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Abstract. In Europe we face very different living standards in different
countries. In former times such discrepancies did not induce mass mi-
gration since mobility was restricted, especially between Eastern and
Western European countries. But now the relatively richer countries
are confronted with mass immigration and also strong resistance against
it. We will show that resistance against mass immigration can be ex-
plained as being genetically determined. Specifically, we will analyse a
very simple game model of immigration with an undetermined prefer-
ence parameter deciding whether an incumbent engages into opposition
against mass immigration or not. It is shown that preference for fighting
against mass immigration is the only evolutionarly stable strategy for
all possible parameter constellations. In our view this has important
political implications regardless whether one wants to argue for a more
liberal immigration low or against it.

I. INTRODUCTION

Drastic discrepancies in the living standard of different countries usu-
ally induce mass migration if international mobility is not restricted. Eu-
rope presently is facing enormous discrepancies in the living conditions
of various countries, especially between Eastern and Western European
countries. In former times the better living conditions in Western Eu-
ropean countries did not induce mass immigration from East to West,
since due to the Iron Curtain mobility between East and West Europe
was practically non-existing. Fortunately this restriction of international
mobility has disappeared. But, of course, one also has to expect mass
migration from East to West Europe.

Although nearly all European countries and most of their citizens were
very positive and enthusiastic about the dramatic political changes in the
formerly communist countries, they often try to limit mass migration.
Depending on the country and the political party the justifications for
restricting mass immigration vary. In our view, there is, however, a
basic and general reason, namely the strong resistance against mass
immigration in most of the countries facing it.



Now, resistance against invaders is a typical phenomenon in the ani-
mal kingdom where behavior is genetically determined. This fact implies
that, at least in the animal kingdom, resistance against invaders seems
to provide a greater reproductive success than a more liberal attitude
to immigration. Here reproductive success is measured by the expected
number of offsprings which decide about the future composition of the
population. At least in the early stages in the development of mankind,
which still determines our present genotype to a large extent, the situ-
ation must have been similar: Human genotypes, programmed to fight
against invaders, earn a higher reproductive success than the more lib-
eral ones. The main purpose of our paper is to provide a formal model
and a methodology to analyse this conjecture more rigorously.

The model will be a simple game model which can be solved by a
rather weak rationality requirement, namely repeated elimination of
dominated strategies. Depending on the exogeneous parameters there
are three generic solutions, called 'the liberal paradise', 'preventive re-
sistance', and 'what we are afraid of.

The basic methodology is the one of evolutionary stability. Unlike
in evolutionary biology, where genotypes directly determine behavior,
we rely on a genetically encoded preference parameter which, together
with living conditions, decides whether a given behavior is rational or
not [see Guth and Yaari, 1990, as well as Guth, 1990, for similar
studies]. Thus we can compute the solution for all possible constella-
tion of preference parameters and derive the living conditions which this
solution implies. Assuming that reproductive success depends on the
living conditions we then can define an evolutionary game the strate-
gies of which, or genotypes, are the possible preference parameters and
the payoff function of which measures the reproductive success of the
interacting genotypes.

To solve the evolutionary game we apply the concept of evolutionar-
ily stable strategies [Maynard Smith and Price, 1973]. Although
this concept is not always in line with dynamic stability of evolutionary
processes, our result is unusually strong: The only evolutionarily stable
strategy is strictly dominant and, therefore, the only optimal genotype
irrespective of how the population is composed. This hold both un-
der the requirement of an evolutionary stable strategy and under the
evolutionary dynamics which we will also analyse.

According to our analysis 'the liberal paradise' can only be an episode
due to short lived mutants or the absence of migration. Thus one has
to expect either 'preventive resistance' or 'what we are afraid of. We
discuss the parameters which influence this result and how they can
be influenced politically. A genetically determined preference parame-



ter does not exclude that phenotypical preferences can be influenced by
education, personal experiences, and the political climate. To compen-
sate the genetical predisposition one has, however, to exert a continuous
opposing influence at least as long as the country is faced with mass
migration, since every new generation might oppose to mass migration
without this compensating influence.

The plan of the paper is as follows: Section I states the simple under-
lying game model to which in Section III the concept of an evolutionary
stable strategy is applied. Section IV considers a fairly general class of
dynamic evolutionary processes, reinforcing the results from Section III.
Section IV draws conclusions.

i1I. THE GAME MODEL

We will model mass migration as an encounter of two individuals, one
immigrant and one incumbent, who should be viewed as being members
-of large populations. The game model is very simple so that it can be
solved by very basic, i.e. also non-controversial rationality requirements.
Since the model is asymmetric, it will be symmetrised in Section III
before we apply the concept of evolutionarily stable strategies.
Let player 1 be the potential immigrant of palyer 2's, the incumbent’s,
country or territory. The simple game is graphically illustrated in Figure
I.1.

