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Abstract: Fit-for-purpose potable source substitution of appropriate water end uses with 
rainwater or recycled water is often essential to maintain water security in growing urban 
regions. This paper provides the results of a detailed supply-demand forecasting review of 
a unique tri-supply (i.e., potable, A+ recycled and rain water sources reticulated to 
household) urban water scheme located in Queensland, Australia. Despite the numerous 
benefits of this scheme, system efficiency (e.g., reduced demand levels, water treatment, 
low chemical and energy use) and economic viability (i.e., capital and operating costs per 
kL of supply) aspects need to be considered against derived potable water savings. The 
review underpinned the design of a framework to enhance the schemes supply-demand 
balance and reduce the unit cost of alternative source supplies. Detailed scenario and 
sensitivity analysis identified the possibility of a refined scheme design, whereby the A+ 
recycled water supply would be reticulated to the cold water input tap to the washing 
machine, and the rain tank that originally supplied this end use be removed from future 
constructed households. The refined scheme design enhances the present recycled plant 
utilisation rate and reduces the cost to home owners when building their dwelling due to 
the removed requirement to install a rain tank to indoor end uses; such actions reduce the 
overall unit cost of the scheme.  

Keywords: recycled water; rain tanks; potable source substitution; water demand forecasting; 
end use 
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1. Introduction 

Water is an essential need for every form of life. Although 70% of the Earth’s surface is covered by 
water, only a small percentage of this water is potable and directly accessible from lakes, rivers or 
streams. Further, the Intergovernmental Panel on Climate Change has stated that observational records 
and climate projections provide abundant evidence that freshwater resources are vulnerable, and have 
the potential to be strongly impacted by climate change, with wide-ranging consequences for human 
societies and ecosystems [1]. 

As an example, in recent years the South-East region of Queensland, Australia has experienced 
extended drought periods, unpredictable climate change, and a fast growing population [2], which has 
also brought a rapidly increasing potable water demand. 

As a consequence, greater attention has been given to water sustainability in the  
region [3-5], especially with the introduction of restrictions in the use of potable water and the 
triggering of the potential use of alternative sources of water, such as recycled water or  
rain water [6], with the outcome being great savings in potable water [7]. 

Accordingly, many innovative water supply systems have been implemented; in the dual water 
supply scheme analysed in this study, the water is provided to the customer through a dual reticulation 
system, which furnishes both potable and recycled water used for non-drinking end uses. Moreover, 
since 2007, every new house to be connected to this water scheme is built with an internally plumbed 
rain water tank, which provides additional water for non-drinking purposes [8]. 

Despite these changes, and their associated indisputable benefits, few studies have assessed the 
current and future water demands; as a result, the recycled water treatment plant is only partially 
exploited. Further, future planned incremental capacity for the infrastructure is to be implemented 
without the evidence, or support, of a demand study. Moreover, there is no evidence that the use of 
both a dual reticulation system and rain water tanks is more economically viable than only using a dual 
water supply. 

The current research aims to fill this lack of information. The study uses a detailed current and 
future water demand analysis of the existing scheme, as well as for a proposed refined scheme. It is 
considered that the recycled water treatment plant will provide more water to customers through a new 
use for the recycled water (namely, a cold water tap for the washing machines), while reducing the 
need for further installations of internally plumbed rain water tanks, which has the potential for 
reduced construction costs for new residential dwellings in this region. 

2. Research Method 

The study began by reviewing the pertinent literature; the review provided a comprehensive 
background for the current research topic, and assisted with identifying the gaps and deficiencies in 
previous studies. These issues formed the basis for the current research questions and proposals. The 
literature review also demonstrated the feasibility of the research outcomes, namely, evidence of the 
acceptance of using recycled water for washing clothes by customers using other dual water supply 
systems [9,10]. Next, the study focused on the prediction of the future population and the number of 
customer connections in the tri-supply region till 2056. For the various variables influencing recycled 
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water demand, a number of scenarios were considered, including, population, the percentage of cold 
water used for washing clothes, the percentage of recycled water used for washing clothes, the peak 
factor related to the day of the year with maximum demand, and the increment of recycled water used 
for irrigation purposes. Three hundred and sixty scenarios were considered to give more reliability to 
the study and allowed the most conservatives scenarios to be determined. The scenarios incorporated 
combinations of the following variable ranges: 

(1) Population at 2056: 120,000 to 150,000 (3 values used): the three values were taken from 
Australian Government Statistical population forecasts for the region under examination. 

(2) Peak day factor: 1.8 to 2.3 (2 values used). The typical design value applied in network design 
in the region is 2.3 (e.g., Gold Coast Planning Scheme Policies, 2008), but this is considered 
conservative based on current peaking levels thus a lower 1.8 factor was considered as well. 

