substituting (31) and (32) into the budget constraint, participant i's problem
becomes : ' ' |

Max U1(y1 + ot xi) ) 2'

. ats at?
subject to: M..| = P,X; + (p_y - E.atj)yi'+ -71-*'5%7 z —gl
: J# J#i _
Thé first order conditions are:
ol . .
: i i S
— = U - a(p. - Toat.)=0 _ (33)
oy ; y VY g Y .
aLi ; (36)
Wi - U - )\idti= 0
al . .
....'...-l. = |__]1 - }\p = 0 : : (35)
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e T N
A, i - : = Ys AP, - at,) - — -
i j X7 i \y i )
2
1 at
R e S (36)
- NE '
From (33) and (34):
. Ui '
Ul - L(p. - I at.)=0 (37)
Y atj Y j#i J )
From (37) we can solve for
. t . n V
P, mat. +alt, = alt, (38}
Yo i e
Since ti = % y. in equilibrium:
J#i
n no n _ o
Ioty= 3o Iyy=(nT) oy - | (39)
i=1 i=1 j#i i=1
Subsfituting (39) into (38):
. n .
= (p-1 )
py = (n-Ta Y | (40) .

1

n
Therefore, since Y = I vy,

i in equilibrium,
i:] .

D . , .
o = =y . - (41)
Thus, if an equilibrium Y can be achieved through this mechanism, there is

a single o which sustains it.
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“To show that the budget batances, we sum the incomes:

n n n n : o " ' 5
I oMy Ioxg*t Ioyial oty -al ty)ty It
i=] i=1 i=1 i=] J#i =1
. n
ETE LN
n n n
TR L TG T
n-o n n é
ThOL TR G G Y
n n :
= Py 1_75] X; +a 151 jii Y; {y; + j;_ yj)
n n | .
TPon M T R byt
n : n
= P iE1 x; o {n-1) iET y; ¥
Therefore, from equation (40):
n n
121 M, = Py 151 Xs + pyY (42)

Therefore, the total of consumer incomes ‘equals total expenditures on private
goods and the public good. There is no deficit or surplus.

For 3 individuals, the equilibrium and budget‘balance conditions are

illustrated in Figure 1. Y = 15 and a = py/30 represent a public goods
equi1ibrium‘and non-1inear price function which satisfy the Lindahl-Samuelson

conditions.
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In figure 1 each person pays his or her shaded area for tickets and

subscription, leaving the white area as deficit. The subscription and ticket

payments plus the deficits equal the total cost of building the quIic good.
The lump sum taxes are:
1 pays 1/2 (2‘s*deficit + 3's deficit)
2 pays 1/2 (1’s deficit + 3's deficit)
3 pays 1/2 (1's deficit + 2's deficit)
We now show that the maximiiation problem for participant i satisfies the
2nd 6rder conditions for constrained utility maximization. Totally differen-

tiating equations (33)-(36) and writing them in matrix form, the left-hand side

is: | | _ . I T
Uyx ny ny‘ | fpx dx;
i i i
Uyx Uyy Uyy (py “jfi RS
i j i |
Uy Uoy (Uw o) o oty dt,
-, -{py-a I t) ot 0 i
J#i
Now, substitute at, for (p.-a I t.)} and consider the bordered principal minor:
: j#i '
) i e _T
Yy Uyy ot
i i
Uyy V(Uyy'kia) -at1

-ati -uti . D
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It's determinant is:

4 | iy i
—gti [ati(uyy - aiu - ati Uyy] +

i iy _ 3,2
yy.- at, Uyy)-uti As

ati(dti U

Since'ki, the marginal utility of Mi’ is greater than zero,
3, 2 '
a ti Ai >0

"

Now consider A, the determinant of the coefficient matrix itself. Expanding

a?ohg-the 4th row and collecting terms:
ol o2 i i 2
A= {Pyy Py 2ny p oty Uxx (ati) ]

Since P, and at, are prices, the quadratic form in brackets is negative by the

: assumptibn of quasi-concavity of the utility function. Therefore,
b < 0 if U(xi, ¥y * ti) is quasi-concave

Thus, the 4X4 bordered Hessian has sign (—1)3 and the relevant principal minor

alternates in sign.

