DIVISION OF THE HUMANITIES AND socw.%%
CALIFORNIA INSTITUTE OF TECHNOLOGY

PASADENA, CALIFORNIA 91125

CONFLICT AND STABILITY IN ANARCHIC INTERNATIONAL SYSTEMS

Emerson M. S. Niou
Duke University

Peter C. Ordeshook
California Institute of Technology

JUTE
wstiitor ,

1
N

§ %

(
3 2
S <
-t e
=3 &
= &

% S

)
Y Shiag, WA

SOCIAL SCIENCE WORKING PAPER 700

May 1989



CONFLICT AND STABILITY IN ANARCHIC INTERNATIONAL SYSTEMS

Emerson M. S. Niou
and

Peter C. Ordeshook

Abstract

A considerable part of theory in international relations concerns the issue of whether
cooperation and stability can emerge from the competition and self-interest of sovereign
powers existing in a state of anarchy. Does anarchy, if ever, imply stability in the form of a
balance-of-power, or does stability require restraints which arise from the complex nexus of
interdependencies characterizing the contemporary world economy and its associated
institutions? The analysis in this essay supposes that nation-states are each endowed with
some infinitely divisible resource, which those states maximize and which also measures their
ability to overcome adversaries in the event of conflict. In this context we reexamine and
reformulate the realist view, by offering a noncooperative, extensive-form model of
international conflict without exogenous mechanisms for the enforcement of agreements in
order to uncover the conditions under which a balance-of-power as construed by our model
ensures the sovereignty of all states in anarchic systems. Our primary conclusion is simple:
there exists at least one world, albeit abstract and reminiscent of the frictionless planes with
which we introduce the perspectives of physics, in which a balance-of-power ensures

sovereignty.
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Institutional restraints on action in anarchic systems arise, by definition, endogenously,
and the establishment, maintenance, and evolution of those restraints must be understood in
terms of the individual incentives of relevant decision-makers. Correspondingly, if we accept
the premise that "International relations continue to be a recurring struggle for wealth and
power among independent actors in a state of anarchy (Gilpin, 1981:7)," then we can interpret
a considerable part of contemporary theorizing about international relations as concerning the
issue of whether cooperation and stability can emerge from the competition and self-interest
of sovereign states. Can anarchy yield stability in the form of a balance-of-power, or does
stability require restraints that arise from exogenously imposed institutions, from the complex
nexus of interdependencies characterizing the contemporary world economy, or, in Riker's
(1962) terms, from moral suasion? Burns (1968:249) states the realist position: "Classic
balance-of-power theory can be interpreted as a hypothesis that in a more-than-two-Power
world there are no non-autonomous causes of systemic change ... the purely political aspect of
the system's power-political process always tends to produce a stable equilibrium that can be
upset, if at all, only by autonomous changes." Such assertions, though, do not prove that
nation-states can coalesce effectively to offset the ambitions of other states, that agreements
can be maintained so as to ensure each nation's sovereignty, or that international institutions,
as the byproducts of competition, merely facilitate the stability inherent in anarchy. If we
equate the idea of regimes with balance, then Keohane (1984:99) states the problem succinctly:
"The puzzle of compliance is why governments, seeking to promote their own interests, ever
comply with the rules of international regimes when they view those rules as in conflict with
... their 'myopic' self-interest."

Despite the importance of such issues to international politics, they have a broader
imperative, because they are fundamental to theories based on the rational choice paradigm
and to game theory in particular. Von Neumann and Morgenstern's (1947) seminal work
divided game theory into cooperative and noncooperative sub-parts. Nash (1951), however,

suggested that cooperative action should be analyzed using noncooperative theory -- that
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coalitions and the like should be viewed as noncooperative equilibria in which the
enforcement of agreements has as its basis the fact that no individual has a unilateral
incentive to defect from an agreement. Until recently, game theorists largely ignored Nash's
suggestion. Avoiding modeling the mechanisms of enforcement, they developed instead a
variety of "solution hypotheses" such as the V-set, the bargaining set, and the competitive
solution, which sought to identify the agreements that would be reached if enforcement were
not an issue. Much of contemporary game theory, on the other hand, seeks to integrate the
analysis of cooperative and noncooperative games along the lines suggested by Nash. The
results to date are incomplete, but we now know, for example, how cooperation is sustained in
the repeated Prisoners' Dilemma (Taylor, 1976, and Axelrod, 1984), how repetition and
uncertainty sustain vote-trading in legislatures (Calvert, 1989), and how, in some
circumstances, to rationalize cooperative solution hypotheses as noncooperative equilibria
(Selten 1981, Sutton 1986).

Rationalizing realism's argument about stability, though, poses special difficulties.
Cooperation arises in the repeated Prisoners' Dilemma, for example, because the punishments
that repetition allows provide a mechanism whereby all players can avoid mutually distasteful
outcomes and Pareto efficient outcomes can be enforced and sustained as equilibria. In the
essential components of the realist view, on the other hand, all outcomes are efficient since
power, a relational concept, is in constant supply. Hence, cooperation can only be directed at
implementing or blocking outcomes that are disadvantages for some and advantageous for
others. So anarchic systems, reduced to their basic character, seem susceptible to those
instabilities we associate with majority rule, and the question remains as to whether there is a
theoretical basis for realist thinking -- whether we can sustain stability in n-country systems
if the primary rule is that countries or alliances of countries with more "power" can defeat
those with less.

For special cases, of course, stability seems unexceptional, such as when one country is a
hegemon or when there are only two equally powerful adversaries. However, we want to
explore the possibility of stability in systems when there is no hegemon, when there are any
number of countries, and when every country is the potential victim of some winning
coalition. We proceed by building on a model in which nation-states, represented as unitary
actors, are each endowed with some infinitely divisible and transferable resource that those
states maximize and that also measures their ability to overcome adversaries in the event of
conflict (Niou and Ordeshook, 1986, Niou, Ordeshook, and Rose, 1989). To reformulate the
realist view, we differentiate between two forms of stability: system-and resource-stability.

Svstem-stabilitv implies that all countries can ensure their sovereignty — that no country will

have its resources reduced to zero. Resource-stability implies the prediction that no

reallocation of resources will occur. We make this distinction because systems are rarely, if



ever, resource-stable and because the issue of sovereignty seems qualitatively different from
the issue of how nations contend with the ebb and flow of economic and military capabilities:
"disagreements about how benefits should be distributed permeate the relations among actors
and persist because bargains are never permanently valid ... Apparent victory can be illusory
or defeat ephemeral, for political bargaining and maneuver result not in definitive choices
conferring power on some people rather than others, but in agreements that may in the future
be reversed or in discord that signals a continuation of bargaining and maneuver"
(Keohane,1984:18). In accordance with realism's fundamental concern, we want to focus on
the conditions under which anarchic systems can be system-stable -- under which it is
legitimate to assert that a balance-of-power, somehow construed, ensures the sovereignty of
all states.

To establish these conditions we build on a second feature of international politics --
namely, that it does not correspond to a "single-play" game, but instead it is a process in
which today's actions determine tomorrow's strategic possibilities. This fact necessitates
modifying the assumption that nations maximize "power" in some myopic way. Specifically, if
national leaders are concerned with a view of the future, and, hence, with what their actions
imply about the ultimate, overall distribution of resources, then this interpretation of
rationality is not a basic assumption but, at best, it is a deduction from some model that posits
more fundamental goals. If we assume instead that the ultimate goal is the survival of their
nations as sovereign entities (Waltz 1979, 1988), then those leaders must evaluate a decision to
attack another nation, to form an alliance, or to cede resources, not in terms of immediate
benefits, but in terms of what an action implies ultimately about the likelihood that its
survival will be endangered. Thus we echo Kaplan's (1979:70) assertion that we must take
account of the possibility that "...the weakest player, by joining a nearly predominant strong
player, only creates a condition in which he will be the next victim," as well as Wagner's
(1986:551) more technically stated implication: "the basic question that concerns us is whether
states will act so as to eliminate other states. If one state is eliminated from a four-actor
game, for example, the result is to precipitate a three-actor subgame. If a value can be
assigned to such a subgame for each player, it is possible to determine whether any players

have an incentive to eliminate other players."

Our previous analyses build on these observations, but they use cooperative solution theory
to render predictions, and thus they circumvent the issue of enforcement and the precise logic
whereby we can rationalize alliance formation. Here, we look more closely into the nature of
collusive action in international systems, and, proceeding in much the same way as Wagner
proposes, with a noncooperative model, we rationalize our previous conclusions about
stability." System-stability can prevail even if enforcement is endogenous, and the conditions

under which this is true requires no special number of countries or distributions of resources.



