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The Economic Journal, 112 (July), 577-602. ( Royal Economic Society 2002. Published by Blackwell 
Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA 02148, USA. 

INEQUALITY AND CONSERVATION ON THE LOCAL 
COMMONS: A THEORETICAL EXERCISE* 

Jeff Dayton-Johnson and Pranab Bardhan 

To analyse the effect of asset inequality on co-operation within a group, we consider a two- 
player nonco-operative model of conservation of a common-pool resource. Overexploitation by 
one user affects another's payoff by reducing the next-period catch. We give necessary and 
sufficient conditions such that conservation is a Nash equilibrium, and show that increasing 
inequality does not, in general, favour full conservation. However, once inequality is sufficiently 
great, further inequality can raise efficiency. Thus, the relationship between inequality and 
economic efficiency is U-shaped. Finally, we analyse the implications for conservation if players 
have earning opportunities outside the commons. 

The daily livelihood of vast masses of the rural poor in many countries depends on 
the success with which common pool resources (CPRs) - such as forest resources, 
grazing lands, in-shore fisheries and irrigation water - are managed, and on the 
environmental consequences of their management. Understanding the factors 
that lead to success or failure of community management of these resources is thus 
critical to rural development. 

CPR management is a collective-action dilemma: a situation in which mutual co- 
operation is collectively rational for the group as a whole, but individual co- 
operation is not necessarily individually rational for each member. One factor that 
has not always been recognised as critical to the outcome of collective action 
dilemmas is heterogeneity among the resource users. In this paper, our attention 
will be largely restricted to a single but potent kind of heterogeneity: inequality in 
asset ownership. 

Olson (1965) hypothesised that inequality might favour the provision of a public 
good: 

In smaller groups marked by considerable degrees of inequality - that is, 
in groups of members of unequal 'size' or extent of interest in the 
collective good - there is the greatest likelihood that a collective good will 
be provided; for the greater the interest in the collective good of any 
single member, the greater the likelihood that member will get such a 
significant proportion of the total benefit from the collective good that he 
will gain from seeing that the good is provided, even if he has to pay all of 
the cost himself (p. 34). 

* We thankJean-Marie Baland, Roland Benabou, Timothy Besley, Christopher Bliss, Samuel Bowles, 
Chuck Clarke, Matthew Rabin and three anonymous referees for comments. Seminar participants at the 
University of California, Berkeley and the Universidad de Guanajuato, and participants at a meeting of 
the MacArthur Foundation's research network on Inequality and Economic Performance and at the 
Fourth Toulouse Conference on Environmental and Resource Economics provided valuable feedback. 
Financial support from the MacArthur Foundation is gratefully acknowledged. 
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Inequality in this context can thus facilitate the provision of the collective good, 
with the small players free-riding on the contribution of the large player. In a very 
general setting, Bergstrom et al. (1986) show that wealth redistributions that in- 
crease the wealth of equilibrium contributors to a public good will increase the 
supply of the public good. In another public-good-provision game, Itaya et al. 
(1997) show that income inequality, if it is so high that only the rich contribute to 
the public good, raises welfare relative to the regime where all individuals con- 
tribute. 

These analyses of the supply of public goods are relevant to conservation among 
CPR users; restraint in resource use is analytically equivalent to contributing to a 
public good. Following these studies, we would expect group heterogeneity to be 
conducive to the effective local management of CPRs. Indeed, Baland and Platteau 
(1997) argue that inequality in resource-use entitlements is associated with higher 
conservation in some examples where the resource-use technology (eg, fishing, 
harvesting, gathering) exhibits decreasing returns to effort. (Under alternative 
cases featuring increasing returns to effort, the effect of increasing inequality is 
indeterminate.) 

Nevertheless, field studies of CPR management have repeatedly shown that in- 
equality is harmful for collective action.' What is the effect of inequality on the 
commons? Can a single model capture both the 'Olson effects' - the positive effect 
of inequality - and allow for the harmful effects of inequality demonstrated in the 
empirical literature? 

This paper presents a simple two-period, two-player model of heterogeneous 
resource users in a local commons dilemma. The model is couched in terms of a 
fishery; thus the players are referred to as fishers and the resource as the fish stock. 
Fishers' catch is a linear and increasing function of their wealth levels (which can 
be interpreted as 'fishing capacity'). If there is overfishing, each fisher's payoff is 
proportional to his share of total wealth. The Pareto-optimal outcome is no fishing 
in the first period and depletion of the larger second-period fish stock. We chose 
the fishery example primarily to lend concreteness to the discussion; we hope that 
the basic conclusions of the model will be transferable to other CPR examples, 
such as groundwater-based irrigation, community grazing lands and village forests. 
Moreover, recent research suggests that the link between inequality and conser- 
vation on the commons has macroeconomic implications, drawing an analogy 
between the commons and economic growth (Benhabib and Rustichini, 1996; 
Tornell and Velasco, 1992). The externality between fishers in our model differs 
from the usual congestion externality posited in commons research. In our model, 
one fisher's overexploitation affects another's incentives through payoffs in the 
following period, while the conventional congestion externality acts through 
increased harvesting costs during this period. 

1 The harmful effects of inequality can be gleaned from the following surveys. Bardhan (1995) 
reviews the case-study literature regarding the relationship between inequality and co-operation in 
locally-managed irrigation systems, primarily in Asia; Bardhan and Dayton-Johnson (2002) survey the 
large-scale quantitative research on heterogeneity and co-operation in such irrigation systems. Baland 
and Platteau (1996; 1997; 1998) likewise summarise many relevant examples from the case-study 
literature; they focus on forests, fisheries and grazing lands, and on African cases. 

? Royal Economic Society 2002 



2002] INEQUALITY AND CONSERVATION 579 

In the paper, we demonstrate that Olson's (1965) hypothesis - interpreted as 
a comparative-static statement that increasing inequality enhances efficiency - is 
not always valid. In many settings, increased inequality leads to less efficiency; 
this is true whether or not fishers have earning opportunities outside the 
commons. If these exit options are concave functions of wealth, increased in- 
equality does not, in general, enhance the prospects for full conservation. 
Neither is it true that perfect equality always favours greater efficiency. At a 
certain wealth distribution, increasing wealth inequality increases equilibrium 
efficiency (though not attaining full conservation as long as both fishers have 
positive wealth), and furthermore, full conservation is an equilibrium under 
perfect inequality. In the model where fishers have exit options, full conserva- 
tion cannot be an equilibrium under perfect equality if average wealth is below 
some threshold level. 