Insert Figure II.1 about here

A play starts at the origine O (the top decision node) with player 1’s
choice between I and .S where I stands for immigration and S for staying.
After S5 the game ends immediately since players 1 and 2 do not meet.
If, however, 1 enters 2’l_territory, player 2 can decide whether thd engage
into opposition against immigration (the move F') or not (the move ¥
of player 2). In case of Y the game ends with both players living on
- 2’s territory. If 2 has engaged into opposition against immigration, i.e.
move F by player 2, it is decided by a chance move (of the chance player
0) whether 1 can become a final resident of 2’s territory (the move R
with probability w) or not (the move L with the positive complementary
portability 1 — w).

The payoff vectors attached to the terminal nodes, i.e. the bottom
nodes in Figure I[.1, give the payoff of player 1 above and of player 2
below. Thus 1’s choice of S yields the living standard p for player 1 and
r for player 2, where we assume r > p > 0. The play (I,Y") yields the
same average living standard (r + p)/2 for both players who are living
in the same territory. The underlying assumption is, of course, that 2
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produces r and 1 only p, regardless of whether he stays in his home
country or migrates into 2’s territory, and that individuals living in the
same country have to share their resources equally.

In case of the play ({, F, L) player 1 finally returns to his home country.
Returning after an unsuccessful attempt to migrate may impose a cost
C > 0 on player 1. This cost C may or may not be related to player 1’s
living conditions. In fact, to determine evolutionarj stable strategies,
we will treat C' as deductions from the living standard of player 1, while
in the dynamic analysis we will also allow for the possibility that C is
unrelated to living conditions. Thus after (I, F, L) player 1's resulting
living conditions are p — C {or p for the dynamic analysis), while player
2 will enjoy r. Since after the play (I, F,'R) player 1 becomes a final
resident of 2’s territory, he receives the same living standard (r + p)/2
as after (I,Y). For player 2 the living standard is also (r + p)/2 of
which we substract P. Again this cost P may or may not bear directly
on living conditions of player 2. For the analysis of evolutionary stable
strategies we will assume that the preference parameter P is purely
unrelated to the living standard of player 2 (and, therefore, also to the
reproductive success of player 2). For the evolutionary dynamics we will
generalize this setup and allow for all possible impacts of P on living
conditions. The interpretation of a positive parameter P is obviously
that the incumbent hates to live together with somebody, whom he could
not make leave. Similarly, a negative parameter P would mean that 2
enjoys 1’s company after his unsuccessful attempt to get him out. Here
we do not impose any assumption for the parameter P, but try to derive
its value in Section lII by searching for the evolutionarily stable strategy
P [see Giith and Yaari, 1990, and Giith, 1990, who also rely on the
idea of genetically determined preference parameters], i.e. the parameter
P is determined endogeneously, whereas the other parameters p, r, and
w € (0, 1) are exogeneously given. For the evolutionar* stable strategies
we will also treat C as exogeneous, while for the evolutionary dynamics
C is endogeneous. Before starting our evolutionary analysis we want to
derive the optimal behavior for both players for all generic parameter
constellations (p, r, C, w, P}, r>p>0,C>0,1>w>0.

Since the game of Figure II.1 is one with perfect information (the
deciding player always knows all previous moves), the solution can be
determined by repeated elimination of dominated strategies. Clearly, F
is better than Y for player 2, if :

(IL1) (1““;)5”_1’) >P

and Y is better than F if inequality (IL.1) is reversed. In case of (IL.1)
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player 1's move I implies an expectation of

(I1.2) w TP (1-w)(p-C)

for player 1 which has to be compared with the living standard p implied
by 1’s choice of S. Thus I is better than S for player 1 if

(11.3) ‘2"((1'"—_"‘5% >C

whereas the opposite is true for the reversed inequality.

If inequality (I1.1) is reversed, the analogous condition that I is better
than S is r > p and therefore always satisfied.

The non-generic parameter constellations (p, r, C, w, P) are those
with equality in (IL.1) or (II.3). These highly specific constellations are
not relevant for our evolutionary analysis and can therefore be neglected,

Insert Figure II.2 about here

In Figure I1.2 we give a graphical illustration of the three possible
generic solutions (I, F'), (5, F'), and (I, Y ) in the (P, C)-plane. Wherever
the opposite of inequality (1I.1) is true, we are in the region (1, Y), called
"The liberal paradise’ since 1 immigrates and 2 does not resist against
1's immigration.

For inequality (11.1) the result depends on whether (I1.3) is satisfied
or not. If (I[.1) and (II.3) are true, we are in the region (I, F') where 1
migrates although he knows 2 will try to keep him out. Because of this
unfortunate struggle between the incumbent and the invader we refer to
region (I, F) as to "What we are afraid of’.