In Section 1 we offer an extensive-form model of anarchic international systems. In Section 2
we explore equilibrium strategies in that model for 3-country systems, and in Section 3 we
explore 4-country systems. In Section 4 we provide the general results for n-country systems
that support our central conclusion -- that a system is system-stable if every member of S is
in at least one minimal winning coalition. In Section 5 we survey the circumstances under
which countries that are not members of any minimal winning coalition are eliminated, and
we also suggest when a set of countries might voluntarily relinquish their sovereignty in order
to form a new sovereign state. In Section 6 we offer some substantive conclusions. Before
proceeding, we emphasize that our analysis takes no account of geography, resource growth,
war costs, uncertainty, and ambiguities in the notion of sovereignty. Because our analysis
rationalizes much of the same conclusions about system-stability that we derive using
cooperative game theory, our earlier treatments of such matters stand. Our aim, though, is
not to formulate a model of international political processes per se; rather, it is to establish a
possibility result that provides a theoretical basis for the intuition guiding the realist view of

international systems.

1. An Extensive-Form Model of Coaflict

Beginning with some elementary notation, we denote a system by (S,r), where S =
{1,2,...,n} represents the set of countries, and where r = (ry, Tpn.aty) corresponds to the
distribution of resources across S. For convenience, we suppose that the countries are ordered

2 Assuming that r

f>0>..>0, > 0, and we let R be the total resources in the system.
determines winning and losing coalitions, we denote the sum of resources controlled by the
members of the coalition C by r(C), so that C is winning (C is in the set W) if r(C) > R/2, it is
losing if r(C) < R/2, and it is minimal winning if, for all i in C, C-{i} is losing. Thus, if r; >
R/2, i is predominant -- it is winning against all other countries and it can incorporate their

resources at will -- so every country has an incentive to avoid the possibility that some other

country becomes predominant, Countries that control .precisely R/2 resources are near-
predominant.

We next describe an extensive form game, I, that models conflict in ‘which countries try to
increase their resources by making and implementing threats against others and in which
threatened countries try to maintain their sovereignty with counter offers or counter threats.
Letting T be the set of all threats with respect to (r,5), then

T ={(r,C): t(C) > r(8§-C), CCS, where i€ Ciff ', > r;},
sor', <r; foralli €S-C. We identify threats specifically by C thus:
T, ={r,C)eT:r, 21, iffieC).
The game I', now, is described as follows:



(1) Nature randomly selects an i € §;
(2) it offers a threat (r’,C) € Tes 1 € C; or i passes. If i passes, we return to step {1). If i
threatens and if r* RSt j is an active member of C, whereas r’

=T for the passive
members of C.3

i

(3) The members of C-{i} choose between approving or rejecting i’s threat. If no member of
C-{i) rejects, then r’ becomes the current threat; otherwise, we return to step (1).

(4) With (r’,C) the current threat, nature randomly orders the members of $-C, and we denote
this order by O = (m,l,...,k).

{3) With m in §-C offering the first counter, a counter takes one of two forms: a new threat,
(r,CY e Tc.., m € C"; or a resource transfer from S-C to one or more members of C. We
denote those party to the transfer by C".

(6) The members of C"-{m)} choose between approving or rejecting m’s counter. If a counter
which is itself a threat is approved unanimously, it becomes the new current threat, and
we return to step (4). Counter-threats that would be approved if proposed are viable.
one or more members of C"-{m} reject the counter, we select the next country in O and

" return to step (5). For counters that are resource-transfers, unanimous acceptance renders
the transfer the new status quo distribution and we return to step (1).

- (7) If the counter of the last country in O is rejected, the resource distribution of the current

initial threat becomes the status quo, countries with no resources are eliminated, and we

return to step (1).

This sequence of moves is, of course, a gross simplification of possibilities. For example,
i’s partners in C can merely accept or reject (r’,C), but they cannot propose modifications,
and, thus, T does not model the negotiations that might precede an actual conflict,
Nevertheless, I does model a system in which "power" is the sole determinant of winning and
losing, in which threats and counters are the mechanisms whereby countries secure resources
and ensure their sovereignty, in which countries join coalitions because it is in their
individual interest to do so, and in which no exogenous constraints or complex set of
economic interdependencies ameliorate conflict. Thus, if system-stability prevails here, we
say that a balance-of -power exists.

Before proceeding, though, we must refine our assumptions about preferences.
Specifically, if we think of resources as power and suppose that countries maximize power,
we must nevertheless add an assumption about how countries evaluate elimination as an
outcome distinct from the rest. Elimination, after all, is qualitatively different from merely
possessing a small amount of resources. With a small resource base a country remains a
potentially essential actor whereas with zero resources, it is forever eliminated from the game.
We accommodate this fact by supposing that countries are risk averse with respect to the



possibility of elimination (equivalently, a country attributes a value of -ooto any outcome in
which it is eliminated):

If one act, al, ensures that i cannot be eliminated, whereas another act, a2, leaves
open the possibility that i’s resources are set to zero, i prefers al to a2.

The principle analytic feature of the game I', now, is that threats and counters can
continue in sequence forever. However, there are terminal points. First, we initially interpret
nodes in which a threat is implemented as terminal, although we do this with the
understanding that such nodes are merely the starting point for a new round of conflict with a
new status quo resource distribution. Any evaluation that the countries might place on such
reatlocations depends, then, on what follows in the new round. Owing to the following
assumption, though, there is a second type of terminal point, which arises whenever one
country secures R/2 resources:

1

if r; = R/2, and if the threat (r',C) is implemented, i € C, then even if ¢’; = 1,

can take advantage of the conflict to become predominant.

Thus, systems with a near-predominant country are "frozen" -- no additional threats are
worthwhile since the remaining countries will block any threat’s implerﬁentation. Notice that
we can rat_ionalize this assumption by supposing that r; measures resource proportion and that
the conflict implicit in a threat’s implementation destroys some part of the resources of the
active antagonists. For example, if r = (50,33,17), if the threat (50,50,0) is implemented, and
if the conflict destroys some of 2 and 3’s resources, then 1's relative share increases and it
becomes near-predominant. -,
Terminal nodes in which one country becomes near-predominant can be reached, of
course, if an appropriate threat is implemented, but they can also be reached if some set of
countries transfer some share of their resources to another country. We have not specified the
circumstances under which transfers are proposed, but the incentives for accepting them also
derives from the idea that conflict is costly. Without modeling war costs directly, we can
make allowances for such costs with this assumption (for an analysis of war costs see Niou and

Ordeshook 1989):

If i can become near-predominant either by implementing a threat or by having
some set of target countries transfer enough resources to i so as to render i near-

predominant, i prefers the transfer.



In confronting the threat (r",C), suppose the members of S-C find it in their interest to
"freeze" the system. Letting max[C] be the largest member of C, if r(S-C) + Fraxicey > R/2
then S-C can freeze the system by offering max[C] enough resources to render it near-
predominant. Clearly, if S-C prefers freezing the system, it should transfer to max[C), since
this choice minimizes the resources that S-C must surrender. And max[C] accepts the offer:
Because attempts to secure more than R/2 will be blocked, securing R/2 by transfer is
max{C]'s most preferred feasible outcome.

When the members of S-C prefer such transfers is an issue we cannot yet address, but we
must consider a second type of transfer -- by S-C to members of C-{max[C]} such that 2
r’j for all j € C, where r"j is the proposed post-transfer resources of j. For example, letr =
(110,80,60,50) and et {1,2,3) threaten 4 with (150,85,65,0). Barring a counter-threat, country
4, in lieu of rendering | near-predominant with a transfer of 40 resource units, might try
~ instead to disrupt matters by offering 2 and 3 each 10 units of resources, taking the chance
that it will fare better in a game with the distribution {110,90,70,30). Whether 4 prefers such
a proposal and whether 2 and 3 should reject this off er 50 as to eliminate 4 and freeze the
system at (150,85,65,0) depends on expected vélue calculations, as well as attitudes towards
risk, Notice, though, that if such a proposal is offered and accepted, it merely results in a
new 4-country system, and if all such offers are accepted, we can cycle endlessly without
eliminating countries, in which case (S,r) is system- but not resource-stable. However, we are
not interested in resource-stability, and elimination, if it occurs at all, occurs only if countries
are unwilling to propose or accept such non-terminal transfers. Throughout this essay, then,
we suppose that such transfers will not be made or accepted, and we analyze the part of the
extensive form in which transfers freeze systems or countries are eliminated.*

2. A Three-Country Example

Even after we eliminate non-terminal transfers, I' remains a recursive game, because the
sequence of threats and counters can proceed indefinitely, with each succeeding counter
becoming a new threat that is itself subsequently countered.” However, we can proceed in
the analysis by pretending that I is finite. First, notice that if a threat is approved, its
characteristics and the status quo resource distribution are the sole relevant components of the
situation. We suppose, then, that countries pursue the same strategy whenever they encounter
the same threat (that is, strategies are §;g;ionary).6 Second, letting I'., denote the sub-game
that follows acceptance of the threat (r’,C), suppose country i associates the value v (T,) with
playing that sub-game. Letting v(I',) = (v4(T,).....,v(T'.,)), this vector -~ the continuation
value of T, -- specifies what the countries believe follows from the approval of (r*,C). Thus,
v,(T.,), when compared against whatever follows if (r’,C) is rejected, determines 1's
preference for acceptance or rejection of (r*,C). Once values for all threats are specified we



can assume that the acceptance of a threat or counter is a terminal node with its continuation
value as the "final outcome." We then analyze I as though it were a finite extensive-form
game of complete information and we deduce sub-game perfect equilibrium strategies by
working backwards from the terminal nodes in the same way we treat finite agendas in
majority voting games -- we deduce what each country cught to do any time it must choose a
threat, a counter, or accepting or rejecting a threat or counter.