Olson's related assertion that the larger player has a greater interest in collective 
action than the smaller is borne out in many settings: with or without concave exit 
options, it is the poor who do not conserve. This too is dependent on the as- 
sumptions made: if exit-option functions are convex, for example, it is the poorer 
fisher who has an interest in conditional conservation, while the richer fisher 
prefers the exit strategy. Thus, we concur with Olson that the larger player, in 
many settings, has a greater interest in collective action than the smaller player. It 
does not necessarily follow, however, that a more unequal distribution of wealth 
(making one player 'larger') will lead to more successful collective action. The 
paper provides several instances in which widening wealth disparity is bad for 
conservation. 

A significant result is that the relationship between inequality and collective 
action is not necessarily monotonic. In fact, the relationship is U-shaped: at very 
low and very high levels of inequality, conservation is possible, while, for some 
middle range of inequality, it is not. The U-shaped feature of our model is con- 
sistent with recent empirical research on large numbers of community irrigation 
systems in South India (Bardhan, 2000) and infrastructure projects in North 
Pakistan (Khwaja, 2000) that find evidence of a U-shaped relationship between 
measures of inequality among commons users and measures of successful com- 
mons outcomes. 

The intuition behind the U-shaped result is the following. At perfect wealth 
equality, conditional conservation is a best response for each fisher to conditional 
conservation by the other, as long as each fisher's wealth level exceeds a threshold 
defined in terms of the model's parameters. ('Conditional conservation' means 
simply conserving when one's counterpart conserves.) Mean-preserving spreads of 
the wealth distribution will reduce one fisher's wealth to the point where his claim 
on the final-period fish stock provides insufficient incentive to conserve. As the 
wealth distribution becomes even more unequal, however, conservation becomes a 
dominant strategy for the wealthier fisher. The poorer fisher's inefficient period- 
one fishing is too small (because his fishing capacity is so small) to dissuade the 
wealthier fisher from conserving. Beyond a certain threshold, then, the more 
unequal the wealth distribution, the smaller the amount of inefficient first-period 
fishing that occurs. In the limit, one fisher has monopoly rights over the fishery 
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and first-best efficiency is restored.2 (The U-shaped result can be generated with or 
without exit options for the fishers.) 

The results of the paper, of course, depend on a type of failure of the standard 
Coase theorem. Clearly, investigating the effect of endowment inequality on 
economic performance is salient only when credit or rental markets are not 
perfect. Otherwise, suitable leasing of boats would work around the problems 
highlighted herein. Imperfect credit and rental markets, of course, is not an 
unrealistic assumption in the case of small fishers anywhere in the world, and 
particularly in poor countries. The underlying mechanisms stem from problems 
of moral hazard, adverse selection and contract enforcement. Although we as- 
sume away credit or rental markets for the sake of simplicity, the qualitative 
results are likely to remain unchanged if, for example, we were to make the more 
realistic assumption that how much one can borrow or rent depends on initial 
wealth levels. 

The outline of the paper is as follows. Section 1 sketches a basic nonco- 
operative commons game. We extend the basic game in Section 2 to consider the 
effects on conservation if players have earning opportunities outside the com- 
mons. The two-player model we use in this paper contributes to the tractability of 
the analysis and the transparency of the results. A two-player model abstracts 
from the group-size problem highlighted by Olson (1965) to focus on the 
problem of inequality better. Section 3 briefly considers schemes for community 
regulation of the commons in light of the nonco-operative model, and con- 
cludes. 

1. A Simple Model of the Commons 

1.1. The Basic Model 

There are two fishers, i = 1, 2, each endowed with wealth ei. They share access to a 
common resource, namely a stock of fish F. In each of two periods t, each fisher 
must choose to spend some portion of his endowment on fishing capacity at; thus 
a' < ei. (a is short for 'action.') Each fisher's utility is simply the total amount of 
fish he catches: 

rr 11z _1 1 2z _2 _2 

2 The U-shaped relationship could be generated in more general models of public-good provision, as 
in the 'ballroom-dancing' model of Bliss and Nalebuff (1984). In their model, different agents can 
supply a public good, paying all the cost. They play a game of attrition and, eventually, the lowest cost 
actor provides the good. If the public good can be provided in variable quantities (as is the case, for 
example, of a library), then lowest cost actor pays something first; but then later actors can add to the 
fund. In this case offsetting effects will generate a U-shaped feature, as in our model. Supposing a 
bounded support, great inequality entails that one actor at least has low cost so he will act quickly. And if 
he alone is effectively deciding the scale of the project, he is motivated to make it large. Now suppose, 
instead, that there are two such large players, close together in costs. The Nash effect now encourages 
them to free-ride and give less. Even so, two relatively small donations may add up to more than one 
donation. Under near equality, costs are closely bunched on a narrow uniform distribution. Whatever 
one player's costs, it is likely that many other players have lower costs. This provides an incentive to wait 
for the others to donate and free-ride really strongly in choosing one's donation. Our thanks to 
Christopher Bliss for suggesting this interpretation. 
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for j :& i, where i$(.,) is the amount of fish caught by fisher i in period t. Fishing 
yield is a function f of capacity deployed: f(a') = a' unless total capacity 
deployed exceeds the available fish, in which case each fisher receives a share of 
the total, equal to his share of total wealth. (This is the situation known as 
'overcapitalisation' in the literature on fisheries.) Each fisher's payoff in period 1, 
then, is given by 

___ a(+a)<F 

t?9il(az1V = {> a] F a + a{ > F. 

Between periods, the stock of fish grows at rate g > 0, so that, in period 2, the 
supply of fish is G(F - 'l - 0/), where G 1 + g. In the second period, each 
fisher again chooses a capacity level ai2. The nature of each fisher's endowment is 
such that any proportion of it can be used in each period for fishing. It is not 
spent. It reflects fishing 'effort', including number of boats and hours and in- 
tensity of labour. Note that, in any efficient outcome, there will be no fishing in 
period 1. We make the following 'commons dilemma assumption': 

E> GF (1) 

where E _ e1 + e2. Assumption (1) ensures that the threat of resource degradation 
is sufficiently acute. Alternatively, (1) can be interpreted as a 'feasibility' condition: 
the fishers are capable of harvesting the entire stock if they desire. 

In the subgame consisting of the second period, both fishers will always fish to 
capacity. That is, each will choose a 2 = ei and receive second-period payoff 

2 ei G( 

Thus we can concentrate on the fishers' actions in the first period. A strategy is 
just a capacity choice al, and the first-best outcome is a' = a = 0. Any Nash 
equilibrium of the abbreviated first-period game, together with full depletion of 
the stock in the second period, will be a subgame-perfect equilibrium of the full 
game. For simplicity, we will hereafter suppress the period superscript, since all 
strategic choices under consideration are made in period 1. (If, contrary to our 
assumption, G were less than 1, there would be no real dilemma: first-period 
depletion of the resource would be an equilibrium outcome and an optimum.) 
The crowding externality that is sometimes a feature of commons models does 
not occur in our model within periods. That is, j's action in period 1 does not 
enter i's payoff in that period, although j's period-I action will enter i's period 2 
payoff, and vice-versa. 