(3) Increment of recycled water used for irrigation: 0% to 100% (5 values used). There are a 
number of reasons for the large range for increasing irrigation demand. Firstly, the end use 
values underpinning the base case recycled water irrigation value was lower than that recorded 
historically (i.e., pre-2005). Moreover, there is potential for a rebound in irrigation due 
unpredictable future climate change causing dryer seasons and behavioural changes. 

(4) Percentage of cold water used by washing machines: 70% to 90% (3 values used). This range 
of values was based on a market survey on the current cold water consumption of washing 
machines of different brands. 

(5) Percentage of recycled water used for washing clothes: 50% to 100% (4 values used). This 
value was difficult to accurately quantify due to the lack of existing available evidence on 
potential uptake of recycled water for clothes washing. Therefore, a relatively large interval 
range was considered appropriate.  

The fourth activity was to calculate the water demand, which was the main focus of the study. The 
calculation of the current demand was able to be precisely calculated, unlike the future water demand. 
Detailed end use consumption data, as well as bulk water data, were readily available in order to 
reliably determine current household demand for each supply source. 

The fifth activity involved assessing the future water demand, taking into account any uncertainties 
for both the current scheme and for the new proposed scheme. Specifically, the research sought to 
identify whether applying some changes (e.g., new end-use for recycled water) to the current scheme 
would create a new and more cost effective scheme.  

Obviously, the consideration of several variables that influence recycled and rain tank water 
demand, along with their specific ranges of variance, created an interval of demand results. Some 
variables had fixed to small interval ranges, where there was greater certainty in demand, however for 
other variables where there was greater uncertainty a larger interval range was applied. Most likely and 
least likely upper and lower limits of demand were achieved through this modelling process enabling 
greater understanding on the range of recycled and rain tank water demand requirements and associated 
plant and trunk main staging. Such an approach is essential for the planning of contemporary water 
supply schemes as there is great uncertainty in their likely uptake, particularly for discretionary end 
uses like outdoor irrigation. 
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This research area has received little attention in the past. The current study, therefore, seeks to 
improve the knowledge and understanding in this area. 

3. Results 

The evaluation of water demand, especially for alternative water supply sources, is crucial in 
understanding the performance these schemes as each stage of their life cycle, and to make any 
necessary refinements to improve their unit cost viability. Below represents the estimates of current 
and then future water demand of the contemporary scheme, for both the existing and the proposed 
refined scheme. 

3.1. Current Demand 

As already mentioned, previous studies [11,12] provided both end use consumption and bulk data 
related to the water supply system analysed. The current water demand was calculated using 
information about the percentages of residential/non residential use, the percentages of indoor/outdoor 
use, the number of dwellings with/without the internally plumbed 5000L rain water tank, and the 
percentage of non-revenue water, taken from the same studies. The values, summarised in Table 1, 
were obtained through an elaboration of the data coming from both studies. To explain the calculation 
process: the end use study [12] was used to get the total amount of potable, recycled and rain water for 
both the current and the proposed scheme; population estimates for the current and future population 
was taken from the Australian Bureau of Statistics; total demand of water was determined using 
available bulk water data available from the water business, stripping out leakages and non-residential 
components [11]. Both the top-down and bottom-up estimates of water demand matched thereby 
providing evidence that the data is credible and reliable. 

Table 1. Current water demand [ML/d] (2011). 

Factor Dual supply Tri-supply Total 
Inhabitants 15,942 23,810 39752 
Residential: potable 1.86 2.08 3.93 
Residential: recycled 0.76 1.13 1.88 
Residential: rainwater 0.00 0.80 0.80 
Non-Residential: potable   0.66 
Non-Residential: recycled   0.08 
Total potable   4.60 
Total recycled   1.96 
Total rain water   0.80 

The current capacity of the recycled water treatment plant is 9 ML/d. The bulk data revealed that 
the total amount of recycled water treated was around 4 ML/d. At present, only half of the treated 
recycled water (1.96 ML/d) was used by the customers, with the remaining being released to outfall. 
Within the next 45 years, it is presently planned to increase the capacity of the recycled water 
treatment plant from 9 to 45 ML/d, through six stages. 
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3.2. Future Demand 

Future recycled water demand (year 2056) was forecasted for the current scheme design (Figure 1) 
and the proposed scheme refinement (Figure 2) (i.e., recycled water to cold water laundry tap and 
removal of rain tank). Figure 3 incorporates a doubling of the present relatively low irrigation demand 
and the peak day factor of 1.8. The three lines for each scheme represent the three different future 
population scenarios. The values of demand are considerably higher that for Figures 1 and 2, as the 
extra variables increased the need for recycled water. From the results, the present scheme design 
requires stages 2 (12 ML/d) to 3 (18 ML/d) to be implemented, while for the proposed scheme the 
demand will be just below the limit of stage 4 (24 ML/d). 