The final region (S, F') results from (IL.1) and the reverse of inequality
(IL.3). Here 2 is determined to fight against immigration and induces
- thereby player 1 to abstain from immigration, i.e. player 2’s willingness
to fight against immigration is a preventive threat. This explains why
the solution region (S, F) is named ’Preventive resistance’.

The following evolutionary analysis will anticipate these results for all
generic parameter constellations (p, r, C, w, P) and try to determine
the evolutionarily stable strategy P.

II1. EVOLUTIONAR} STABLE STRATEGY

To apply the concept of evolutionanly stable strategies [Maynard
Smith and Price, 1973, see also Selten, 1983, and van Damme,
1987] the encounter of an invader and an incumbent has to be modelled
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symmetrically. In evolutionary biology a genotype has to specify a be-
havior both for the invader and the incumbent since a phenotype can be
in both positions. Furthermore, symmetry can be easily established by
introducing an initial chance move which determines with equal proba-
bility whether player 1 or player 2 is living in the relatively richer country
and, therefore, threatened by immigration of the other player. The game
in Figure III.1 is symmetric, also in the more restrictive sense of evolu-
tionary game theory [Selten, 1983], since every move in the subgame
after the left top chance move with probability 1/2 can be identified with
a move in the subgame after the right top chance move with probability
1/2. In Figure II1.1 this identification is indicated by assigning the same
symbol I, §, F, Y, R, or L to both moves.

Insert Figure III.1 ebout here .
* Assume an arbitrary constellation (p, r, C, w) of the exogeneously de-
termined parameters. We want to derive for (p, r, C, w) and all values
of P the living conditions for both players which are assumed to deter-

~t mine their reproductive success. The underlying idea is that at least in

the early stages in the development of mankind the available resources
determined decisively the expected number of of'fspringf and thereby the
future composition of the population.

living conditions of both players depend on P only in the sense that for
P greater than

(1 —w)(r —p)
2w

J the solution is (I,Y), i.e. 'the liberal paradise’, whereas for P. < P*
it 1s either (S, F) or (I,F). Of course, P may very well depend on
phenotypical characteristics which can account for different values of P
in the range P > P* or P < P*. Here we will simply assume that
the endogeneous parameter P can take only two values, namely P*
with PT > P* and P~ with P~ < P*. By this assumption we also
exclude the degenerate case P = P* which is of no relevance at all for
the evolutionary analysis.

I The evolutionary analysis is based on the symmetric normal form
game G = ({P*, P~}; H), where {P*, P~} is the set of strategies or

genotypes; for the case at hand it is the set of possible values of the

endogeneous preference parameter P. Both players 1 and 2 have the
same strategy set since they are both members of the same species.

H is the payoff function which determines the reproductive success of

(II1.1) P =

H

6
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According to Figure 11.2 the solution of the game and thereby the



both players for all possible strategy combinations (P, Py) with P; €
{P*, P7} for 1 = 1, 2. Since the game is symmetric, it is sufficient
to specify the reproductive success of player 1 which will be denoted
by H(P,, P;}. For player 2 the reproductive success from the strategy
combination (P, P;) is given by H(Ps, P;).

A strategy P € {P*, P~} is called evolutionarily stable [Maynard
Smith and Price, 1973], if it satisfies the following two conditions:

(i) H(P, P)> H(P,, P), VP, e{P*, P}, l V
(i) 3P e (P, PTI\{PYf H(P, P)= H(P, P)I T wlatyy
— H(P, P\)> H(P,, P,). I-_
Condition (i) requires that the genotype P must be optimal in a mo-

nomorphic population consisting only of P-genotypes. In other words:
In a P-monomorphic population no other genotype can have more off-

spring§ than P. Observe that condition (i) does not rule out the case , 7
H(P, P) = H(P,, P) for some alternative strategy P;. In such a case
P must be a better reply against P, than Py itself, i.e. in a population b ‘3

containing only Pj-genotypes or Pi- and Pj-genotypes the strategy P
has a greater reproductive success than P;.

The static concept of evolutionarily stable strategies may not always .
coincide with dynamic stability of evolutionary processes eissing, l_ (e
1991, for a discussion]. For the simple case at hand this, however, cannot
occur since the only evolutionarily stable strategy P is strictly dominant,

i.e. P earns a higher reproductive success than the other strategy for all

values of P,. In this section, where we focus on P}——The return-fare H ) ;t
of an invader, C, will be deducted from living conditions, while P will

be taken to be a pure preference parameter, entirely unrelated to living

conditions.