The problem here, of course, is that we have merely pretended to know continuation
values. Nevertheless, we can define a stationary equilibrium as a set of continuation values --
one for each threat (subgam'e) -- and a set of strategies for each country such that these
values and strategies are consistent. Thus, in a stationary equilibrium, the choices that the
continuation values imply -- the strategies that are a subgame perfect equilibrium given the
continuation values, must, in turn, imply those continuation values.

To illustrate these ideas, consider a three-country system with (S,r) =
{{1,2,3),(120,100,80)), and consider an initial threat by country 1 to eliminate country 2 and to
share the system’s 300 units of resources evenly with 3. Limiting our discussion for the
moment to threats and counters of this type and to counters from one country to another that
freeze the game, consider Figure 1's representation of the situation (a * denotes a terminal

“node). After | proposes the threat, 3 must decide whether to accept or reject it. If 3 accepts,
country 2 must then offer a counter that, given our limitations, is either a coalition with 1 to
divide R, a coalition with 3 to divide R, or a transfer to 1 (which, if offered, 1 is certain to
accept since this is the best possible payoff for 1 given that 2 and 3 will never allow an
outcome that gives | more). Notice that 2 need not consider a transfer to 3 since, being
larger, country 1 entails transferring fewer resources. Depending, then, on which counter-
threat 2 chooses, either country 1 or country 3 must decide whether to accept or reject. In the
event of a rejection, the threat is implemented and 2 is eliminated. In the event of an
acceptance, the counter becomes the new current threat, and the subgame that follows is
denoted by I' with an appropriate subscript. Figure 1 portrays the next step in this process
with either 1 or 3 offering a counter.

Consider, now, the following continuation values for the three threats that eliminate a
country (we need not consider threats that give a country more than 150 since no country wilt
assist in such a threat or allow it to go unchallenged):

¥(T(150,0,1505) = (150,70,80)
¥(T (9, 150,150y) = (70,150,80)
¥(T 450, 150,09) = Y(C(150,0,150))/2 + "L (g, 150,150y)/2 = (110,110,80)



where we suppose that 3 counters with (150,0,150) and (0,150,150) with equal probability
whenever it is indifferent between these two choices (or that 3 accepts each counter with
equal probability if it is indifferent). With these values we can now deduce subgame-perfect
equilibrium choices for the extensive form in Figure 1. For example, beginning at the top-
right of this figure, we see that 3 prefers (0,150,150) over I‘(15°_0_150> since the continuation
value to 3 of (150,0,150) is 80. We indicate this preference by an arrow. Similarly, 2 rejects .
F<150,150,0) since Vz(rc1so,1so,0)) corresponds to a lottery between 150 and 70. Thus, if 2
counters the initial threat of (150,0,150) with (0,150,150} and if 3 accepts, then 1 prefers to
transfer resources to 2, because to choose otherwise leads to 1's elimination. (We need not
consider any other type of transfer; Transfers giving less than 150 are rejected since rejection
implements the threat, and a transfer that renders 3 near-predominant is more costly than a
transfer to 2.) Notice, now, that 1's choice of a transfer implies that V(P(o,150,150)) =
(70,150,80), which corresponds to our initial supposition. Turning to the lower-right of
Figure 1, country 3 is indifferent between proposing (0,150,150) and (150,0,150) in the event
that 2 counters with {150,150,0) and 1 accepts, so let 3 choose with equal probability. Once
again, then, we deduce a value "(r(150,150,o)) that is consistent with our assumption, so 1
rejects 2's counter of (150,150,0). Hence, since 3 rejects a counter of (0,150,150) and since 1
rejects a counter of (150,150,0), 2's sole course of action when confronting the threat of
(150,0,150) is to transfer resources to 1 so as to render 1 near-predominant. Thus, as initially
conjectured, '(1‘(150,0,150)) = (150,70,80).

Figures 2 and 3 repeat this analysis for the remaining allowed threats, and they establish
the consistency of the conjectured continuation values. Thus, what remains is the
specification of wI') and an equilibrium identifying the initial choices and responses of all
countries. Suppose first that w(T') = (120,100,80) -~ that both system- and resource-stability
prevail, which we presume arises because no country makes or accepts an initial threat. This
supposition is sustainable, in fact, if we characterize equilibrium strategies thus: a country
does not initiate or agree to a threat unless it gains resources. Since the continuation values
for the game’s threats imply that countries I and 2 can each gain from an initial threat,
whereas 3 can neither gain nor lose, 3 has no positive incentive to participate in a threat.
Further, since only 1 and 2’s resources can be transferred, they are in a zero-sum game, and
depending on the probability that 3 chooses one action or another when it is indifferent, 1 or
2 has no incentive to threaten (150,150,0). But if 1 threatens 2 with, say, (150,70,80), 3
rejects 1's proposal that it acquiesce to the attack on 2. Finally, neither |1 nor 2 has an
incentive to threaten 3 alone, since 3 can counter with a threat that requires the originally
threatening country to transfer resources to 3's partner in the counter. Hence, three-country
systems can be both system-and resource-stable,



There is, however, another stationary equilibrium, characterized by "accept all initial
threats if they promise no loss; otherwise reject” that sustains the continuation value w(T') =
a(l-50,70,80) + (1-a)(70,150,80) = (70+80a,150-80c,80), where a is the probability that 3
coalesces with | if it is indifferent between coalescing with 1 and 2. Although country 3
cannot gain resources if it abides by such a strategy (the continuation values for all threats
remain as before), 3 has no positive incentive to defect unilaterally to another strategy.
Hence, there exists a stationary equilibrium in which 3-country systems are resource-unstable.
However, regardless of which stationary equilibrium prevails, this 3-country system is
system-stable. And since all 3-country systems without a predominant or near-predominant
player are equivalent to our example, this fact establishes the possibility of stability in
anarchic systems in the way that stability was envisioned by realist arguments.

3. Four-Country Examples
Three-country systems differ from larger ones in that, if no country is predominant, all
countries are esgentigl —- all are members of a minimal winning coalition. For a system with
an inessential country -- one that is not a member of a minimal winning coalition -- we must
consider systems with four or more countries. To see that this distinction is important, let E
be the set of essential countries and E the set of inessential ones. Suppose r = (100,95,75,30),
tn which case {4) = E,. and let the presumed equilibrium be characterized by "countries make
or accept threats if they do not lose resources from doing so." Now suppose that 3 threatens
(100,95,105,0). If 3 cannot gain resources from [ or 2, 4 must coalesce with | or 2 -- 3 will
reject any offer, thereby implementing (100,95,105,0). But if | or 2 accepts 4's offer, each is
vulnerable to counters by 3 in the form (150,0,150,0) or (0,150,150,0).7 Thus, | and 2 reject
4’3 overtures, and 4 succumbs to the initial threat and is eliminated.? Thus, the system
({1,2,3,4),(100,95,75,30)) is not system-stable. |
On the other hand, if 4 is essential, as it is with the distribution r = (110,80,60,50), every

country can buy stability and, as with three countries, no one js eliminated. However, let us
pursue this example to illustrate the way which we analyze our model and the role of certain
key assumptions. Limiting discussion once again to specific types of threats and counters,
consider the following continuation values:

L' (150,150,0,0) = (,0,60,50)

(T ¢150,0,150,0y) = (3,0,6,50)

¥(T'¢150,0,0,150y) = (2,0,60,d)

'(r(150,85,65,0)) = {150,80,60,10)

"(Puso,as,o,sn) = (150,80,20,50)

'(.Puso,o,?s,?s;) = (150,40,60,50)

"(P(o,150,75,75>) = (40,150,60,50)

10



where a < 150, b < 150, ¢ < 60, and d < 50, and where the values of a, b, ¢, and d depend on
the threat in guestion.

We begin with the possibility that, in confronting any of these threats, instead of
countering with a counter-threat from this list, a country in S-C proposes a resource transfer
to max[C]. Notice that if two countries are simultaneously threatened, then if the first
country to counter proposes a transfer to freeze the system, it cannot require that its partner
in §-C bear the greatest burden. If it proposes such a transfer, its partner can reject and
propose instead that the first country bear nearly all of the burden -- and at this stage that
country has little choice but to comply since choosing otherwise implements the original
threat. Further, if any other counter by the first country is rejected, the second can again
propose, if it is in its interest to do so, that the first country bear the greatest burden. We can
imagine more complex bargaining schemes among threatened countries, but the details of who
transfers to whom has little bearing on our general conclusions, and our representation implies
that whatever country responds first must bear the greatest burden in the event of a transfer
by S$-C to max[C].