The goal of conservation in fisheries is to secure a reasonable long-term yield 
(ideally, maximum sustainable yield, or maximum economic yield). In our simple 
model, that level has been normalised to zero in the first period. The second 
period extends to the end of the fishers' relevant economic horizons. The two- 
period set-up precludes consideration of complicated punishment strategies, but it 
is sufficient to capture the fundamental dilemma of resource conservation: 
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namely, when is it reasonable to forgo current-period consumption in return for 
higher next-period gains?3 

In this model, we abstract from the problem of discount rates so as to focus more 
clearly on the incentives toward resource conservation. Formally, a positive dis- 
count rate would be subtracted from G, the rate of fish-stock regeneration. If the 
discount rate is greater than G, first-period depletion of the fishery is optimal, and 
conservation is not economically rational. Furthermore, each fisher's discount rate 
is plausibly a decreasing function of wealth. In this case, the more unequal the 
distribution of endowments, the more difficult it will be to sustain universal con- 
servation of the resource. It is as if the poor fisher faces a lower rate of growth in 
the stock and hence has less incentive to conserve. 

In this simple game, each player i chooses effort level ai: if aj c [0, F - ai], then 
the fish stock is not depleted in period 1; if, however, aj C [F - ai, ej], then the fish 
stock is depleted in period 1. (Either of these intervals could be empty.) The 
following lemmas establish the characteristics of the fishers' best-response func- 
tions, in preparation for Proposition 1, which characterises the set of equilibria. 
(All proofs are found in the Appendix.) 

LEMMA 1 If forfisher i, the interval [F - aj, ei] is non-empty, then i's optimal choice on 
it is a, - ei. 

Now consider the interval [0, F - aj]. On this set, fisher i's payoff is strictly linear in 
ai, and the slope of his utility function is 

Si 1- eiG 
E 

We assume that ei, E, and G are such that si 7 0 for i = 1, 2. Lemma 2 shows that if 
fisher i's payoff is positively-sloped, then ai = ei strictly dominates all other strat- 
egies. 

LEMMA 2 If si > 0, then ei is the unique best response to any action aj chosen by fisherj. 

LEMMA 3 Let si < 0. 

(a) If ei < F - aj, then i's best response is ai = 0. 
(b) If e, > F - aj, the best response is 0, ei, or both 0 and ei as 

E G(F-aj) (2) 
E 

is greater than, less than, or equal to 

ei F (3) 
ei + ae 

respectively. 

3 Other economic treatments of the fishery have focused on changes in the incentives to conserve 
when the fish population varies (Levhari and Mirman, 1980; Dutta and Sundaram, 1993). This can be 
approximated in our model by simply varying F as a comparative-static exercise. 
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LEMMA 4 There are only four possible equilibria: (0,0), (ei,O), (0, e), (el, e). 

1.2. Results of the Basic Model 

With the aid of these lemmas, we are prepared to characterise the set of Nash 
equilibria to this game, depending on the slopes of the utility functions of the two 
fishers. 

PROPOSITION 1 The Nash equilibria of the basic game are as follows: 

(i) Si > 0, s2 > 0: (el, e2) is the only equilibrium, and it is a dominant-strategy equi- 
librium. 

(ii) s1 > 0, s2 < 0: (el, 0) is an equilibrium X> either e2 < F-el or e2 > F-el and 
(G - 1)F > Gel. (el, e2) is an equilibrium X~ e2 > F - el and (G - 1)F < Ge1. 

(iii) si < 0, s2 < 0: (0,0) is always an equilibrium. (el, e2) is an equilibrium 
# (G-1I)F < Gei, i = 1,2. 

The structure of the equilibrium set is illustrated in Fig. 1, for fixed E > F and 
G > 2. The length of the horizontal axis is E: reading from the left gives el, while 
reading from the right gives e2. The vertical axis measures F, which is allowed to 
vary. The sloping lines correspond to the equations (G - 1)F = Gei, where i= 1 
for the rising portion and i = 2 for the falling portion. The left vertical line sep- 
arates the region s1 > 0 (on the left) from the region s1 < 0. The right vertical line 

F 
A B C 

E/G 

(e g ,0) / (0,0) \O ,e2) 

| / (ej'e2) I (e1,e2) (e1,e2) 

E/2 el E 

Fig. 1. Characteristics of Equilibrium Set 
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separates the region s2 > 0 (on the right) from the region s2 < 0. Thus the box is 
divided vertically into three regimes: regime A, where si > 0 and s2 < 0; regime B, 
where s, < 0 and s2 < 0; and regime C, where s, < 0 and s2 > 0. The three regions 
are limited vertically by the constraint that F < E/G, which follows from the 
commons-dilemma assumption (1). (The three regimes do not correspond exactly 
to the three cases of Proposition 1: case (i) is not depicted in Fig. 1, while case (ii) 
corresponds to regime A; case (iii) is depicted as regime B. Equilibria are labelled 
in the relevant regions of the box.) 

Proposition 1 illustrates the conditions under which the least efficient out- 
come (a - el,a - e2) is an equilibrium. Fig. 1 demonstrates that, under any 
wealth distribution, there exist parameter configurations so that first-period 
depletion is a Nash equilibrium; nevertheless, for any wealth distribution and any 
G > 2, there exists a sufficiently high level of F such that full depletion is no 
longer an equilibrium outcome. Proposition 1 also demonstrates the conditions 
under which first-best efficiency (al-as = 0) emerges as an equilibrium out- 
come. Corollary 1 states the necessary and sufficient conditions for first-best 
efficiency in equilibrium: 

COROLLARY 1 (a1 = a2 = 0) is an equilibrium if and only if e, > E/G, for i = 1, 2. 

(This is a straightforward restatement of case (iii) of Proposition 1, using the 
definition of the slopes si.) Intuitively, E/G is the threshold amount of wealth 
above which the fisher will conserve, conditional on his counterpart's conser- 
vation. Alternatively, the condition ei ? E/G, Vi can be interpreted as defining a 
minimal regeneration rate G such that mutual conservation is possible in 
equilibrium. For the two-fisher case we are considering here, this condition is 
equivalent to G > 2. This means that the fish stock must grow at a rate of 100%. 
This might seem worrisomely high; the astute reader will have, moreover, 
noticed that the n-player version of Corollary 1 will imply that conservation 
requires G > n. This result is quite robust. For any general fishing technology 
f (ai) and sharing rule ({tci}I , E oci- 1}) in the case of overcapitalisation, it can 
be shown that the appropriate generalisation of Corollary 1 implies that G > n, 
where n is the number of players in the set I. This is not necessarily the case if 
the share oc, accruing to fisher i is a function of first-period conservation, as it 
might be in the case of a regulated fishery. We will return to this point in 
Section 3. 