To determine the payoff function H of G for the case at hand we
distinguish two cases, namely whether (I1.3) is satisfied or whether the
_ converse condition

(I11.2) | ;“(—(l":—g <C

1s true.

a. The case (11.3). If the incumbent’s strategy is P, the solution is
(I,Y) according to Figure I1.2, i.e. both players receive the reproductive
success (r+p)/2. For the incumbent’s strategy P~, the solution is (I, F)
which yields the reproductive success

(11L.3) | (1-w)p-C)+ w#
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for the invader and

(11L.4) (1—w)r+ w’"—;’—p

for the incumbent, since we are in case (11.3) and since the payoff parame-
ter P is assumed unrelated to the living conditions and the reproductive
success of the incumbent. QOur results are summarized by Table III,1
which determines the reproductive success H( Py, P;) of player 1 for all
four possible strategy combinations (P, P;). Since both players have
equal chances for becoming the incumbent, H(P;, P;) is determined
with probability 1/2 both by P, and P,.

Insert Table II1.1 ebout here

Due to 1 > w and r > p the following two inequalities are true:

T+p r+p T
(HI.5) w < (14 w) 1 +{1 w)2
and
(111.6) (1+w)#+(1_w)1%<(1-w)’"—ﬂ;—“—£+w’";p.

Conditions (1I1.5) and (II1.6) imply that P~ is strictly dominant. Since
there can be no alternative best reply in addition to P, this proves:

LemMA III.1. If the constellation (p, r, C, w) of exogeneous parameter
satisfies condition (I1.3), then the strategy P~ is strictly dominant and
therefore the only evolutionarily stable strategy of game G.

b. The case (III.2). The only difference results for the incumbent’s
strategy P~ which implies the solution (S, F'} according to Figure 11.2.
The reproductive sucess implied by (5, F) is » for the incumbent and p
for the potential invader. The reproductive sucess for all four possible
strategy constellations (P;, P,) in game G is illustrated in Table II1.2,
" similarly to Table III.1 for the previous case.

Insert Table ITIT1.2 about here

Clearly, due to r > p the strategy P~ is strictly dominant which
proves:

LEMMA II1.2. If the constellation (p, r, C, w) of exogenous parameters
satisfies condition (IIL.2), then the strategy P~ is dominant and, there-
fore, the only evolutionar} stable strategy of the game G.

Combining the two Lemmas yields:
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THEOREM 1. In the evolutionary game G = ({P*, P~}, H), the payoff
function H ¢l which is given in Table III.1 for (I1.3), respectively in Table
II1.2 for (II1.2), the strategy P~ is the only evolutiona_rj stable strategy
for all constellations (r, p, C, w) of exogenous parameters satisfying r >
pandl > w.

The assumption r > p is no restriction at all, since this is the only
reason for mass migration within the limited scope of our model. Thus
according to the Theorej above we only rule out the highly specific
borderline case w = 1 meaning that the incumbent cannot make the
invader leave at all. Since for w = 1 immigration will always imply
the same reproductive success (r + p)/2 for both players, there can be
no evolutionary drive for the endogenous paramter P in the limiting
case w = 1. Or in other words: For w = 1 resistance against mass
immigration does not make sense at all. Thus the two conditions, r > p
and 1 > w, are implied by our research problem and no real restrictions
to our results. In this sense the Theorep above can be rephrased by
saying that P~ is the only evolutionarily stable strategy regardless of
how the exogenous game parameters p, r, C, and w are specified.

Our results assume, of course, that all strategically relevant aspects
of the conflict between the incumbent and the invader are captured by
our basic game model in Figure I1.1.. We do not wish to claim that
this is an entirely realistic assumption. However, a similar anlysis can
be performed for other game models of conflicts between an incumbent
and an invader.

Even, if one believes that Figure I1.1. is an adequate representation
of the conflict, we readily admit that Theorem 1 is only a special re-

sult. First of all only the preference parameter P is é:ss&tﬂﬂed—subjec#

toLevolution. Clearly, the parameter ¢ which measures, how an un--

successful invader suffers, could also be considered as being subject to
genetical evolution. For the evolutionary game of Figure II1.1 one could
. rely on the mutant space (P, C) which contains all possible values of the
incumbent’s preference parameter P and the invader’s cost parameter
C.

Furthermore, the assumption that P is entirely unrelated to repro-
ductive success is by no means necessary for our approach. One could
easily generalise the analysis by allowing that a certain proportion of
P is related to reproductive success, whereas the remaining part is not.
Similarily, the more general case of mutants (P, C), described above,
can be analysed by requiring that only a certain proportion of P and a
possibly different proportion of C' are unrelated to reproductive success,
where both proportions can range from 0 to 1.

9
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Another restriction of Theorem 1 is that both interacting individuals
are certain about the incentive structure of their respective opponent.
In agenetically mixed population this implicitly assumes that the oppo-
nent's type can be recognized, once the opponent is faced. This need not
always be true, since a certain P-type might be able to imitate another
P-type, if this is profitable. This shows that the above results implicitly
rely on perfect signalling of the respective types.