Figure 4 shows the extensive form when (150,85,0,65) is the current threat. Country 3 has
five alternative actions (in accordance with our previous discussion, we let r correspond tor a
stage in the game in which no non-terminal transfers are proposed or accepted). If it
proposes (150,0,150,0) as a counter, then 1 rejects since, by assumption, V1(r(150,0,150,0>) =a.
< 150 and rejection implements a threat which gives 150 to 1. If 3 proposes (150,0,75,75),
then country 4 rejects since Va(rc150,0,75,75)) = 50 < 635, and if 3 proposes {0,150,75,75), then
4 rejects for the same reason. And if 3 proposes (150,85,65,0), then 2 rejects since
Vz(rmso,as, 65,0)) = 80 < 85. Hence, the only alternative available to 3 is to transfer resources
“to 1, ip which case, as conjectured, "(r(150,85,65,0)) = (150,80,20,50). An equivalent analysis
holds for the threats corresponding to the distributions (150,85,65,0), (150,0,75,75), and
{0,150,75,75),

The situation is more complicated if two countries are threatened, as when {1,2} threatens
{3,4) with (150,150,0,0). Figure 5 shows the part of the extensive form that pertains after
such a threat is accepted, and after nature selects 3 to offer the first counter (the situation is
symmetric if 4 counters first). As before, 3 has four counter-threats, but their rejection,
rather than leading to the implementation of the threat, gives 4 an opportunity to offer a
counter. Since 4's options are independent of 3’s choice, Figure 5 portrays only one instance
of 4's decision. Working backwards on the extensive form so as to identify subgame-perfect
equilibrium strategies, and looking at 4's decision, we see that if 4 offers (150,0,0,150), 1 is
certain to reject since V1(r(150,0,0,150)) =a < 150. Similarly, if 4 offers (150,85,0,65), then 2
rejects since "z(rnso,ss,o,ss;) = 80 < 150. However, if 4 offers {150,0,75,75) or (0,150,75,75),
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then {1,3} and {2,3), respectively, accept. Thus, there is no reason for 4 to consider a transfer
to 1, and, since it is indifferent between these two counters, we suppose that 4 chooses one or
the other with equal probability.

| Looking now at 3’s choice in Figure 5, because rejection of any of 3’s counters yields a
lottery between V(F<150,0,?5,75)) = (150,40,60,50) and "(P<0,150,75,75)) = (40,150,60,50), if 1
prefers v1(150,0,150,0) to a lottery between 150 and 40, 3 does aot counter with

(150,0,150,0) -- v3(1‘(150’0'150.m) = ¢ < 1y and, as we see shortly, 3 has better choices. If, on
the other hand, 1 prefers the lottery, then then the counter (150,0,150,0) is merely equivalent
to the counter (150,85,65,0), since 2 rejects this counter in favor of the lottery. Finally, the
counters (150,0,75,75) and (0,150,75,75) -- both of which yield 3 a payoff of 60 -- are
accepted by (1,4) and (2,4}, respectively. Now, though, we can introduce an assumption that
does not affect our conclusions here, but which simplifies proofs later; namely, suppose i € §-
C, to counter (r’,C), chooses (r",C") such that S-C € C" whenever it is otherwise indifferent.

. Later, we state this assumption formally, but its rationale is that the threat against $-C makes
the formation of S-C less cos'tly (also, if i is indifferent, such a choice can characterize an
equilibrium strategy since i has no positive incentive to choose differently). Presently, this
assumption implies that 3 counters with (150,0,75,75) or (0,150,75,75). And, since an
identical argument holds if 4 counters first, '(P(150,150,0,0)) is a lottery between
(150,40,60,50) and (40,150,60,50) as originally asserted.

Finally, let (150,0,150,0) be the initial threat (see Figure 6). If 2 makes the first counter,
and if that counter is rejected, then 4 should counter with (150,85,0,65), which yields
(150,80,20,50). Thus, looking at each of 2's four possible counter threats, if 2's counters with
(150,150,0,0), 1 rejects so as to secure (150,80,20,50). If 2 counters with (150,85,65,0), 1 is
indifferent (3 accepts), but regardless of how 1 chooses, 2 gets 80. If 2 counters with
(150,85,0,65), | is again indifferent and 2 gets 80. Finally, if 2 counters with (0,150,75,75), 4
is indifferent (3 accepts), vielding 2 a lottery between 150 and 80. Thus, (0,150,75,75) is 2's
best response. And since nature can choose either 2 or 4, this argument establishes that
V1(P(150,0,150,0)) < 150 and v3(I‘(1SD'u'150'0)) < 60. If nature selects 4 to make the first
counter to (150,0,150,0), Figure 6 shows that if 4’s counter is rejected, then 2 must counter
with (150,85,0,65), because (150,83,65,0) and (0,150,75,75) is rejected by 3 whereas
(150,150,0,0) is rejected by 1. This fact implies that 1 rejects (150,0,0,150), 1 is indifferent
between accepting and rejecting (150,0,75,75) (3 accepts), countries 2 and 3 accept
(0,150,75,75), and 1 and 2 are indifferent between accepting and rejecting (150,85,0,65).
Applying the same assumption as before, namely that 4 chooses a counter which includes S-C,
4 is indifferent between countering with (0,150,75,75) and (150,85,0,65). However, as before,
we see that "1(F(150,0,150,01) < 150 and "3“(150,0,150,0)’ < 60. A parallel analysis holds for
(150,0,0,150).



Having established that the posited continuation values are consistent with subgame
perfect equilibrium strategies, we next identify a symmetric stationary equilibrium for the
full game (by symmetric we mean that all countries abide by the same type of strategy).
Consider the following two partial characterizations of equilibria: (1) no player makes or
accepts an initial threat unless such action promises a gain; and (2) players make gr accept
initial threats if doing so promises no loss. For case (1), countries 1 and 2 prefer coalescing
with 3 and 4, but, under the assumption of the presumed equilibrium, 3 and 4 do not accept
any initial offer, because there does not exist an offer that yuields them a resource gain.
Moreover, neither 3 nor 4 gains by a unilateral defection from its presumed equilibrium
strategy. Hence, a situation in which no threats are made is an equilibrium; however, it

 If there is a chance that will 4 accept a threat in which it

cannot be a perfect equilibrium.
does not lose, then 3 should not forego participating in threats that freeze the system. This
argument bears on case (2). If everyone accepts threats in which they do not lose, then no one
has an incentive to switch to a strategy of accepting or making threats only if it gains. Thus,
given the limitations on threats we impose, our 4-country example is necessarily system-
stable, but only resource-instability corresponds to a perfect equilibrium.

There are, of course, other possibilities that we must consider before we can uttering
definitive conclusions. In addition to the threats and counters in this 4-country game that we
do not allow, larger systems introduce new possibilities. For instance, if r = (110,80,60,30,20),
everyone is essential, but 4 and 5 cannot individually freeze the system. How, then, might 5
respond to a threat of (115,85,65,35,0)? For another example, let r = (70,65,60,55,50). In this
mnstance no country c¢an buy stability, so might not countries 3, 4, and 5 look favorably upon a
threat by 1 against 2, since implementation of the threat allows a subsequent defense by, if
necessary, a resource transfer? And can country 3 respond effectively to a threat by, say, 4
and 57 We cannot answer such questions, though, using the methods we have applied to
systems with three and four countries -- we simply do not have sheets of paper large enough
on which to portray the situation’s extensive form.

4. A General Theorem about System-Stability

To formulate a general n-country analysis, we first partition § into two subsets, L and L ,
where each country in L, but no country in L , can be the largest member of a minimal
winning coalition. Thus, L is a losing coalition and consists of the smallest countries in S,
but L plus any member of L is winning. For example, if r = (120,100,80), then L = {1,2} and
L, ={3). More generally, except for uniform resource distributions, neither L nor L is
empty, and the significance of these sets stems from the fact that only the members of L will
be recipients of a transfer to freeze a system and thus only the members of L can become
near-predominant through a transfer -- in attempting to freeze a system with a transfer,
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countries ought to buy as cheaply as possible, and it is never optimal to freeze the system with
a transfer to a country other than the largest member of the threatening coélition.