Figure 1. Residential base case water demand forecast for current scheme. 

 

Figure 2. Residential base case water demand forecast for proposed scheme. 
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Figure 3. Recycled water demand prediction for base case scenarios (peak factor = 1.8). 
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scenario (11.99 ML/d) would stay just under the stage 2 limit (12 ML/d), small additional increments 
of a single variable would exceed the RWTP capacity limit. Therefore, stage 3 was necessary. 

Figure 4. Recycled water demand prediction for base case scenario (peak factor = 2.3). 
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Figure 5. Spider graph for current scheme demand prediction in 2056 (peak factor = 1.8). 
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Figure 6. Spider graph for proposed scheme in 2056 (peak factor = 1.8). 
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Despite this additional RWTP staging cost for the proposed scheme where recycled water is 
reticulated to the cold water laundry tap of the washing machine, the refinement calls for the removal 
of the requirement for the installation and maintenance of the rain tanks in the region which are 
presently supplying this end use. This represents a saving to the home owner of approximately 
AUD$3,000 to AUD$5,000 capital outlay and AUD$100–300 per year in operating/maintenance costs. 
The life cycle unit cost of the proposed scheme was determined to be considerably less than the current 
scheme, when considering the total resource cost perspective. Also, the water business will benefit 
from the proposed reconfigured design as they will have higher utilisation rates for their advanced 
treated recycled water, and higher revenue from increased recycled water demand, thereby making the 
scheme more financially viable than at present. 

Table 2. Forecasting results summary for current and proposed scheme configuration. 

Scheme  
Variables 

Current scheme  
(RWTP stage needed) 

Proposed scheme  
(RWTP stage needed) 

Scenario type Lower Base case Upper Lower Base case Upper 
Peak factor applied 1.8 2.3 1.8 2.3 1.8 2.3 1.8 2.3 1.8 2.3 1.8 2.3 
% change in population 2 3 2 3 3 3 3 4 3 4 4 4 
% change in cold water 
utilised for clothes washer 

2 3 2 3 2 3 3 4 3 4 3 4 

% change in recycled water 
utilised for clothes washer 

2 3 2 3 2 3 3 4 3 4 3 4 

% change in irrigation 2 3 2 3 3 4 3 4 3 4 4 5 
Notes: Stage needed for the base case scenarios in bold. Lower case values for variables: population 120,000, % 
cold water 70%, % recycled water 50%, % change in irrigation 0%. Upper case values for variables: population 
150,000, % cold water 90%, % recycled water 100%, % change in irrigation 100%. 

One key element that has influenced the staging required is the peaking factor selected. Applying 
lower peak day demand factors (i.e., 1.8) instead of the usual 2.3, can result in lower staging 
requirements. Design engineers often use 2.3, but recent experience indicates that a 1.8 could be 
credible. Moreover, a recent study [13] showed that dual reticulated supply schemes can provide 
significant reductions in potable supply peak demand. Obviously, the selection of lower peaking 
factors to reduce staging requirements, may mean that alternative strategies may need to be applied to 
meet those few peak days each year. Such strategies could include using larger storage reservoirs and 
the supplementing of recycled water with potable water in peak periods. This latter solution is already 
in place in the Rouse Hill (NSW, Australia) and Mawson Lakes (South Australia) dual supply systems. 

5. Conclusions 

There is a need for more targeted research into alternative water supply schemes, especially in terms 
of their demand, social acceptance of recycled water for fit-for-purpose water end uses and the 
economics of such schemes. While the evaluated tri-supply water supply scheme is award winning and 
considered internationally as best practice urban water design, there are opportunities for scheme 
refinement. In this case, the review process identified two main drawbacks with the present system 
being that the RWTP plant was running much lower than its capacity, and approximately half of all A+ 
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treated water was not sold to customers but released to outflow. Also, there was an internally plumbed 
rain tank being installed and plumbed to an end use that is fit-for-purpose for the existing A+ recycled 
water supplied. The proposed design eliminates these drawbacks, by increasing RWTP utilisation and 
removing the rain tank expense to new home owners. Both the water business and customer will 
benefit from the refined design and a lower life cycle unit cost ($/kL) for the scheme can be realised.  

The current research thus justifies the need for more comprehensive and thorough scheme 
evaluation studies. Such studies would ensure that the infrastructure development fitted the needs of 
the community and its purpose, rather than just being well engineered and well built. Indeed, the 
project falls within the sphere of ‘best practice’ as an educational case study for planners and 
engineers, highlighting their need to think outside their narrow fields, and include alternative schemes 
that might save money, time, and in the present case, potable water.  
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