Again, we readily admit that perfect signalling may be highly unre-
alistic. However, the assumption of perfect signalling is by no means
necessary for our fundamental approach. It could easily be generalised
to situations, where none of the two encountering individuals is certain
about the opponent's type. If signalling is impossible, it seems natural
to assume that both individuals know by experience only the distribution
of the population, but not the specific type of their actual encounter.
In such a scenario the beliefs concerning the other's type are determined
by the frequencies of types in the present population.

Here we do not attempt to generalise our analysis along these lines,
since we expect similar results. What we will do instead is to gener-
ate some support for the result from the static concept of evolutionary
stable strategies by explicitely analysing the dynamics of evolutionary
processes. Such processes can describe the dynamics of genetical and
also of cultural evolution of human populations. There are, however, at
least two important differences between genetical and cultural evolution.
First, genetical evolution is much slower. Second, cultural evolution does
not necessarily require symmetry, as imposed in Figure III.1.. We do not
wish to exclude the possibility that our dynamic analysis is interpreted
as a model of cultural evolution. Therefore, in the sequel we go back to
the original game model of Figure II.1., instead of analysing the sym-
metric encounter in Figure I1I.1..

IV. EVOLUTIONARY DYNAMICS

Let us now turn to an alternative view on the problem of the evo-
lution of preferences. In Section III we had to symmetrize the game
from Section II in order to be able to apply the concept of an evolu-
tionary stable strategy. Although this is common in biology, it may not
be entirely convincing, when applied to the problems currently facing
Europe. Thus in the present section we offer an asymmetric alternative
whichjjn biological terms could be viewed as an evolutionary analysis
of the interaction of two different species. Leaving the game from Sec-
tion II asymmetric as it is, however, forces us to be more explicit on the
evolutionary dynamics (as opposed to the static concept of evolutionary
stable strategies).



Still we will stick to the description of preferences by the two parame-
ters C' and P. But now both preference parameters are endogeneous: C
describes the costs, or rather: perception of costs, of "loosing a battle” to
player 1, while P describes player 2’s perception of the costs associated
with loosing a conflict. In particular, imagine that there are two pop-
ulations, one of potential migrants and one population of incumbents.
Both populations are very large and the individuals, of which a given
population consists, are identical, except for their preference parameters
concerning their perception of the costs of loosing a fight. These prefer-
ence parameters may, however, not even influence the living standards
of individuals and, therefore, their reproductive success. The extent to
which preferences, measured by C for potential migrants and by P for
mecumbents, impact on living conditions is measured by a parameter &,
0 <é<1.Ifé =0, then preferences have no impact on the reproductive
success of individuals at all, if é = 1, then C and P are fully deducted
from the living standards. Since we make no further assumption on §,
both cases are covered by our analysis. As the interested reader can
readily verify, we could even assume different §’s for incumbents and
potential immigrants. Since nothing would be changed in our analysis
by such an asymmetry of the é's, we have sacrificed this generalisation
for brevity.

Since individuals in a given population are ifidentical except for prefer-
ences and their reproductive success depends on living conditions which
may be unrelated to preferences, the evolution of the two populations
is determined by the success, measured in termns of living standards, of
certain preference types in the interaction of the two populations. Given
our assumptions, the two populations can be fully described by the joint
distribution ®(C', P) of preference parameters, where C' is the parameter
relevant for potential migrants and P is the parameter relevant for in-
cumbents. Let ¢(C, P) be the density corresponding to the distribution
'I%(C, P) and define the marginal densities{

v f(©)= /_ ~ 4(C, P)dP, ¢(P)= /_ ” #(C, P)dC.

We assume that each period pairs of individuals, each pair consisting of
one potential migrant and one incumbent, are chosen at random to play
essentially the game from Figure I1.1.. The random matching technol-
ogy is such that the probability wtthat a pair, consisting of a potential
migrant with cost parameter C and an incumbent with cost parameter
P, is matched is given by

(IV.2) w“[C, P)= ];(C’) géP) .
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Thus the matching technology is fair in the sense that it only depends
on the marginal densities, such that the conditional probability that
a potential migrant (incumbent) with parameter C' (P) will meet on
incumbent (migrant) with cost parameter P {C) does not depend on C

(P), i 7(P| C) = 4(P) and 7(C| P) = [(C). Define

G = [ yP)ar,

(IV.3) <
B(z) = /_w ferc.

In contrast to Section II we, however, assume here that the two players
matched cannot verify each otheld type, that is: The potential migrant
knows his parameter €', but not the preference parameter of the incum-
bent with whom he is matched, and the incumbent knows his P, but
not the preference parameter of the migrant he confronts. Thus each
pair plays the game from Section IT under incomplete information about
each otheﬁ cost parameter.