Figure 2 illustrates why the second order conditions hold. The curve with
M. (ZM. 1/2

intercepts El and "El represents the participant's budget line if he buys
« ,
only tickets:

atiz
MyEex 3

‘ ' : M. M,
The linear function with intercepts El and TE_:#%_EETT represents the
X ¥ sg: J
J#

participant's budget line if buys only subscription units:

M. = px. + (p, - I at.)y.
‘ oI
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Figure 2

Utility Maximization with Unique "Linear"
Non-Tinear Ticket Price Function

ti t. Y, 2t B C D
*
Myt — « ot
A= M, +
Px D= - 2
p,, - & at,
2M. 1/2 Y J# )
, o '
¢ = "
p, - I ot

Y'+t.i
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The participant actually purchases along the ticket budget line as long as
the marginal cost of a ticket is less than the marginal cost of a subsidized

unit. By buying along the ticket budget 1ine, however, the participant gets
: *7 _
a subsidy from reselling the tickets equal to ati . In fact, allowing

RS

2
. , ' * * *
participants tq demand negative yi's, S0 y; *+ t_i is to the left of ti’ they can buy
o e , , ‘
-t; and sell y. back to the government at the subsidized price. In that case

the budget line will be the linear function with intercepts

aﬁz aﬂz
i B S T
_DX . (E; - _E'G‘tp
JA-
| | o2
M. = px, +(p, - Tat.)y.- >

1 X1 Y j#i J 1

This function is just tangent to the ticket budget line at t: . The lump sum
tax is nqt included because it simply represents a parallel shift in all three
budgetleqﬁations. Thus, as JTong as negative y:'s are allowed, the participant
can éhooée any point along the augmented‘budget line. Quasi-concé?ity of the
utility fﬁnction ensures that such a maximizing choice exists. |
The question of whether such a pub]iﬁ goods equilibrium can be sustained
by one equilibrium non-1iﬁear pricing function for all participants remains
an open question.. As we show below, we know it existé for some classes of
uti1ify func}ions and income distributions, but we cannot yet present a

general existence proof.

IV. Examples _
| A. n-people, Identical Cobb-Douglas Utility Functions, Unequal Incomes

Let U; = 8 1n (yi f ti) + (1 - B) In X5
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The Lagrange equation is:

Li=$]" (y'i+t'i)+(1"8)r‘m x'i+A1'(M'i'(py

%Et?)
3

1
TPt (HTT
The relevant first order conditions are:

L.
LI B et =0

Bti ¥y t+ ot 177

oL, _
8x1 -4 ; ) APy = 0
i i
From (44) and (45):
_{(1-8
S ot; (y; + ty)

substituting Y* for y, + t; in (46):

X, = .(]_'_B)_ at'iY*

© Py 3

Summing over i:

7 1= B) oys 7 4
p X, = o .
X421 ) B j=1 1
* + n
Substituting (n-<1) Y* for I t. in (48):
_ i=1
n afl - B 2
- * -—
P, E] X 5 (Y97 (n-1)

0 _
Substituting _(F%E for Y* in (49):
_ ,

p
_ (1 - B)
] X5 = B a(n-1)

LI g N ]

p
X3

-al tg)y

J#i

J

cat.l?
i~ "7

(43)

(46)

(47)

(48)

(49)
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p
Substituting (50) and rrdyys. for Y* into (42):

: o2 2
Do =0-8 Py Py
Therefore:
151 " " E I
Therefore:
PZ '
o = ____)L_ﬁ in equilibrium (51)
Ti=

The solution 1% §o simple in this case because, with identical Cobb-
Douglas utility functions, each participént's income effects are exactly .
"offset by the income effects of all the other participants. Consequently,
"~ the equilibrium o only ref1eéts the sum of the incomes and not the income
~ distribution. As the next example shows, the extension to different Cobb-
Douglas utility functions.is qqite complicated, even if we restrict our-

selves to only 2 participants.

B.  2-People, Different Cobb-Douglas Utility Functionsi,Différent Incomes

U2 = 82 "In (_\/2 + tz) + (.I - 82) 1“ XZ
From (47) we know: “

X ﬁﬂ:i)at Y*. o : o (52)
PxXy B, 01 -

X =9—-f-g-)-'at Y - ' | {53)
Px*2 By 2 o ‘
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The budget constraints are:

at? atg
My = pyXy v oty * 5+ 5
. : at% utg
My = PyXp +atoyp + 5+ &
Therefore:
M, o= poxy + S (t, +t,)8
1R T MY
- Q 2
My = Pyxp + 3 (B + 1p)
Substituting Y* for one (ty + t,) in each equation
_ L Oy |
Mp = Py + 3 Y (g + t) (54)
— | Qo ' . - '
Substituting (52) and (53) in (54) and (55), ‘respectively:
o (1 - 8) (ty +t5)
(1 - 8,) (ty + t,)]
_ 2 1 2
J
. P .
Subst1tut1ng Tﬁf¥¥5 for Y
Il (1 - 8,) t, + t )
M ] 1.7 %2
(1) Lo — ¢ v L% | (56)
Py By 2 o
M (1 - 8,) t, + ¢t
2 2 i 2
(n-1) — = —————t, + (57)
b, B, 2 2
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Now, let:

0-8g) _ | |
B] --'- ——51-—'—- ) (58)
S0 -8y

Noting {n-1=1), substituting (58) into (56) and (59) into (57) and collecting terms:

4= 2M1 - pytZ - (60)
1‘. py(ZB] + 1) _
t, = " - pyti*; (61)
2 py(ZB2 + 17 - : :

Substituting (60) into (61) and collecting terms:

oam, [(28) 1) - M) |
2R I, T T (62)

Substituting (62) into (60) and'co11ecting terms : _
2M1 [(ZB2 +1) - Mz] -

"7 B T(2B, + (28, ¥ 111 | (83)
p .
Substituting (63) and (64) into o = T—x—-——T-and collecting terms:
| | t.|+t2 _
2
(ZB B, + B, + B )_ ‘
Ak b il (64)

Z(M B + MZB1)

Nowlif wé compare (64) and (51) we can see the different income effects _
wh{ch come from having different Cobb-Douglas utility functions. Whereas in
(51) we just sum the incomes in arriving at an equilibrium a, in (64) we are
forced td derive a complex weightéd sum of the incomes, where the weights

are the Cobb-Douglas exponents:
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V. me]ementing the Non-linear Unique o Ticket Mechanism

A. fhe Dynamic Adjustment‘Process

While we have not been able to solve for explicit equilibrium o functions for
the general n-person case with income effects and different preferences. we can
" show by computer simulation that a simple Walrasian adjustment mechanism finds a
fixed point with 3 individuals who have different Cobb~Douglas utility functions and
different incomes. Genéré]izing equation (43), thé Lagrangé problem for

participant i is:

L-.=(]"B.i)1nx-+611n(Yi+ti)+>\'{M'-px‘-
2

j i if i X7
2
at. at.
] 9
(p. ~af t.)y, -——- — I } (65)
¥ spi 900 | 2 n-T i#i 2
The first order conditions are:
). X Ay Py ® 0 (66)
i i
i A 0 (67)
= - X, at, = -
Bti Y5 + ti i i
i ( ) = 0 (68)
L -x {po-maz ot =
a.Y-i ‘yi + t"i 1 Y j#i J .
= =M, - p.X, -~ yiip, ~a L t.)- -
aai i x™i iy i#i J 2
2
at,
ﬁ'}T I—5 =0 (69)
j#i
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Equations (66) - (69) allow us to solve for i's demand function,

yi(Mys o pys by t4)e

_ , :

_aqly | ! 2

B; ["’H 7 (a ;‘ tj) ACEIN? ta}

y. = J#1 J#1

1 p,-a L t,
y [P

p o

- (V=B (X- 5ot ' (70)

L

The price of x does not enter the actual function because cross elasticities
are zero for Cobb-Douglas utility functions.

Now, consider the following adjustment process. We initialize by letting

tﬁ's pe egual across all i and yi's be equal across all i (i.e. tio = ,,, = tno
aﬁd'yio = ,,, = yno). We know from equation (41) that
: P p p
- ‘y = .y =
@ o (n-1)(yi + ti) (n-1)Y
{(n-1} Y5 . ‘

i=1

Therefore, let .Y be the average Y indicated above to initialize a:

o p
o = P/

n-1) |
n (yi * ti)

ne3

i=1

In period 1, participant i uses these initial values to solve his maximization

problem, choosing yi] and ti1:
_ olp 2 0 .
‘ oty 0 __a 0,2
C B l:MT 5 (ao Ity ) AC I )}
- J#1 NEdl
i ' 0 ¢
p,-a It
(Y it )

- - ei)(%- L th) - (71)
| Ny |
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t. (72)

Thus, ti] represents i's demand for subscription tickets and yiT rebresents

1

i's supply of subscription tickets. If ti1 # I yj , then i's ticket market

J#i
is not in equilibrium and the subsidy reported to each j#i should be
1 1

changed. If t,o > Loy

o it implies demand exceeds supply and the subsidy
J#i o .

to each j#1 should be raised. 1If ti] < I ij the subsidy should be reduced.