With this partition of S, our analysis proceeds thus: we define two types of continuation
values, and, after isolating a particular set of threats, TP, we assign one type of value to
members of TP and the other type to all other threats. These values and the definition of TP
give TP "core-like" stability in this sense: no member of TP is an effective counter to any other
member of TP, and threats not in TP are ineffective counters to the members of T.
Consistency is secured by defining TP so that two or more of the threats in it are subgame
perfect counters to any threat outside of it, in which case the continuation value of a threat
not in TP equals a lottery over the continuation values of the threats in TP that are effective
counters to it. For example, in 3-country systems {(150,0,150), (0,150,150)}, when combined
with the appropriate coalition structures and continuation values, illustrates T. The '
continuation value we assign to (150,150,0) determines that (150,0,150) and (0,150,150) are
effective counters to it, thereby rendering that value consistent with our other assumptions
and subgame perfection. We begin, then, with two types of continuation values:

Cl: (r’,C) satisfies continuation condition C1 if v.(T ,) cr;, forallie CnL_, vi(T,) <
R/2forallieCnL,and vi(T ) <r, forieCnLifr; < Fmax [S-C1°

C2Z (r’,C) satisfies continuation condition C2 if v,(T'_,) = R/2 for max[C], and v (T ,) =
r; for all i € C - {max{C]}.

We are especially interested, now, in a specific kind of threat, namely,

Type 1 Threat: (r’,C)is a Type 1 threat -- (r",C) € T - if
i maxtey + T8-C) 2 R/2,

ii 1"j = 0 for all j € §-C,

il e =R/A2,

iv A C" € W such that C" n C = (k} = {max[C"]} # {max[C]}.

1 r

For any C there is an infinity of tﬁreats in Te including an infinity of Type | threats
(which differ only in the distribution of r(S-C) - {R/2 - 1 (] among C-{max{C]}). We
show shortly, however, that most such threats are strategically equivalent, in that they have
the same continuation values, so, for the moment, if we can associate a Type | threat with C,
we focus on one such threat and ignore the other threats that C might make. Formally, let C
denote all coalitions that have Type 1 threats, let {(¢’,C) be a particular Type | threat by C,

and redefine the set of all threats T as T - U [T, - {(r'C)}]. Later, we reintroduce the
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excluded threats to show that they leave our analysis unaffected, but now, with these threats
removed-from consideration, let T, be the power set of T, and let TP be any element of T,
that satisfies,

i for no (r,C) and (r",C") € TP is C N C" = {(max{C]} = {(max[C"]};
ii A C € W such that 3 (r",C) € T' such that (r',C) can be included in TP
without violating condition i (i.e., TP is maximal).

We call a set TP that satisfies conditions i - ii a set of Primary Threats. Before we illustrate
these definitions, we first state a preliminary lemma:

Lemma 0: For each i € L, there is at least one (r’,C) € TP such that i = max[C] (in
particular, {i} U L, i €L, has a threat in TP): and for each j € L, there is at least
one (r',C) € TP such that j € c.’°

To illustrate, {(150,0,150),(0,150,150)}), with the appropriate coalitions, is the unique set of
primary threats in a 3-country system. In our 4-country example, both {(150,0,75,75),
(150,85,65,0), (150,85,0,65%), (0,150,75,75)} and {(150,0,150,0), (150,0,0,150), (150,0,75,75),
and (0,150,75,75)} are sets of Type | threats, but only the first is in T, because (150,0,150,0)
and (150,0,0,150) cannot coexist in any TP € T Finally, let r = (70,65,60,55,50), so from
condition i in the definition of T‘, threats in TP must originate with coalitions having three
members. Consider now the following distributions that, with appropriate coalitions, satisfy
the definition of a Type | threat:

1.(150,0,75,75,0)  2.(150,0,75,0,75) 3. (150,0,0,75,75) 4. (0,150,75,75,0)
5.(0,150,75,0,75)  6.(0,150,0,75,75) 7. (0,0,150,75,75)

There are three other threats that we might consider, namely (150,75,75,0,0) by {1,2,3},
(150,75,0,75,0) by {1,2,4}, and (150,75,0,0,75) by {1,2,5). However, each of these threats
violates condition iv in the definition of T' and, thus, they are not candidates for inclusion in
a set of primary threats. Indeed, the seven threats listed constitute the unique set satisf ying
the definition of TP.

Our next lemmma establishes why we are interested in isolating primary threats,

Lemma 1: If alt (r",C") & TP satisfy C1, and if all threats in T® - ((r’,C)) satisfy C2,
then for any stationary equilibrium, (',C) € TP satisfies C2.'°
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The difficulty with this lemma, of course, is that we have not yet established any result
validating the assumption that C! holds for non-primary threats. In fact, the proof that C2,
the consequences of Lemma 1, and subgame-perfection are consistent requires an assumption
bearing specifically on the nature of the stationary equilibrium that we can sustain. We begin
with the observation that if a country is ¢confronted with a threat it cannot counter so that its
loss of sovereignty is inevitable, then it is indifferent among the various actions that it takes
at that point. Thus, the actions countries choose in such circumstances are free parameters. It
might seem, of course, that such free parameters are irrelevant to final conclusions, but it is
important to understand that other countries may not be indifferent as to which action a
country chooses when confronting elimination, and what they believe about the eventual
choice of the threatened country can determine their prior actions. Indeed, these beliefs can
even determine whether the country in question will confront the possibility of elimination.

This discussion leads to the notion of a credible threat. Briefly, a threat is credible if: (1)
it is part of a subgame perfect equilibrium, which is to say that at the time of its
implementation, no other choice yields a greater payoff to the country in question; and (2) the
belief by others that the threat will be chosen improves the utility of the country that might
choose it. The assumption, then, about the actions of countries threatened with inevitable
elimination that we use to characterize a stationary equilibrium is:

CC1: If S-C has no counter to its threatened elimination, and if it cannot buy
stability directly, then S-C transfers all of its resources to max([C].

This assumption is not without historical challenge. Although Nazi leaders at the final stages
of World War II preferred capitulation to the U.S, and Britain as against Russia, the allied
powers largely controlled the final allocation of the German resources. On the other hand, in
addition to the imperatives of the Atomic bomb, Japan chose a timely surrender because of its
desire to capitulate to the U.S. rather than contend fully with Russian territorial ambitions.

As second assumption about equilibrium strategies, which we introduce in our discussion
of d4-country systems, facilitates the proof of our central results. Suppose (r*,C) is the current
threat and let i € S-C offer a counter-threat. Any counter, of course, must either entail a
transfer of resources or, since C is necessarily winning, it must coopt one or more members of
C into a new coalition, C". Our assumption is that if i € S-C can form a counter that coopts
only one member of C so that all of i's other coalition partners in the counter are in S-C,
then, ceteris paribus, i chooses that counter. This is not to say that i will forego other
alternatives if they are more valuable; but, whenever it is indifferent, i will take advantage of
the fact that S-C is a coalition that, because of the threat by C, is "already nearly formed."
Hence,
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CC2: If (r",C) is the current threat, then, ceteris paribus, 1 € $-C chooses a
counter, {r",C"), such that C" n C = (j), and C"-{j) C S-C.

We can now complete the specification of consistent continuation values:

Lemma 2: If all elements of TP satisfy C2, if (r’,C) &€ T®, and if all other threats
satisfy Cl, then CCl and CC2 characterize equilibrium strategies for T such that
(r",C) satisfies C1.13

Lemma 2 exhausts all possibilities not encompassed by Lemma 1, 5o together they establish
consistent continuation values for all subgames of I'.'4

We can proceed now to our central result -- the characterization of the stationary
equilibria of I'. What remains at issue is a specification of a country’'s choice whenever it is
selected to make the initial threat, and the responses of its partners in a proposed initial
threat. Postponing the question of the fate of inessential countries, ssume that all S are
essential. Limiting the discussion now to symmetric strategies -- strategies in which all
countries in L, and all countries in L abide by the same strategy, consider this statement as a
potential characterization of equilibrium strategies:

CC3: If i €L is chosen to make the initial threat, i randomly chooses (r’,C) € T®, i
= max[C); and all j € C - {i} accept. If i €L is chosen to make the initial threat, i
randomly chooses (r’,C) € TP, i € C; and all j € C - (i} accept.

Lemmas | and 2 establish that if all other countries abide by the this characterization, and if i
€ L can make the initial threat, i’s dominant choice entails selecting a threat (r’,C) € TP such
that i = max[C), because this choice renders i near-predominant and achieving near-
predominance is the best feasible outcome for any country. Moreover, both lemmas imply
that no country in C NL o has an incentive to defect from its strategy of acceptance (they can
never gain, and acceptance ensures that they cannot lose). Finally, suppose one of i’s partners
in C, say j, is in L. The question is whether j, rather than abiding by CC3, has an incentive
to unilaterally defect to a strategy whereby it rejects i's offer. Keeping in mind that j neither
gains nor loses resources if it accepts, the benefit of defecting is that j might‘be selected
subsequently to make an initial threat, or some country in L , might be selected to make a
new initial threat and this threat might be one in which j is the largest member of the
threatening coalition. On the other hand, the hazards of defecting are that j will otherwise be
the target of any initial threat. Complex expected resource calculations, however, are
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unnecessary. First, since we assume that all aspects of the game, including people's attitudes
towards risk, are common knowledge, i knows beforehand whether or not j will accept its
offer to participate in a threat. So if j would accept i's offer in accordance with CC3, either
because j is sufficiently risk averse or because the probabilities of the various outcomes imply
that j's gairi from defection is negative, then the following result holds:

Stability Theorem: If all i €S are essential, CC1 - CC3, in conjunction with CI
and C2, describe a stationary equilibrium for I’ such that the system (S,r) is
system-stable; but if r; <R/2 for all i €8, then (S,r) is resource-unstable.