Still the incumbent’s problem does not differ very much from player
2’s problem in Section II. If the incumbent’s P satisfies

pspro A0l

7

then he will play Y and obtain a living standards (r +p)/2, if the poten-
tial migrant immigrates, and living standard r, if the potential migrant
plays S. If the inequality is reversed, P < P*, then the incumbent is
determined to play F, if the migrant plays I. The potential migrant’s
problem 1s slightly more complicated, because he has to take into account
both his C and the probability to be in a match with an incumbent, who
. satisfies P > P*. From (IV.3) the probability to meet an incumbent with
P > P* is given by 1 — G(P*), such that a potential migrant will decide
to stay home, if his C satisfies

11— (1-w)G(P*)|(r - p)
¢> 21— w)G[P) L

Define the function z: [0, 1] — R, U {0} by

-'13((1) — [1 - (1 — w)a](r — P)

1= w)a , Yae(0,1]

12
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and by z(0) = -+oo. With the help of this function, the expected living
conditions of a potential migrant with preference parameter C, denoted
for given F and G by u,(C), can be written as

p if C>2(G(P*))and G(P*) >0
(IV.4) wY(C) = § GUPM)lp+ w32 —8(1 - w)C] +[1 - GP)52,

otherwise

Recall that 6 is the parameter which measures how strongly the pref-
erence parameters influence living standards. The expected living con-
ditions of an incumbent with preference parameter P can be written
as

r—w&(ﬁ@{-ﬁi}])[r—gz—kﬁf’], if P< P, }’_’ Cf
T-Q(W])’—;-ﬂ, if P> P H "

Observe that both ul(C } and ug(P) are continuous. The average hvmgt_

COI’ldlthIlS in the two populations, given EL and G are denoted by U
and Uz,

t
(IV.5)  us(P) = {

t =] ¢ ] ‘
vr= [ ferare), = [ uip)age).

—o0 o pe [/ ‘
These functions can be written as H oL (/r Q-(P?“ N))

c I d
. (7 + 1 — ) GER[a(GERY)| F(HEER) - & :
(IV.61)  Ur= 4[]*6‘:“““” CAEO), #GPY >0, | (I W) GJ,(P)
o if G P*) = 0 %
H

2

_ o (7 BEERHA - (1 - w)G(P) - He
av.62)  Va=q -bw [T PdG(P)], if G(P*)>0

M2 if G(P)=0

and as

with U-ltand Ugt-again continuous. Thus both individual as well as av-
erage living conditions depend on the two marginal distributions of the
preference parameters in the two populations. We j‘v;ll now {ntempt ﬁ% /L / F‘ / {j
study the evolution of F and G over time.
Let H be the set of alf'contmuously differentiable distributions on R2.
Then ®,€ H and an evolutionary process can be defined as a mapping
w: H xRy — Hor ($,,t) — & Suppose the distribution of the

13



preference parameters in the two populations at some point in time ¢ is
given by ®(C, P) with marginal densities f;(C) and ¢,{C). Then the
family of evolutionary processes which we will consider is the family of
processes which satisfy

J(C) <0 = f(O)ui(C) - Uy <0,

(IV?) i t 1

ge(P) >0 <= ¢(P)uz(P)—-U2] > 0.

This is the family of evolutionary processes such that, if some value of the
preference parameter which is still present in the population generates

worse living conditions than what obtains on average in the respective
population, then the (marginal) frequency of this value of the preference
parameter shrinks over time. On the other hand, if some value of the
preference parameter results in superior living conditions as compared

to the population average, then the (marginal) frequency of this value of

the parameter will increase over time, provided it is still present in the
population. A guasi-stationary distribution @ € H is one which satisfies H C *
f(C)Y=g¢(P) =0, for all (C, P) in the support of &. t

THEOREM 2. (i) Whenever 0 < Go(P*) < 1 and0 < Fo($Ge{2Y) < 1

holds, then for any € > 0 there is some t. > 0 such that G,(P*}>1—¢ //::4
and Fi(z{l—¢)) > 1~—¢c forallt > t,. :

(i} Any quasi-stationary distribution satisﬁes either

G(P = F(z(G(P*))) or G(P*)=1=F(z
/\"*’“(’ { ;%E’OM m(:i(fu }E )) (;' 4! )( = {1)(' Ealz-)ti.l H H C*‘

PrRooOF: (i) Assume that for some t > 0 one has 0 < G4(P*) < 1 and

0 < Fi(HGRYY) < 1. From F:(é-éG—x{-B—)-} ) < 1 it follows that there ‘l H C

exists some C > $LerR2Y for which f,(C) > 0. Using (IV.4) and
IvV.e6.1 has for this C' that 1
( } one has for this a ) MD&(. W\Mfl}

RS T CQUW\ '
u(C)-U =(1 -w)G [5/ CdF(C)— Jﬂj l ﬂ

—BGAPNE (G (PD)]] < 0, ] 6./

where the final strict inequality follows from ¢, € H which implies that

F, cannot have any atoms, such that Fi(#&4F*))) > 0 implies that H H C *
there is some C' < ﬂ;(GT{-P-")'} for which f,(C) > 0. We conclude from %
(IV.7) that f:(C) < 0 for all € > #GGT(-P—}; which are still present in — Ct
the population, f,(C) > 0.