J#i
Let ti] = ti] -v{Z y.1 - t.T) ¥i D < y<)
e Y] i
J#
- Now suppose each i's ticket market is out of equilibrium and.ti1 is computed
for each i. We can now report an adjusted subsidy to each i as a function of

each tjl, j#i:

s.' =a%: t.] = sdbsidy reported to i on the 2nd iteration

Figure 3 illustrates the effect on i's demand for tickets and supply of subsidized

units if Si > a°_z t.1. Assuming the income effect of increasing i's lump
htal '

sum tax when 51,15 raised is small, he supplies more subscription units_(yi2 > yi]),
which is‘what we wanted, since the demand for tickets by j#i:exceeded i's

supply. At the same time; however, the increase in i's subsidy reduces.the

quantity of ticketé demanded (tiz < til) and 1ncre§§es the total.quantity of

the public good i demands (t].2 + yi2 > ti]'+ y11).

1

The utility maximizing values yi1 and ti also imply a new estimate

" for a:




Price of the Public Good
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Figure 3.

Adjustment of Subsidized
Subscription Prices

Quantity of the Public Good

DiDi = i's demand curve for the public good
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However, there is a tendency for these o estimates to promote divergence
rather than convergence to equilibrium, The problem is that if a° is too
small, ﬁarticipants begin by demanding too much of the public good. That
will cause a1 to be even smaller tﬁan ao, encouraging a further increase in

the quantity demanded of the public good. 1If o® is too large, the reverse

problem occurs: initial demand for the public good is too small and cx1 will

be even larger. We counteract this tendency by adjusting a? in the opposite

direction from the movement implied by our estimate of o', Now let,

&] = o0 - G(a1 - o%), 0 <6<

Thus, if a] > ao, &1 < ol and‘if a] < ao, &1 > o),

To begin round 2, participant i is given the following parameters:

&1, 511, and Ti1,'where,
st =a' : ts'
J#i
=1 o S 1,2
T, = Z(n-T7 jii (tj ). = i's new lump sum tax.

Substituting (73) and (74) into (71) and (72}, i's demand functions for

round 2 are:
“~ a2 ~
1 1 1
2 B Mgy mS) - Ty
py 3
(1 - B;) 1
= ~1 py - Si )
2 _ 1, 1
ti - 1 (_py Si )

{73)

(74)
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therefore, at iteration m:

m
t

s

vz oy ey
Cj#

am‘-l - S(Qm . am'] )

‘The process continues until a fixed point is reached.

8.

Computer Simulation

We ran a computer simulation of the above adjustment brocess for 3

participants with Cobb-Douglas utility functions. The utility and income

parameters were:

[}

= .12

.10
.08
80

120
100
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Aftér some trial and error we discovered that the process converged better

if v and & were smaﬁ? to begin with {otherwise the prbcess sometimes diverges
at firstj. Once convergence was underway we could increase vy and § and
increase the speed of convergence without disturbing the equilibration process.

So, we assigned v and & as follows:

y= .05 ifm<25
.20 if.m > 25
5= .06 ifm<25
20 ifm > 25

We ran the process with the above parameters from four different con-

°, y.° combinations:

sistent starting o®, t. ;

1

1. o® =g, 1.0 10,‘y1° =5

2. o = g%; , £%° = 20, ¥, = 10
3. % =g 1,0 =30, y.0 = 15
‘. o® = g3, 1.0 = 40, y,% = 20

A1l four runs converged to the same fixed point:

a = .016875

Yy = 10.565, t, = 19.08 = 5.13 + 13.95

Yo = 5.13, t, = 24.50 = 10.55 + 13.95

Y3 = 13.95, ty = 15.68 = 10.55 + 5.13

Y =29.63 = 10.55 + 19.08 = 5,13 + 24.50 = 13.95 + 15.68

The number of iterations necessary in each case was:
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We have also tried a variety of other parametric combinations that con-
verged. Some examples are reported in Table 1. Notice that different income

distributions do generate different Lindahl prices and different equilibrium
) - n
Y's and a's. In each case y; tty= Y for each 1, Y = T Y; and the payments
, : : i=1
y ¥, given py = 1., Thus, the computer simulations suggest that the

unique o ticket mechanism can be implemented even when there are substantial

" sum to p

income effects. Even though we do not yet uhderstand the formal stabi1ity
brdherties of this mechanism, it appears to work even in a dynaﬁic setting.