Finally, Proposition 1 spells out the parameter combinations under which there 
are multiple equilibria. In fact, whenever the condition of Corollary 1 is satisfied, 
there are multiple equilibria. 

COROLLARY 2 Both full depletion and full conservation are equilibrium outcomes if 
ei > E/G,fori= 1,2. 

Fig. 1 illustrates the possibility of multiple equilibria under regime B. 
The Olson hypothesis that inequality enhances the prospects for collective ac- 

tion can be interpreted as a comparative-static statement: namely, that increasing 

?) Royal Economic Society 2002 



2002] INEQUALITY AND CONSERVATION 585 

inequality (for a given level of aggregate wealth) makes full conservation more 
likely. Proposition 2 below suggests that this is not so. Define 

A(E) _ {(el, e2)Iel > 0, e2 > 0, el + e2 = E} 

as the set of all distributions of E. For any e = (el, e2) E A(E), e E A(E) is a mean- 
preserving spread of e if Iel - | > Iel-e2 e. In Fig. 1, a mean-preserving spread is a 
movement to the right along the horizontal axis starting anywhere to the right of 
the midpoint el = e2 = E/2, or to the left, starting anywhere from the left of the 
midpoint. 

PROPOSITION 2 

(a) Consider e, e' E A (E), where e' is a mean-preserving spread of e. Then (a, = a2 = 0) 

is an equilibrium under e' only if it is an equilibrium under e. 
(b) For all e E A (E), there is a mean-preserving spread e' such that a, = a2 = 0 is not an 

equilibrium under e'. 

Part (a) of the Proposition can be understood in terms of Fig. 1. If full conser- 
vation is an equilibrium under e', then e' lies in the middle parameter regime B. 
Suppose, without loss of generality, that e' corresponds to a point to the right of 
E/2 on the horizontal axis. Any e E E of which e' is a mean-preserving spread must 
then lie between E/2 and e' and therefore must also lie in regime B, where full 
conservation is an equilibrium. Part (b) states that, starting from any wealth dis- 
tribution, there exists a less equal wealth distribution such that full conservation is 
not an equilibrium. In particular, if full conservation is an equilibrium under the 
initial distribution, then we know from Corollary 1 that ei > E/ G for i = 1, 2. Then 
wealth can be taken from one fisher until ei < E/ G for that fisher; full conservation 
is no longer an equilibrium. In terms of Fig. 1, this is equivalent to moving from a 
point in regime B to a point in regime C. 

Proposition 2 illustrates that increased inequality does not necessarily lead to 
equilibrium conservation. Proposition 3, however, shows that, under maximum 
inequality - that is, when one fisher owns all the wealth - conservation is an 
equilibrium outcome. 

PROPOSITION 3 In the basic game, if G > 1, then under perfect inequality (e = (E, 0) 
or e = (0, E)), full conservation is a unique Nash equilibrium. 

In part, Proposition 3 reflects Olson's hypothesis that co-operation is more diffi- 
cult in a group, the larger the number of group members. In our fishery, con- 
servation is an equilibrium outcome when the number of fishers with positive 
wealth is reduced to one. 

The propositions above consider only the conditions under which full conser- 
vation by both fishers is an equilibrium outcome. The more realistic case in an 
unregulated fishery, and one perhaps closer to Olson's thinking, is one in which 
changes in the distribution of wealth change the level of efficiency among a set of 
inefficient equilibria. This is considered in the following proposition, which says that 
if the distribution of wealth is sufficiently unequal already, then making even more 
unequal can increase efficiency. Define M(e) as the minimum amount of first- 
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period fishing among all Nash equilibria of the game when the distribution of 
endowments is e. 

PROPOSITION 4 For all such E that E > GF, there exists e c A(E) such that for all 
mean-preserving spreads e' of e, M(e') < M(e). 

Proposition 4 demonstrates that for the wealth distribution e, where 

e (E- G -IF) G -IF) 

and all mean-preserving spreads of e, fisher 1 will conserve regardless of the 
other's behaviour.4 The proposition also illustrates that the full-conservation 
equilibrium under perfect inequality in Proposition 3 is a limiting case as in- 
equality is increased. For distributions such as e, one fisher captures a sufficiently 
large share of the returns to conservation that he will unilaterally conserve. In 
particular, there exists an equilibrium in which the larger fisher conserves, the 
smaller fisher does not, and any mean-preserving spread increases efficiency. If it 
were true that i's endowment were greater than E/ G, then, by Corollary 1, fisher 
i would always conserve if fisher j did. But since E > (G - 1)F (which is guar- 
anteed by condition (1)), then e, < E/G, and full-capacity period-I fishing is a 
best reply by fisher i to full conservation by fisher j. Thus any mean-preserving 
spreads of e, by further reducing i's capacity, will increase efficiency, since fisher j 
will play 0 and more fishing will be deferred until the second period. Thus Olson 
(1965, p. 35) writes: 

This suboptimality or inefficiency will be somewhat less serious in groups com- 
posed of members of greatly different size or interest in the collective good. In 
such unequal groups, on the other hand, there is a tendency toward an arbitrary 
sharing of the burden of protecting the collective good ... [T]here is accord- 
ingly a surprising tendency for the 'exploitation' of the great by the small (p. 35, em- 
phasis in the original). 

This, then, is the commons analogue of the Olson public-goods hypothesis. 
This situation is summarised in Fig. 2, which shows (assuming that G > 2) 

that as fisher i's wealth share increases from 1, full efficiency is maintained until 
his share reaches (G - 1)/G, at which point the other fisher defects, reducing 
total catch. Then, as the share of i continues to increase, the efficiency of the 
system increases apace, since the other fisher is capable of harvesting a 
decreasing fraction of the fish stock in period 1. When i owns all the wealth, full 
efficiency is restored. Note that this figure depicts, for el/E < (G - 1)/G, only 
the most efficient equilibrium shown in region B of Fig. 1; there is another 
equilibrium for this configuration of parameters in which fisher 1 will fish to 
capacity in period 1.5 

4 If we restrict the parameters so that E = FG, for G = 2, the wealth distribution e is given by (Q E, 4 E). 
As G is increased beyond 2, e becomes more unequal. 

This figure was suggested by Jean-Marie Baland. 
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'12 (G-JI)/G 

Fig. 2. Inequality and the Efficiency of Cooperation 

1.3. More than Two Agents 

Most of our results are not qualitatively changed if there are more than two fishers. 
Proposition 5 extends both our Corollary 1 and Proposition 4. In what follows, we 
call any outcome in which some but not all fishers fully conserve until the second 
period 'partial conservation'. Note that we do not mean that some fishers partially 
conserve. Say that there is a set of fishers I. Although it will not be necessary in the 
proof of the proposition, let us say that if some subset of fishers i C I fishes to 
capacity in period 1, and they deplete the fish stock, then each of these 'defecting' 
fishers i receives 

PROPOSITION 5 In the basic game with more than two fishers, in which all fishers have 

positive wealth, partial conservation is an equilibrium outcome if and only y2: 

(a) for all fishers i in the subset i C I of fishers who do not conserve, e1 < E/ C 

(b) for all fishers i in I \ I, ei > E/ G 

(c) j <F. 