On the other hand G{(P*) < 1 implies that these exists P > P* such
that g;(P) > 0, and for any such P one obtains from (IV.5) and (IV.6.2)
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that

p* _ i

up(P) — Uz = §w Fy(z(G:(P"))) f PdG(P)- ) *' i
—eo [ oneilblony f

— (1= w)GP)F(=(C(P ) —5E = AU T

s
ftree

= w F(z(G(P*)[6 /_ PdG(P)— P*Gy(P)] < 0,

where the final strict inequality again follows from &, € H, because

then G, cannot have any atoms such that G,(P*) > 0 implies that there

is some P < P* such} that g¢(P) > 0. Thus from (IV.7) one obtains ' 7
gi(P) < 0 for all P > P* for which ¢,(P) > 0.

Under the assumption 0 < Go(P*) < 1 and 0 < Fy(z(Go(P*))) < 1
and for given £ > 0 let ¢; denote the smallest ¢ > 0 such that G,(P*) >
1 — ¢. By the above argument ¢, ist finite. Also by the above argument
there is some finite t; > 0 such that £, (z(G,(P*))) 2 1 — €. Since z
is decreasing, the latter inequality implies Fy(z{G{(P*))) > 1 — ¢ for all
t > max(t, ¢2). Setting ¢, = max(t,, t;) thus proves our claim.

~(i1) Under quasi-stationarity F(2(G(P*))) < 1 implies G(P*) > 0,
because otherwise G(P*)} = 0 would imply z(G(P*}) = co which would
imply F(z(G(P*))) = 1. Also F{z(G(P*))) < 1 implies from ® € H

that there exists some C > x(G(P*)) such that f{C) > 0. For this C /
one would, under quasi-stationdrity, have fo-havd { %
I~ f

z(G(P*))
u(C) = Uy = (1 —w)G(P*)[&/ C dF(C)—
—z(G(P*))F(z(G(P™)})} = 0.

But the latter can only hold, if F(z(G(P*))) = 0. Thus the first pos-
. sibility of a quasi-stationary distribution s given by G(P*) > 0 =
F(a(G(P")).

If, on the other hand, F(z(G(P*})) = 1, but G(P*) < 1, then there
exists some P > P* for which ¢(P) > 0 such that

5/ .PdG(P)—P"G(P“)=0

would have to hold under quasi-stationarity. From & € H it follows, how-
ever, that the latter inequality cannot be satisfied. Thus F(z(G(P*))) =
1 implies under quasi-stationarity that G(P*) = 1. Thus the second
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possibility of a quasi-stationary distribution is given by G(P*) = 1 =
F(2(1)). &

What the Theorem says can be rephrased as follows: If the initial
distribution of preferences is such that some migration at least will take
place, Fo(z(Go(P*))) > 0, then within finite time any evolutionary pro-
cess from the family (IV.7) will lead to a distribution of preferences which
has almost all its mass concentrated on the region "that we are afraid
of". Moreover, any distribution ¢, whose marginal densities remain un-
changed by evolutionary forces (”quasi-stationarity”), must either be
concentrated entirely on the region "that we are afraid of”, or must
satisfy that virtually no migration at all takes place, F(z(G(P*))) = 0.

V. INTERPRETATION AND POLITICAL CONCLUSIONS

Although P~ < P* is the only evolutionarily stable strategy of Section
III for all reasonable constellations (r, p, C, w) of exogeneous parameters
and only P < P* can be dynamically stable in Section IV the stable
genotype is not completely independent of the exogeneous parameters
since P~ < .P* and since P* is determlned by these pa.rameﬂ-s according
to equation (IIL.1).

Now the parameter P describes the feelings of the mcumbent after
an unsuccessful attempt to throw out the invader. Whereas a positive
value of P expresses anger, a negative value of P can be interpreted as
enjoying a multi-cultural society. Qur analysis has shown that it is not
the sign of P which matters. Thus a political debate whether a multi-
cultural society is good or bad might miss the point. What matters is
whether P is larger or smaller than P*, since, as illustrated Figure I1.2,
behaviour is crucially different for the case P > P* for which the 'liberal
paradise’ results and for P < P*, where the incumbent always threatens
to throw out the invader.

The positive critical parameter value P* depends positively on the
discrepancy r — p of the prior living standard as well as on the relative
- probability {1 — w)/w by which an invader will leave, when he faces
resistance against immigration. Many political measures currently taken
in Western European countries are attempts to reduce the discrepancy in
living conditions. The mob, responsible for riots against immigrants in
Germany in 1991, is definitely trying to increase the relative probability
(1 —w)/w. But also more restrictive requirements for being accepted as
an immigrant which are frequently proposed, can bé viewed as measures
aiming at an increase of (1 — w)/w.