" However, somewhat surprisingly,'the total payments are.apprdximately equal
across all participants in every example, even though the distribution of pay-
menféiacross tickets, subscription unité and lump sum taxes changes'with the
income effects. This dccuré because the.person with the highest Lindahl price
and,'ihefefore, the highest non-linear payment, always pays the Toweétlsub;:
scription payment and Tump sum tax; the person with the lowest Lindahl price
payﬁlthe highest subscription-and 1uhp sum payments. These tend to offset one
another, Teaving the total paymehts appfoximatel& equal. Thus, this particular
Tump sum tax rule tends to be régressive. -In fact, since in five oﬁt of the six
cases the person with the highest marginal valuation pays the lowest totdl‘
-payment, the income redistribution implied by these lump sum taxes is almbst
perversely regressive.

If we find equal payments disturbing for their income redistribution effect,

‘there are other incentive compatible lump sum taxes we can employ. For example,

t.2
Let T. =a & C.. —i—-, where
o e i) 2
J=i
oo
C.,.=—,u>0

i K



TABLE 1

COMPUTER SIMULATION RESULTS

= 8, In(y;te) + {1-8,) In x, By = .12 B, = '.‘D B 1; P,y =
- Lindahl Non-linear Subscription Lump-sum Total
Exanple i Tncome tl Yy o Price Payment Payment Tax Paymwent
1 1 80 19,163 10.037 .32813 3.14396 3.29359 3.29687 - 9.73442
T 2 100 20,060 9.140 (.017123) .34349 3.44518 3.13963 3.14626 9.73107
3 120 19.177 10.023 32837 3.14855 3.29140 3.29457 9.73452
29,200 29,200
2 1 80 19.081 10.549 . 32199 3.07196 3.39656 3.56926  10.03778
- 2 120 26.498  5.132 (.016875) L41340 5.06378 2.12152 2.57335 . 9.75865 .
100 15.681 13.949 C 26462 2.07473 3.69097 4.06787 _9.83157
© 29.630 - 29.630
3 1 120 30.107 456 49255 7.41461 22459 1.96768 ©  9.6068B
- 2 80 15.451 " 15.112 (.016360) . 25278 1.95284 3.81966 4,69857  10.47107
3 100 15.568 14.995 25469 1.98253 3.81879 4.68372 10.48504
30,563 : 30.563
A 1 100 24.609 5.051% .41483 5.10432 2.09546 2.56518  9.76496
- 80 15.591 14.069 (.016857) .26282 2.04879 3.69794 4.09295  9.83968
120 19.121 10.540 32232 3.08157 3.39755 3.57656  10.05568
: 29.660 29. 660
5 1 100 24,445  6.065 - 40060 4.89639 2,42959 1.04270  10.36868
2 120 24,361 6.150 (.016388) .39923 ' 4.86280 2.45518 - 3.05949  10.37747
3 80 12.215 18.295 .20018 1.22260 3.66206 4.87959  9.76425
30.510 30,510
6 1 120 10,023 .959 L48451 7.27324 46467 2.17546  9,91337
- 2 100 19,785 11.197 (.016138) .31929 3.15858 3.57537 4.23279  10.96674
3 80 12.156 18.826 19617 1.19234 3,69363 5.21591  10,10188
30.982 . 30,982

_98_
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[

Note that u=0 implies Cij = ﬁ%T" the original weighting scheme. As u increases

higher income participants pay higher'percentages of the lump sum taxes.

V. Cdnt]usions and Suggestions for'Further Research

This paper has shown that it is possible to construct a market-tike
mechanism for allocating pub]ﬁc.goods which is incentive compatible and
relatively éimp1e to 1mp1ement. Because it only employs one common.pricing
parameter; it does not regquire the central authority to figure out personalized
priéés'andfit eliminates the monaopsony e1gment_in persona]ized prices. It is
not without its faults, however. Because of the Tump sum taxes it might not
a1way§'preserve individual rationality. In addition, because the person with
the higﬁest margihal'va]uation buys the most tickets énd therefore-generates
:the highest deficit to be shared by everyone else, the mechanism may perversg]y
redistribute income. That is, if the rich have the highest marginal valuations,
the poor will tend to -pay the highest lump sum taxes.

At this point we also do not khow whether & unique o exists in general
or whether the adjustment mechanism is stable for any general set of para-
meters. We plan to continue theoretical work on existence and stability and
to run human sﬁbject experiments to further test the applicability of the
mechanism and adjustment proceés. In addition, we are working on a more
generaiizedlgenera1 equilibrium model and on less regressive heans of

balancing the budget.
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