On the other hand, if j € CHL isrisk acceptént or if the gain from defecting is sufficiently
great, all countries, including i, know this fact beforehand and i will not propose an initial
threat with j € C. Moreover, Lemma 0 establishes that for any i € L, there exists a threat in
TP such that C contains only i and members of L,. Thus, if j would reject ’s proposal, i can
find a threat that is accepted, so a slight revision of CC3 that precludes the selection of threats
with risk-acceptant partners maintains the conclusion that system-stability prevails.

With respect to the possibility that there is a stationary equilibrium characterized strategies
by "no country makes or accepts threats unless doing so promises an immediate gain," let r =
(70,65,60,55,50). Since no threat in TP is accepted, let 1 threaten (120,65,60,55,0). Ignoring
the incentives that countries 2, 3, and 4 might have for avoiding a 4-country game, 5 is
eliminated, because 2, 3, and 4 are unwilling to join in a counter in TP unless such action
promises a gain to each of and because all threats here have three members in C. On the
other hand, 5 cannot individually threaten anyone, whereas if it can make the initial threat
and if there is some chance that others will accept a threat in TP, then 5°s dominant strategy is
to make a threat in TP in which max[C] = 2. Clearly, 2 has an-incentive to accept, and 5’s
other partners should accept as well since doing so ensures that they cannot lose resources ~-
rejection merely allows a larger country in the next round to threaten them with elimination.

Hence, the presumed strategy cannot be a perfect equilibriu‘m.‘IS

5. The Possibility of Instability

Because our stability result supposes that all countries are essential, we cannot preclude the
survival of inessential countries. Of course, our analysis in Section 3 of 4-country systems
illustrates the elimination of such a country, but 4-country systems are special and our model
must be modified before we can eliminate inessential countries in general. To see why such
systems are special, suppose r = (100,90,80,30), and suppose 3, making the initial counter,
proposes (110,100,90,0). If 1 and 2 accept, 4 has no useful counter: Any counter in TP must
include 3, but 3 rejects such counters since it cannot gain resources with them and since 3

18



cannot lose resources in a 3-country system if (110,100,90,0) prevails. Alternatively, if 4
proposes a counter with 1 and/or 2 against 3, this leaves 1 and 2 vulnerable to a counter in T*
by 3 that requires one or the other to transfer resources; and since the game between them is
zero-sum, one or the other will refuse to accept 4's proposal. With these consequences in
mind, 1 and 2 accept 3's initial offer since, even if one or the other must transfer in the 3-
country game that follows, each must transfer less with 4 eliminated than otherwise.

This reasoning, though, cannot be extended to a 5-country system such as r =
(100,70,60,55,15). If 4 initially threatens, say, (105,75,63,57,0), then, in accordance with
CCl1, 5 transfers to 1 and is eliminated. But now 4 confronts the possibility of having to
transfer resources in the 4-country game that ensues. Thus, since 4 cannot gain by
threatening 5, and since it can lose resources if it fails to freeze the system, it (as well as 1,2,
and 3) strictly prefers an initial threat in T. What makes a 4-country system with an
inessential country different from larger systems, then, is that the unique essential country in
L, cannot lose resources in the 3-country game that follows the elimination of the inessential
player, whereas all countries can lose resources in larger systems. Thus, there is an irresistible
incentive for countries in large systems, when initially selected by nature, to choose Type 1
threats that freeze the system. Countries in L will not forego the opportunity to become near-
predominant, whereas countries in L , can be certain that they will not lose resources only if

1

someone is rendered near-predominant. As a consequence of this "rush to stability," countries
in L and L, sacrifice the possibility of wholly absorbing inessential countries.

To see, however, how a modification of our analysis leads to the elimination of small
countries, suppose 4, in our 5-country example, can propose a "sequential”" initial threat — "3
and 4 eliminate 5 and distribute its resources between themselves, then require that 2 transfer
so as to render 1 near-predominant; but if 2 rejects the transfer, implement (150,0,75,75,0)."
If this threat "works," then 1 ought to accept 4's offer, since by "working" we mean that 1 is
rendered near-predominant. And although 3 might prefer a different share of 5's resources
than the one 4 proposes, it should accept participation in the threat for the reasons we
specified in the discussion of our Stability Theorem."

What is at issue, then, is 2 and 5's responses to 4's sequential threat. Because we want to
show that inessential countries can be eliminated, it is sufficient to find a circumstance under
which elimination occurs. So, supposing that 2 is first to counter 4's threat, 2 must transfer
since it has no viable counter in T. But if 2 tries to save resources by proposing a transfer in
which some of 5's resources are ceded to 1, 1 is indifferent between accepting or rejecting,
whereas 5 can reject, secure the last move in the counter-threat sequence, and propose that 2
alone render 1 near-predominant (at which point 2 accepts since rejecting implements
(150,0,75,75,0)). Thus, 2 has nothing to gain by not acceding to the transfer, and we can

assume that it accedes in equilibrium.
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If we represent 2°s choice by the decision to "pass,” 5 must counter next. Like 2, 5 has no
counter in TP, so it must consider transfers. A proposal by § to cede resources with 2 to |
offers 1 no improvement over what it gets from 2 alone, so we can assume that, in
equilibrium, | rejects 5 (and a preemptive transfer by 5 to | meets the same fate). Suppose,
then, that 5 tries to disrupt matters with a preemptive transfer of something less than 5 to 3
or 4. Since 3 and 4 are dividing 5's resources in the current threat, both have some incentive
to accept 5's offer. However, if both 3 and 4 are risk averse with respect to the possibility of
replaying the game with all n players (that is, neither is willing to accept the chance of being
the target of a threat in the next round), 5 is eliminated. If one or both is risk acceptant, 5
survives but remains inessential with diminished resources (notice that 5’s preemptive
transfer, unlike that of an essential country as embodied by CC1, does not remove the
incentives of any member of C from proposing or accepting the initial threat). In the next
round, though, there is a nonzero probability that some member of L makes the initial threat,
and that this threat once again includes 5 as its target. Now, however, 5 has fewer resources
with which to tempt a risk acceptant country, and, eventually, § is eliminated.

One final consideration remains -- whether the revision of the form of initial threats
allows the elimination of essential countries. Let r = (70,65,60,55,50}, and let 4 propose, as
before, to eliminate 5 and threaten 2 so as to secure an outcome such as (150,10,75,65,0).
Suppose 2 counters first in the same way -- acceding to the threat. But now 5’s resources are
essential to 2’s ability to freeze the system, and 5, after 2, can propose a transfer to 1 in which
2 shares most of the burden. Clearly, 1 accepts 5°s offer since it does not require
implementation of a threat, and the final outcome -- 2 and 5 transfer to | -- is the same as
when we allowed only simpler initial threats. |

However, not all essential countries survive sequential threats. Let r = (140,122,24,8,6)
and let {1,3,4} threaten {2,5). Country 5's problem, now, is that 5's resources are inessential to
2’s ability to render | near-predominant, so, as with inessential countries, a sequential threat
eliminates 5. It is important to keep in mind, though, that the game I is not intended to
model the entire process of international politics. Hence, we can imagine a "pre-game” in
which countries 4 and 5, anticipating their mutual vulnerability in T' (just as the threat by
{1,3.4) eliminates 5, a threat by (1,3,5) eliminates 4), coalesce to form a confederation or a
new country. The incentives to form such a éonf ederation, of course, lie in the fact that, if r
= (140,122,24,14), no country is subsequently eliminated because all countries can individually
buy stability. Thus, reminiscent of Riker’s (1964) analysis of federalism, we detect in our
analysis forces promoting the formation of new states. Notice, moreover, that confederations
cannot ensure the sovereignty of inessential countries: a confederation of such countries alone
is inessential, and a confederation of an essential country with inessential countries cannot
preclude the essential country’s vulnerability to sequential threats. In this way, then, we can
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reassert the conclusion of our previcus analyses that only inessential countries are eliminated.
Of course, this discussion is not substitute for a formal analysis of the formation of states, but
we now see how our analysis can be modified to vield insights into processes that otherwise
seem outside the realm of realist theory.