But, of course, such a discussion assumes that the parameter P is
given whereas P* can still be influenced politically. Our evolutionary
analysis shows that the 'liberal paradise’, i.e. P > P*, can only be an
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episode since evolutionary forces increase the relative frequency of geno-
types with P < P*, provided there is indeed any seizable immigration.
Depending on whether C is greater or smaller than ;J((ir—_i ;, the stable
situation is therefore either 'preventive resistance’ or 'what we are afraid
of’. It is interesting to note that the critical value ,:,”((lr_—ig for C' depends
on the exogeneous parameters also via r —p and (1 —w}/w. But whereas
an increase of r — p enlarges the parameter region for territorial fights,
i.e. the solution region (I, F) in Figure I1.2, an increase of (1 — w)/w

enlarges the region for 'preventive resistance’.
iietatd-)

If resistance against mass immigration cannot be prevented, as sug-
gested by our evolutionary analysis, it becomes an essential political .
task to determine the relative size of parameter regions, because mea- J. ) /
sures geared at influencing r — p and (1 — wl'w, discussed above, can
be also viewed as attempts to influence the border line between the two
regions 'preemptive resistance’ and 'what we are afraid of " in Figure I1.2.
According to our approach natural selection has brought about a hu-
man genotype with P < P" where the difference P* — P should be
rather large due to changing environments with different levels of P*.
‘In particular, P can assume negative values which explains why incum-
bents sometimes claim that they enjoy other cultures although they
resist against mass immigration. Whereas in evolutionary biology genes
determine behavior directly, we have assumed genetically determined
preference parameters which are influenced by natural selection.

Of course, a genetically determined preference parameter P does not
exclude that the phenotypical P can be influenced by education and
the political climate. One could, for instance, assume an inborn prefer-
ence parameter P, whose actual level can change within certain bounds
due to phenotypical experiences like education, individual living condi-
tions, exposition to other cultures, etc. Many political campaigns can
be considered as attempts to fight against an inborn animosity against
immugrants. If, however, there is an inborn animosity against invaders,
one has to try continuously to change this attitude, at least as long as
the country is facing mass immigration.

Our general approach can be applied to other game models than the
ne of Figure II.1. We have selected the game model in Figure II.1 since
t captures the essential aspects in the simplest way. The main restric-
ive assumption of Figure II.1 is probably that only the play (I, F, R) in-
Huces feelings concerning multi-cultural societies although another play,

pamely (I, Y}, also results in a multi-cultural society. M«Mi’% /
If (I,Y) also induces the payoft %ﬂ — P for the incumbents, the
: rliberal paradise’[}ﬂd-alae‘ the evolutionary drive for the parameter P
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Wwould-depend an the probabilityas-that-an-immigrant—wins—the-fight.
Thus Figure II.1 seems to capture the more interesting situation where
emotions concerning immigrants are triggered by unsuccessful resistance
against mass immigration.

In our view, such an assumption can be defended. Many developed
countries have experienced massive immigration movements without se-
rious political debates, especially in situations of high employment. This
indicates that emotions concerning immigration become virulent only if
one has been strictly opposed to it but unable to prevent it.

If animosity against immigrants or sympathy for a multi-culture so-
ciety is triggered by unsuccessfull resistance against mass immigration,
behavior will depend crucially on the political climate which is not only
influenced by the political parties but also by the mass media. A po-
litical debate, like the one in Germany in 1991, might trigger emotions
which will seriously endanger the prospects for a peaceful life in a multi-
cultural society.

Campaigns aiming at measures against mass immigration may help
to win the next election, but may also induce long lasting animosity
against immigrants, possibly also against earlier immigrants, who up to
now did not encounter any resistance.

If mankind has an inborn tendency to resist against mass immigration,
this can be politically exploited, especially by extremely rightist parties.
To avoid this, one may want to limit immigration. Actually this is what
we observe in all developed countries which partly rely on 'preventive
resistance 'and partly experience 'what we are afraid of’. As predicted

——by eur study, 'the liberal paradise’ dogs notrsurvive in the gomewhat H Mj.nriﬂ{

—————

[ i

tYesimplistic framework of B@BH&
" 7'Of course, oné may argue that in case of the 'liberal paradise’ the
discrepancy r — p in living conditions would vanish, i.e. 'the liberal par-
adise’ could be responsible for equal living conditions in countries with-
out entry barriers. And this is perhaps the major lesson concerning the
responsibility of economists: To convince the public that jn-equalizatiop H WLj--)ME

of living standards is the most effective way to avoid political unrest.
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