Royal Economic Society 2002 



588 THE ECONOMIC JOURNAL [JULY 

COROLLARY 3 Suppose that partial conservation is an equilibrium outcome. 

(a) If there is a fisher 1 in I \ I such that el > E/G and another fisher m in I \ I such 
that em > el, then there exists a mean-preserving spread of the initial wealth distri- 
bution under which partial conservation remains an equilibrium outcome. 

(b) There exist efficiency-enhancing mean-preserving spreads of the initial wealth distri- 
bution. 

Part (a) of Corollary 3 merely states that mean-preserving spreads of the wealth 
distribution do not necessarily destroy a co-operative equilibrium outcome: take 
some wealth from 1 (but make sure that el is still greater than or equal to E/ G) 
and give it to m. Part (b) goes further and states that mean-preserving spreads 
can enhance efficiency in the spirit of Proposition 4 (in the two-fisher case): 
take some wealth from p E I and transfer it to some q in I \ I (who is by 
definition wealthier). Then there is no change in the composition of I, but the 
amount of first-period fishing is reduced by exactly the amount of wealth taken 
from p. 

Finally, if partial conservation is an equilibrium outcome, there exist wealth- 
equalising transfers such that full depletion is the only equilibrium outcome 
under the new wealth distribution. Suppose that I is such that EiEI ei F -e. 
For depletion to be the equilibrium outcome, the necessary transfer from a fisher 
r E I \ I to a (poorer) fisher s E I is min{ T, c}, for some small c > 0, provided 
that the transfer is feasible (ie, e < er). Then an equalising wealth transfer will 
bring about depletion either because 

(i) fisher r will no longer choose to conserve or 
(ii) by giving fisher s sufficient capacity to deplete the fish stock. 

In case (ii), a transfer of c is clearly sufficient. In case (i), if fisher r conserves, 
then er > E/G. If fisher r loses wealth T, he will not conserve; thus T must satisfy 
er - T < E/ G. Hence the wealth transfer necessary to move r into I must satisfy 
T > er - E/ G. To violate condition (c) of Proposition 5, the transfer plus the 
remaining wealth of fisher r must be sufficient to deplete the stock; that is, 
er - T> e - T, or er > c. 

Now it remains to generalise to the n-fisher case Proposition 4, which states that 
once the wealth distribution is sufficiently unequal, further mean-preserving 
spreads of that distribution increase equilibrium efficiency. The proof of Pro- 
position 4 constructs this threshold wealth inequality. Proposition 6 below gives 
sufficient conditions on the wealth distribution such that increases in inequality 
(weakly) increase equilibrium efficiency in the n-fisher extension of the basic 
game; part of the task of Proposition 6 is to characterise what is meant by 'suffi- 
ciently unequal' in the many-fisher case. 

Let us restrict attention to a particular class of mean-preserving spreads of the 
wealth distribution. Consider bilateral wealth transfers from a fisher j to a fisher k 
such that ej < E/G and ek > E/G. Fisher j would fish to capacity in period 1 before 
the transfer, and ej < ek. Call this class of mean-preserving spreads unequalising 
wealth transfers. Many more complicated mean-preserving spreads can be charac- 
terised as the outcome of a sequence of such unequalising wealth transfers. 
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PROPOSITION 6 In the n-fisher extension of the basic fishing game, define the set 

I-{iC IEe, >E-FG G 

and define 

J_ {E Ilei< G}. 

If I andJ are nonempty, then after any unequalising wealth transfer, first-period fishing is 
weakly lower. 

Proposition 6 states that if there is at least one fisher whose wealth is below the 
conservation threshold E/G, and at least one fisher whose wealth is sufficiently 
large that he will conserve regardless of the actions of the other fishers, then there 
always exist wealth redistributions that increase inequality and (at least weakly) 
equilibrium efficiency. 

Note that the conditions of Proposition 6 are not met if all fishers conserve 
initially (ie, J is empty). From Proposition 5, we know that this situation can only 
hold if all fishers have wealth at least as great as E/G. Thus, in that situation, the 
wealth distribution is not sufficiently unequal for the Olson-style mechanism of 
Propositions 4 and 6 to operate. 

2. Exit Options 

In fisheries worldwide, large fishing companies with more opportunities to move 
their fleets elsewhere (compared to small-scale local fishers) are much less con- 
cerned about conservation of the resources in a given harvesting ground. This has 
been noted in the case of the Texas shrimp fishery byJohnson and Libecap (1982): 
there, larger fishers have defected from quota schemes. Baland and Platteau 
(1997) cite a similar phenomenon in ajapanese fishery, where industrial seiners 
are more apt to deplete fish stocks than local artisanal hook-and-line fishers. 

The phenomenon extends to other CPRs. In Mali and Mauritania, large (usually 
absentee) livestock herd owners have been much less interested than small herders 
in local arrangements for rangeland management to prevent overgrazing and 
desertification; see Shanmugaranam et al. (1992), cited in Baland and Platteau 
(1996). Freudenberger (1991) describes the deforestation of a forest ecosystem in 
Senegal by the local unit of a nationwide agricultural entity known as the Mouride. 
A relatively low-intensity pattern of resource use by nearby peasant producers and 
pastoralists gave way to intensive cash-crop (groundnut) production. After the 
soil's rapid exhaustion by groundnut farming, the Mouride's national decision- 
making body could open up new territory elsewhere, unlike traditional users who 
were more interested in the long-term viability of the local forest. 

In all the cases cited above, the richer or larger commons users were prone to 
defect. This need not always be the case. Other authors have reported that the 
poorer or smaller users exercise exit options. Bergeret and Ribot (1990), in a study 
similar to that of Freudenberger, describe deforestation in a larger area and over a 
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longer time frame, also in the Senegalese Sahel. Trees are harvested by Fulani 
refugees from Guinea, who are more likely to be landless than other peasants, so as 
to produce charcoal for the rapidly growing urban market. A qualitatively similar 
situation has been described in southern Burkina Faso, where immigrants are 
more prone to use destructive gathering techniques in communal forests; see 
Laurent et al. (1994), cited in Baland and Platteau (1997).6 

In our extended model with exit options, co-operation is more difficult for the 
fishers. Moreover, the fisher who exits may be the relatively wealthier or less 
wealthy of the two, depending on the shape of the exit-option functions. 