4. Conclusions
~ In drawing lessons about war and peace from our analysis, we must keep in mind that
system-stability does not imply resource-stability. Resource stability requires equilibria in
which no initial threats are made or accepted, so, barring the possibility of a corresponding
equilibria for ' (which we cannot do), only systems with a near-predominant country are
necessarily resource-stable. And because we do not model the substantive form of a threat’s
implementation, we cannot be certain that system-stability implies the absence of wars or that
resource-instability is somehow less dangercus than system-instability. Substantive
conclusions must be treated tenuously, moreover, because our analysis fails to accommodate
important features of international processes, including the uncertainty inherent in such
processes, the strategic complexity that uncertainty allows, the contemporary disjuncture
between military and economic capabilities, the possibility that national leaders pursue goals
that do not translate readily into some notion of power maximization, and the ambiguities
inherent in the notion of sovereignty. Our analysis also implies that, barring non-terminal
transfer cycles, systems are quickly frozen with one country becoming near-predominant.
However, this consequence merely underscores the fact that our model does not yet
accommodate the unequal resource growth of countries that can render systems unstable (for
an extension using cooperative theory see Niou and Ordeshook 1987, and Niou, Ordeshook,
and Rose 1989). . 4
Qur stability theorem is nevertheless important. Whether labeled Ho Tzung in the Warring
States Period of China, identified as the policy of a Great Power in the 19th century, or
named Realism in this century, there is the continuing attraction and salience of the idea that
some notion of "balance-of-power”" is an essential source of stability. However, there has long
existed one problem for adherents to this view -- the absence of any formal, deductive proof
that there exists an interpretation of balance-of-power ensuring stability. Qur
conceptualization of T and our stability theorem offers such a proof. One can argue, of
course, that our theorem is merely a possibility result and that its descriptive relevance is
questionable; but with that theorem we can address secondary issues that arise in the context
of realist thinking. For example, we see that stability does not require any specific number of
countries or great powers, nor does stability require either a uniform or a highly asymmetric
resource distribution. We have also seen that the allowable form of initial threats can alter our
assertions about the stability, and, thus, our conclusions are sensitive to a variable that had not
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previously been appreciated. Finally, looking at the threats and counters in T®, which are the
primary instruments of resource reallocations, the target countries must be large enought that
they can render max[C] near-predominant. Thus, although we do not predict initial threats
that correspond identically to Riker's (1962) size-principle hypothesis, we anticipate alliances
that correspond approximately to this hypothesis.

Despite our emphasis on anarchic systems, our model also reveals the profound role of
institutions as agents for facilitating stability. Common knowledge is an essential assumption
in our analysis -- our conclusions follow only if all decision makers know s structure (the
resources of other countries, and the ultimate consequences of alternative choices), if they
each know that all others know, if they know that all others know that all others know ... and
so on. Moreover, if a set of primary threats is not unique, then system-stability implictly
supposes that the set satisfying condition C2 is common knowledge. However, despite
Blainey’s (1973) compelling arguments about the the consequences of violations of this
assumption (a necessary and perhaps sufficient condition for war), we know little about the
mechanisms that facilitate common knowledge. In vague terms, though, we know that
strategic interaction and commuhication are "useful.” We may not understand in any rigorous
sense the way in which institutions facilitate common knowledge, but they are almost
certainly essential towards that end. Minimally, our analysis identifies the variables and
concepts that ought to be common knowledge if the stabilizing processes of balance-of -power
are to operate, and, thus, we can identify the purposes that some institutions and processes
might be designed to serve,

Our model also highlights the role of attitudes towards risk, and the corresponding
relevance of domestic politics. We assume throughout that countries (or those who lead them)
are risk averse with respect to elimination. Nothing we have said about system-stability
applies, however, if decision makers are risk acceptant -- indeed, risk acceptance almost
certainly destabilizes systems. Thus, to the extent that attitudes towards risk are determined
by domestic politics -- to the extent, for example, that decision makers equate their personal
survival with their country's sovereignty so that the pursuit of dangerous foreign adventures is
seen as essential to maintaining domestic power -- otherwise stable systems are destabilized.
We sympathize, then, with those analyses that interpret Hitler’s personality and the political
economy of Weimar Germany as critical to the outbreak of World War II rather than some
breakdown in traditional balance-of-power forces (c.f. Muller 1989).

A great many questions remain, Are there alternative classifications of threats and
specifications of continuation values that yield different conclusions about stability? What
outcomes can we sustain if strategies are more complicated (non-stationary), such as when
decision makers punish coalition partners who defect from threats and counters? And since
we have already seen the import of allowing sequential threats, how sensitive are our
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conclusions to other changes in I''s extensive form? For example, how is the game changed if
we allow a threatening country’s coalition partners to propose modifications to the original
proposal before a threat becomes the current threat? Answers to these questions are topics for
future research, and the questions themselves simply emphasize the fact that the preceding
analysis is but a tentative first stept towards a thory of international processes. Nevertheless,
we are now certain of one thing -- there exists at least one world, albeit abstract and
reminiscent of the frictionless planes that introduce physics, in which a balance-of -power
ensures the sovereignty of essential participants.
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Footnotes

Our analysis, although similar to Wagner’s, differs from his in several
ways. First, Wagner offers no general results about n-country systems and
‘he proceeds instead on a case-by-case basis, However, we do not
accomplish greater generality costlessly. Wagner pays greater attention to
the mechanisms whereby nations war and secure resources from others,
whereas we assume simply uncountered threats are implemented. Another
difference is that we allow preemptive resource transfers. Wagner argues
against such an assumption, but it is our contention that such transfers are
not without historical precedent and are much a part of international
processes (Niou, Ordeshook, and Rose, 1989).

In addition to assuming that r strictly orders S, we assume that there are no
blocking coalitions, except when r; = R/2. Neither assumption is of any
consequence to our results, but their imposition greatly simplifies
argument. ‘

Assuming that jeCif r’ i =T precludes some silly possibilities; e.g., after
{1,2,3) threatens (4,5}, {4,5) counters by threatening {3}, or {4} counters by
threatening {5}.

Several assumptions preclude "non-terminal transfers” without recourse to
complex expected value calculations. For example, countries are risk
averse in the extreme -- that i prefers r; to any lottery that promises both
gains and losses with respect to r;. Or, owing to uncertainty about risk
attitudes, countries accept terminal transfers with certainty but non-
terminal transfers with probability less than 1. Since a non-terminal
transfer leaves open the possibility of elimination, risk attitudes with
respect to elimination precludes such transfers. Referring to an idea that
we introduce shortly, notice that both assumptions implicitly associate a
continuation value with non-terminal transfers that render them
unacceptable choices for S-C or C-{max[C}]} when compared to a system-
freezing transfer.

This is not to say that T' proceeds indefinitely. Indeed, barring non-
terminal transfers, our analysis implies that I' ends quickly, after the first
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threat and counter. Nevertheless, we must accommaodate the possibility of
an infinite sequence of threats and counters.

Assuming stationarity removes from the scene a great many possibilities,
including punishment strategies. For example, we do not consider that a
country, instead ef choosing threats randomly whenever it is indifferent,
might limit its choices to those that punish specific countries because they
had previously defected from an earlier agreement. We know that allowing
non-stationary strategies expands the set of sustainable equilibria, and it is
certainly worthwhile to explore various types of non-stationary strategies
to learn more about the outcomes that can be supported as equilibria. At
this stage, though, stationary strategies pose a sufficiently complex analytic
hurdle, and since our purpose is to offer a possibility result about stability 7
in anarchic systems, we limit discussion to the simplest form of strategy.
For discussion of recursive games and the role of stationary strategies in a
different political context, see Baron and Ferejohn (forthcoming and 1989).

We can extend the previous analysis to show that (150,0,150,0) yields
(150,75-¢,75,e) or (150,45+¢,75,30-¢), whereas (0,150,150,0) yields (75-
€,150,75,¢) or (45+¢,150,75,30-¢). For example, if 3 counters with
(150,0,150,0), the final cutcome depends on whether 2 or 4 has the last
move in offering a counter, which necessitates a transfer, If 2 moves last,
then it can propose (150,75-¢,75,¢), and 4 has little alternative but to
accept, whereas if 4 moves last, it can propose (150,45+e,75,30~e).

If 4 is threatened with elimination and cannot find a counter, it is
indifferent among all moves, including a preemptive transfer to, say, 1.
Later, we characterize equilibria with such an assumption, but here this
transfer is of no consequence: It eliminates 4, and, since 3 makes or accepts
threats if doing so yields no loss, 3 proceeds with the threat. In the
resuiting 3-country system, (130,95,75), 3 cannot lose resources (also, | and
2 are better off with the elimination of 4 since, although one or the other
must eventually transfer resources, both must transfer less with 4’s
elimination as a resuit of 3’s initial threat).