We augment the basic game presented above so that each fisher has an option to 
exit rather than fish in the second period. If only one fisher exits in the second 
period, the other receives the entire second-period catch.7 Let the value of each 
fisher i's exit option be given by the function f(ej). This makes the plausible 
assumption that the exit option depends on a fisher's endowment level: 'exit' 
could refer to investing or deploying one's capacity in another sector. In general, 
the value of each fisher's exit option will not be the same, unless they have equal 
endowments. Note that this does not rule out the case where f(-) is a constant. It 
does, for the time being, rule out the possibility that each fisher has a different 
exit-option function: that is, we assume that if ei = ej, then the fishers' exit options 
are the same. 

When is full conservation an equilibrium in this new setting? For a given fisher i, 
conditional on fisher j's conservation (that is, j's first-period catch is zero), it must 
be that i's share of the second-period catch is greater than the value of deviating 
(fishing to full capacity in period 1 and exiting in period 2): 

E GF > min{e-,F} ?/+ (e1) for i = 1, 2. (4) 
E I 

In general, any comparative-static assertions about whether full conservation will 
be a Nash equilibrium under different wealth distributions will depend on the 
nature of the f(-) function. 

2.1. Concave Exit Options 

Thus we will impose the restriction that /(ej) is a concave function, and further- 
more that 

~(ej) > O, ~(O) = O. (5) 

In addition, we restrict attention to cases where 'distribution matters'; that is, cases 
where there exists some distribution such that full conservation is not an equilib- 
rium outcome. This can be stated as follows: there exists some wealth level e*, 
0 < e* < E, at which 

6 One could argue that this evidence from Guinea and Burkina Faso points as much to the 
importance of 'sustainability traps' as to that of exit options. That is, those agents with no exit options 
and no alternatives but non-sustainable resource use will 'hang on to the last straw'. 

7 In our framework, it is not so interesting to explore the consequences if a fisher could exit in period 
1. Under the assumptions of our model, if a fisher could exit before fishing in period 1, the other 
fisher's best response would be to conserve. 
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- GF = min{e*, F} + f(e*). (6) 
E 

If assumption (6) is not satisfied, then either full conservation or exit is preferred 
by both fishers at all levels of wealth, conditional on the conservation of the other. 

Finally, we wish to restrict attention to the case where the fishery is economically 
viable, in the sense that the maximum possible fish production in the second 
period is greater than fishing to capacity in the first period and exiting with all of 
the fishery's capacity in the second period. That is, GF > F + /(E). This can be 
restated as 

//(E) < (G - 1)F. (7) 

In what follows, let the exit strategy be the following course of action by one of the 
fishers: fish to capacity in period 1, and exit in period 2. Now we can state the 
following propositions. 

PROPOSITION 7 Consider the augmented game in which each fisher i has a secondperiod 
exit option described by the function /(ej). t(.), G, F, and E satisfy assumptions (5) and 
(6). Then, given any wealth distribution e E A(E) that gives each fisher positive wealth, 
there exists a mean-preserving spread e' of e such that full conservation is not an equilibrium 
under e'. 

Proposition 7 suggests Corollary 4, which addresses the Olson hypothesis in the 
context of concave exit options: 

COROLLARY 4 If underperfect equality of wealth full conservation is a Nash equilibrium, 
then there exists a mean-preserving spread e' such that full conservation is not an equilib- 
num. 

Corollary 4 says that, when the exit option is a nondecreasing concave function, 
together with the restrictions implied by assumptions (5) and (6), then whenever 
full conservation is an equilibrium with a perfectly equal distribution of wealth, 
there always exists a less equal distribution of wealth such that full conservation is 
not an equilibrium. In this case, equality is more conducive to conservation. Note 
that, under the unequal distribution of wealth, it is the poorer agent who finds it in 
his interest to play the exit strategy. As we will see in a later section, this result 
generalises to the case where only one fisher has an exit option. 

The principal issues raised in Proposition 7 and Corollary 4 can be depicted 
graphically. First note that the Nash-equilibrium condition (4) can be rewritten as 

(ei) <e -GF-min{ei, F}. (8) E 

In Fig. 3, fisher i's wealth is given on the horizontal axis, and i's payoff is given 
on the vertical axis.8 The right-hand side of (8) is drawn as ONM, and the left- 

8 In this figure, E is treated as a constant. That is, as ei is increased, E does not increase; it is assumed 
that ey is decreased by an equal amount. Alternatively, the horizontal axis of the figures can be 
interpreted as representing the share of total wealth held by fisher i when E = 1. Unlike Fig. 1, fisher j's 
wealth is not read here from right to left. 
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Fig. 3. A Concave Exit-Option Function 

hand side (t(.)) is given by the concave function OS. Note that the sign of the 
right-hand side of (8) determines whether full conservation is an equilibrium in 
the basic (no-exit-option) version of the game introduced in Section 1. From 
Corollary 1, then, we know that the right-hand side must be positive for all 
values of ei greater than E/ G, which is labelled B in Fig. 3. The point labelled A 
corresponds to F, the initial fish stock. A is the point of intersection between 
the lines Ui = e1(GF/E - 1) to the left (note that the slope is negative as a result 
of the commons dilemma assumption (1)) and Ui - eiGF/E - F to the right. 
The wealth level e* is labelled C. At all wealth levels to the right of C, fisher i 
strictly prefers conservation, conditional on conservation by fisher j; at all wealth 
levels to the left of C (but not including the origin), fisher i prefers the exit 
strategy. 

According to Corollary 4, if full conservation is an equilibrium outcome under 
perfect equality, then there is a mean-preserving spread of the wealth distribution 
under which full conservation is not an equilibrium. Suppose that the two fishers 
are initially endowed with wealth D in Fig. 3. Then by redistributing wealth away 
from fisher i until his wealth lies to the left of C, full conservation is no longer an 
equilibrium; at such a new distribution, OS lies above ONM for fisher i, and he will 
prefer the exit strategy. 

Meanwhile, it can be shown that, in the vein of Olson, extreme inequality can 
enhance the prospects for conservation: under perfect inequality, and if assump- 
tions (5) through (7) hold, full conservation is an equilibrium. 
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2.2. Convex and Asymmetric Exit Options 

In Proposition 7, illustrated in Fig. 3, the return to the exit strategy, relative to 
conservation (and always conditional on conservation by the other fisher) is di- 
minishing in wealth: when there is exit, it is the smaller fisher who exits. In case 
studies of commons with exit options, it is frequently (though by no means ex- 
clusively) asserted that, when exit occurs, it is the large resource user who exits. 
How is the prediction of Proposition 7 reconciled with this empirical evidence? 
First, it could be that exit options are not concave (or even weakly concave) 
functions of wealth. Second, it could be that exit option functions (and notjust the 
exit-option values) are different for the different fishers. Each of these possibilities 
is considered in turn. 