An equilibrium is perfect if, for each i €8, no arbitrarily small probability
that others defect from their equilibrium strategies yields an incentive for i
to defect.
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i1,

12,

First, with respect to T C=(i)u L, has a threat satisfying condition i
{otherwise, L, &€ W and max[L_] € L), and it follows that conditions ii and
iii can be satisfied. With respect to condition iv, if C" N C = {j}, j #
max[C], then j€L o and C"¢W. Thus, 3 (»,C) T!. Second, with respect
to TP, it is sufficient to show that, regardless of the other threats in TP, C
has a threat in TP. From condition i, C cannot have a threat in TP only if
C" C L has a threat in TP, but from condition iv in the definition of Type 1
threats, C" does not have such a threat. Hence, from condition ii in the
definition of TP, every TP must contain a threat by C in T'. It follows that
every i €S is in some C that has a threat in TP. Notice that, by this
argument, every {i} U C* € W has a threat in TP, where i € L and C* C L.

This example, however, shows that TP is not unique: {(150,0,150,0),
(150,85,65,0), (150,0,75,75), (0,150,75,75)), and {(150,0,0,150),
(150,85,0,65), (150,0,75,75), (0,150,75,75)) are also sets in T, But notice
that these sets are asymmetric in that each renders some i € L invulnerable
to threats in TP. Only {(150,85,65,0), (150,85,0,65), (150,0,75,75),
(0,150,75,75)} treats 4 and 5 symmetrically, and so if there is the common
knowledge presumption of "equal treatment” by all members of S, then this

set is the "primary” primary set of T.

Let (r',C) € TP and let nature order S-C as O. We want to show that $-C
must transfer to max{C]. Let j € S-C be last in the order O, and consider
the counter (r“',C"), j€C". Clearly, CnC" # &, and so we have three cases.
First, if i€ L N C nC", then irejects (r",C") since r’; > r; and, from the
assumption that (r",C") satisfies C1 or C2, v.(T,) < r;. Second, suppose
that max[C] € CnC". If max{C"} = max[C], then, since (r’,C) € TP, (r",C")
& TP, in which case, from Cl, Faxiey (= R/2) > vi(T.) (< R/2), and
max[C] rejects (r",C"). Similarly, if max[C"] # max[C], then max[C] again
rejects (r",C"). Finally, letL’ ={ieL:r', <R/2},and CNC"=L" So, if
(r",C") € T, then, from C2, r’; > v,(T,,) for all i € L’, and each such i
rejects (r",C"). If (r",C") & TP, it satisfies Cl. Letting i* = min[L’], since C

NC" = L' it must be the case thatr,, <r so from Cl, v (T ,) <

max [S-C"]*
I, and i* rejects (r",C"). Hence, the last country in O must propose a

transfer, and this reasoning can be applied to the next-to-last country in O,
and so forth. Thus, the only counter to (r’,C) is a transfer to max[C] by S-

C, which establishes C2 with respect to (r,C).
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Let nature order $S-C as O. We have three cases: First, r(S-C) + Traxic)
R/2. Let K = {(r",C")ET : C" € W, C"NC = {k}, k = max[C"] # max[C] = {i}}.
Clearly, K # @. It is sufficient to show that 3 (+",C"), (r,, C,) e TPNK
such that C"' N S-C £@and C, N S-C # @ and max[C"] # max[C,]. To
establish that at least one (r",C") € K is in TP, we show first that K C T,
which requires that, for any (v",C") €K, 3 (r,C,) such that C, e W, C N
C" = (j} and j = max[C_] # max{C"] = k. Suppose (r,,C,) exist, and let C =
{(hes-C":r, < rj} U {j}, where j € C". By assumption, C_ € W, so, since
r;>n>r, (he 8-C"irp, < rju {i} € W. But i€ §-C", which implies {h €
5-C'irpy < rj} u{i}ecsS-C"gW,s0 (r",C" e T LetC' = S-C+{k} with k =
max[C"]. Since (r",C") € T, (r",C") & TP only if 3 C,, € W such that C_ N
C" = {(k}, max[C_.] = k. However, since r; > r, and since C,, € W, then C_
-{k}+{i}ewW,butC_, - {(k} + (i} C5-C" ¢ W, s0 C,, ¢ W. Hence, (r",C")
€ T. Now substitute i for k in C" to obtain C_. To see that C, has a threat
(r,,C,) € TP, notice that (r,,C,) € T1, because the definition of T concerns
only those j € C, such thatr; <r;. So(r,.,C,) ¢ TP only if S-C,+{i} has a
threat in TP. But S-C,+{i} = C, and C has no threat in T. So (r,,C,} € T.
Hence, 3 at least two counters in TP to (r’,C}), namely (r*,C"} and (r,,C,),
with max[C"] # max[C,], so vi(T',) < R/2forall i € L. And‘since all
counters are in TP, vi(I‘r,) < r; for all 1€ L. To establish that vi(l.) =
forallie L nC for which r; < T nax [$-C]°
TP by any j € S-C has such an i as its maximal member. Using CC2, let G
€ S-Cand C" = G U {i} with max{C"] = i. If C" € W, then C"-(i}+{max{S-
C]} € W, but C"-{i}+{max[S-C]} € §-C & W, which is a contradiction.
Second, r(S-C) +r,, o 2 R/2 and (r',C) € T' but (r',C) & TP. Hence, 3
(r",C") € TP such that C" = S-C + {max[C]}, §-C" = C - {(max[C]}. If nature
orders S-C as Q, then if all counters up to the last player in O are rejected,

we must show that no counter in

this last player in O proposes {r",C"), which, from C2, is accepted by
max{C) and all other members of C". Therefore, if the next-to-the-last
player in O proposes a threat by {idL , i€ L, by Lemma 0 this threat is in
TP, so it is accepted. This argument can be repeated to establish that the
first player in O can propose a threat in TP which has a positive probability
of being accepted, and, thus, condition C1 is established. Third, r(8-C) +

r < R/2. Hence, the last country in O has no counter in TP that is

max [C)
accepted: Any counter in TP which includes i1 € O must include two or
more members of C since S-C + {j} € W, j € C, and, because C2 implies

that all threats in T® yield a gain to only one country, at least one member
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15.

of a countering coalition will prefer (¢",C). If i € O can offer a counter not
in TP, then by the assumption of the lemma, ¥(T',) satisfies C1. If no
counter is available to i € O, then 5-C is eliminated and i € §-C is
indifferent as to the final allocation of its resources. So let i propose a
transfer of the resources of S-C in accordance with CC1. This argument
applies also to the next-to-the-last country in O, etfc. so, in accordance
with CCl, the first country in O might as well propose the transfer the last
country in O would propose or a counter that satisfies C1 if such a counter
exists that is accepted, in which case v (T.,}<R/2and vi(T,,) = r; for
all i € C-max[C].

max [C]

We can now reintroduce those previously excluded threats by showing that
they are strategically equivalent to threats already considered, where (r',C)
and («",C) are equivalent if v(',) = v(C,). Recalling that C denotes the
coalitions with a threat in T1, let T’c be all the Type 1 threats by C (threats
that differ only by the distribution within C-{max[C]} of r(S-C)-[R/2-

f pax 013 From the proof of Lemma 1, all such threats are strategically
equivalent (since the proof of that lemma requires only that r.zr, for all i
€ C-{max[C]}). Thus, I["s strategic structure is unaffected if we select one
element of T, as representative of the set, and "discard” the rest. There
remains the threats in. T°, = T, - T", such as, with 4-countries
{(130,0,90,80).(1,3,4}). In this example, the only coalition with a threat
that might be viable against ((130,0,90,80),{1,3,4}) is {1,2}, such as
{{150,150,0,0),{1,2)), because Cl does not exclude the possibility that
v1(l"<150'1'50'0'0)) > 130. If this is true, then V(r(130,0,9o,30)) =
"(P(150,150,0,0>)- However, no simultaneity confounds the determination of
v(I‘(150'150_0'0)), since this value is not a function of "(P(130,0,90,80)): ifie
S, whenever it is otherwise indifferent, chooses a counter in TP, then
¥(T'(130,0,90,80)) has no bearing on V(T(150,150'0'6,). More generally, for
any (r',C), C €, no threat by another C" € C is viable against (r,C). If
no threat is viable against (r’,C), then (r’,C) is strategically equivalent to
the threat in TP by C and, thus, we can "discard" (¢’,C). If 3 («",C"), C € C,
that is viable against (r’,C), then (T ,) satisfies Cl. In either event, (r',C)

. satisfies C1 or C2,

This argument does not establish the uniqueness of the equilibrium in our
stability theorem. Even stationary equilibria are not unique since we can
manipulate the probability that a country chooses one action as against
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another whenever it is indifferent. More fundamentally, though, we
should ask whether there are equilibria in which essential countries are
eliminated. To this point we are unable to find such equilibria (assuming
equilibrium refinements such as perfection), but we do not to prove that
such an equilibrium does not exist.

That 1 and 3’s responses do not depend on the possibility that the
reallocation of rg alters I's strategic character among {1,2,3,4) follows from
two readily established facts. First, no reallocation of r i j€E_, renders i
€ E inessential or k € E, essential. Second, if i €E butr, +r; <R/2, no
reallocation of r(E ) renders {1,i} € W. Hence, if i € E cannot initially buy
stability, it cannot do so after an inessential country is eliminated.
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