Fig. 4 illustrates a convex exit option function. The principal complication is 
that there are several 'crossover' points corresponding to the wealth value e* in the 
concave case. Thus, for example, begin at a position of perfect inequality with total 
wealth D in Fig. 4; that is, one fisher's endowment is D and the other's is zero. Full 
conservation is not an equilibrium outcome, because the fisher with positive 
wealth will prefer the exit strategy. If wealth is more equally redistributed in the 
range of point C, full conservation is an equilibrium outcome. If one fisher's 
wealth is C while the other's is in the range of A, however, full conservation is not 
an equilibrium outcome. 

Situations like that depicted in Fig. 4 might well describe many commons with 
exit options. In general, because of the kinked 'convex' shape of the right-hand 
side of the Nash-equilibrium condition (8), a convex left-hand side of the same 
condition will cross the right-hand side more than once. With convex exit-option 

U. 

R 

M 

N 

Fig. 4. A Convex Exit-Option Function 
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functions, we can make the following proposition, which does not, in general, hold 
when exit-options are concave. 

PROPOSITION 8 In the exit-option game where each fisher has an exit option given by 

/(ej), let 0(.) be a convex and increasingfunction of wealth, and let f(O) = 0. If there 
exists any wealth distribution e C A(E) such that both fishers have positive wealth and under 
which full conservation is an equilibrium outcome, then full conservation is not an equi- 
librium outcome under perfect equality. 

In some commons situations, agents' exit options are qualitatively different. In a 
particular in-shore fishery, for example, it is not simply that the poorer fisher has 
less capacity, but instead a fundamentally different fishing technology than the 
larger fisher. The larger fisher can move his ocean-going trawler to another har- 
vesting ground, but if the poor fisher tried to do the same in his small primitive 
boat, he would stand a good chance of dying at sea. More generally, the smaller 
agent's capacity is location-specific in a way that the larger agent's is not. 

Suppose that only one fisher has an exit option: this seems a not-too-extreme 
approximation of the asymmetric-technology argument made in the previous 
paragraph. Fig. 3 can be reinterpreted to depict this case. Suppose that OS is fisher 
1's exit-option function, and that ONMis the conditional payoff to conservation for 
both fishers. Conditional on fisher 1's conservation, fisher 2 will always conserve if 
his wealth lies anywhere to the right of point B. Here the problem is not that fisher 
2 will exit, but rather that he will deviate from conservation by fishing to capacity in 
period 1. Now, if the fishers were to begin at a position of perfect equality at D, full 
conservation would be an equilibrium outcome. If fisher 2's wealth were reduced 
to some amount between B and C (and fisher 1's wealth correspondingly 
increased), full conservation would still be an equilibrium outcome, unlike the 
situation described by Proposition 7. Nevertheless, if fisher 2's wealth were 
reduced to a point between 0 and B, he would choose to deviate, and full 
conservation would not be an equilibrium outcome. 

In the asymmetric exit-option case, our previous interpretation of mean- 
preserving spreads changes in two ways: first, whether or not a mean-preserving 
spread destroys a full-conservation equilibrium depends on the identity of the 
fisher who gains under the redistribution; second, the minimum unequalising 
redistribution needed to destroy a full-conservation equilibrium must be more 
unequalising than the minimum necessary redistribution in Proposition 7. 

Our earlier assumption that exit-option functions were at least weakly concave 
made strong comparative-static results possible. In the figures, the concavity as- 
sumption leads to a sort of 'single-crossing' property: there exists a range of wealth 
levels at which a fisher will not conserve, conditional on the other's conservation, 
and, at all higher wealth levels, the fisher will conditionally conserve. Nevertheless, 
if there is more than one crossing of the two curves in the diagrams - as in the 
case of the convex exit-option function - then the comparison of two or more 
wealth distributions is more complicated. If, in the case where there are multiple 
crossings, conservation is not initially an equilibrium outcome, it is not always 
possible to say whether it will be an equilibrium outcome under any more (or less) 
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unequal distribution. If the right-hand side of the inequality (8) is also concave 
(which might occur under considerably more complicated assumptions about the 
fishing production function), then, even with concave exit-option functions, this 
can give rise to multiple crossings.9 

The nature of the exit-option functions is ultimately an empirical question. In 
many situations, exit-option functions are probably linear beyond some level of 
wealth - this represents a risk-free bond earning a fixed interest rate. At lower 
levels of wealth, though, the exit-option function is convex as a result of borrowing 
constraints. As we have seen, however, in all cases, the presence of exit options 
generally complicates the prospects for conservation. 

3. Concluding Remarks 

3.1. Crafting Distributive Rules 

In real-world commons problems, economic actors often craft institutions to 
regulate community use of common-pool resources. If the problem is one of 
multiple equilibria (as is the case in our model when the conditions of Corollary 2 
are satisfied), the task of such local regulation is merely to co-ordinate actors on 
one Pareto-efficient equilibrium. If the problem is a prisoners dilemma (as is the 
case under other parameter configurations for our model), there must be a 
structure of rules, very likely with monitoring and enforcement, that transforms 
the dilemma into a co-ordination game and the Pareto-superior outcome into a 
self-enforcing equilibrium. (This is essentially the message of Ostrom's (1990) 
synthesis of studies of local regulation of the commons.) Fishers worldwide have 
elaborated schemes of social regulation with varying degrees of success; many of 
these cases are reviewed in Baland and Platteau (1996). In this section, we discuss 
such regulatory regimes in light of our model.10 

Fishers in our model might consider three regulatory mechanisms to govern the 
exploitation of the fish stock: they could redistribute wealth (el, e2) before period 
1; they could redistribute catch (01, 04) after the first period; or they could re- 
distribute fish (02,2 ) after the second period. (Many of the distributive rules 
described in the field-study literature reallocate fishing locations: these can be in- 
terpreted as redistributions of capacity. If fishing locations have different pro- 
ductivities, the default share of the fishing stock accruing to each fisher will be 
different. Note that, for our model to apply, it must also be that the fishing 
locations are not physically isolated from one another.) Such schemes have two 
possible effects on the payoff of the game. First, the scheme could impose a fine on 
the player who does not abide by the co-operative agreement: this reduces the 
return to cheating. Second, output could be shared in the co-operative outcome 

9 Consistent with the discussion in Benabou (1996) of 'inequality of income versus inequality of 
power', what matters is not inequality of wealth per se, but inequality of wealth relative to exit options. If 
the value of one fisher's exit option grows faster than one-for-one with his wealth, then wealth inequality 
will foster rather than hinder co-operation. 

10 The working-paper version of this paper, available on request from the authors, includes a much 
lengthier analysis of these issues, including the details behind several of the assertions made in the 
remainder of this section. 
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differently from the default sharing rule of the nonco-operative game (ie, 

{ei/E}icI). This change in the sharing rule could arise from redistribution of catch, 
or from pre-play wealth redistribution. 

The results of Section 1 are comparative-static results, but can be reinterpreted 
as statements regarding redistribution of capacity. Thus, for example, Corollary 1 
tells us that for wealth distributions that give each fisher positive wealth, full 
conservation is an equilibrium if and only if each fisher's share of total wealth is 
greater than 1/G. If G is at least two, then there always exists a preplay capacity 
redistribution such that full conservation is an equilibrium outcome. With the 
appropriate wealth transfer, full conservation can be supported as an equilibrium, 
even if it was impossible under the initial distribution. Nevertheless, the magnitude 
of the transfer under a self-enforcing equilibrium is limited; the fisher who cedes 
wealth must be at least as well off under full conservation, post-transfer, as under 
full depletion, pre-transfer. 

An alternative to pre-play wealth transfers is that fishers effect transfers of fish 
conditional on the size of individual first-period catch. Effectively, this means that 
they can tax each other. It is a well-known result in the fisheries literature that if 
first-period catch can be taxed at a rate of 100%, then a first-best outcome can be 
implemented under just about any circumstances (including most exit-option 
scenarios). (This is essentially the same as boat licensing in our model: limiting the 
number of boats (ie, the proportion of ei) that each fisher i uses in period 1 is 
directly related to limiting his catch.) Nevertheless, transaction costs might make it 
impossible to observe each fisher's period-I catch and thereby collect taxes. An 
interesting possibility is that the power to tax is asymmetric; it is plausible to 
assume that some factor (economic or otherwise) makes it possible for one fisher 
to impose a sanction on the other, but that the latter is impeded from reciproc- 
ating. It can be shown that, under certain conditions, if the poorer fisher is given 
the power to tax the richer, co-operation is not an equilibrium outcome. This 
result extends to the case of concave exit options. In the case of convex exit-option 
functions, however, the poorer fisher is better able to enforce conservation. 

An interesting consequence of democracy is that it grants to the poor the power 
to tax the rich. Bardhan (1993) discusses the democratisation of environments in 
which traditional authority structures have previously enforced co-operative 
agreements. Until democracy is consolidated, co-operative performance of re- 
source users can suffer. ('Resource users' could refer to local villagers sharing a 
fishery, or to citizens contributing to 'social cohesion'.) The discussion of asym- 
metric taxation under exit options shows that this depends on the nature of exit 
options open to the rich. If the exit-option functions of the rich are convex, then 
giving the poor the power to tax the rich might not prejudice co-operative beha- 
viour. If, however, exit-option functions are concave, co-operation can break down. 

Finally, fishers could redistribute the second-period catch once the game is over 
such that the share accruing to each fisher is a function of his first-period beha- 
viour. Assume that the aim of the mechanism is to reduce first-period fishing to 
zero. If both fish in the first period, both receive their payoffs from the unregu- 
lated game (e,F/E, exF/E). If both conserve in the first period, then i receives a 
nonnegative share oi of GF, where oc a 1. If one fisher i cheats in the first 
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period, but the other does not, then i receives some share xi of the second-period 
stock. Effectively, up to this point, we have restricted (xi and (xi) to equal ei/E. It 
can be shown that under such a rule complex, full conservation can emerge even if 
G < n. However, the range of implementable mechanisms is, under certain cir- 
cumstances, sensitive to the wealth distribution. 

3.2 Summary of Results 

This paper presents a model of two fishers differentiated by asset-holding levels in 
an unregulated fishery. Co-operation in this model takes the form of restraint in 
resource extraction: if both fishers reduce their catch in the first period, they can 
reap larger rewards after the fish stock has grown. Efficiency is indexed by the 
amount of the initial fish stock available at the start of the second (and final) 
period. The model explores the effect of inequality in asset ownership (fishing 
capacity) on conservation of a common-pool resource. We demonstrate that 
Olson's (1965) inequality hypothesis interpreted as a comparative-static statement 
that increasing inequality enhances efficiency - is not strictly correct. We give 
conditions such that inequality reduces equilibrium efficiency (conservation of the 
fish stock). If fishers have earnings opportunities outside the commons ('exit 
options') that are concave functions of wealth, increased inequality can reduce the 
prospects for full conservation. Furthermore, there exists a wealth distribution 
beyond which increasing wealth inequality increases equilibrium efficiency 
(though not attaining full conservation as long as both fishers have positive 
wealth), and full conservation is an equilibrium under perfect inequality. The 
relationship between inequality and conservation can be U-shaped: at very low and 
very high levels of inequality, conservation is possible, while for a middle range of 
inequality, it is not. 

The linear technology used in this paper is a simplification that permits us to 
derive concrete results that usefully extend the commons literature; a completely 
general cost function would complicate the results considerably. Bardhan et al. 
(2000) undertake the task of constructing a general model of collective goods with 
strictly concave production (or cost) functions to determine the effect of in- 
equality of initial endowments affects the amount of aggregate surplus. Their 
results are generally indeterminate: extreme inequality is good for collective good 
provision, as the dominant player can internalise the externality, but the concavity 
of the general production function tends to make equality more efficient. The net 
result depends in complicated ways on the parameters of the production function 
and of externalities. Moreover, their results are developed only in a one-period 
case, thus abstracting from the intertemporal externalities that feature in this 
paper. 
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Appencdix: Proofs 

Proof of Lemma 1 For all ai E [F - aj, ei], the fish stock will be depleted in period 1; 
fisher i can increase his payoff only by increasing his share of the catch, and his share 
is strictly increasing in ai. Thus he should choose the highest possible level of ai, 
namely ei. 

Proof of Lemma 2 Because si is positive, then the maximum on the intersection 
[0, F-aj] n [0, ej] is aj=min{FF-a, ej}. Even if min{FF-a, ej} F F-aj then, by 
Lemma 1, ai = ei is still strictly better, given that i's share rises with ai. 

Proof of Lemma 3 

(a) Because si < 0, the optimal choice over [0,F - aj] is 0; if et < F - aj, the upper 
interval [F - aj, ei] is empty and need not be considered. 

(b) If ei > F- aj, then 0 must be compared to ei, which is the maximum on 
[F - aj, ei}. i's payoff from ai - 0 is expression (2), while his payoff from ai ei is 
given by expression (3). A comparison of these payoffs establishes part (b) of the 
Lemma. 

Proof of Lemma 4 So long as si :A 0 for i = 1,2, then Lemmas 1 to 3 establish that 
the only possible best responses for i are 0 and ei. 

Proof of Proposition 1 

Case (i) follows from Lemma 2: if si > 0, then for fisher i, ei is the unique best 
response to any action chosen by fisher j, and likewise for fisher j, so that (el, e?) is a 
unique, dominant-strategy equilibrium. 

Case (ii) is a consequence of applying Lemma 2 to fisher 1 and Lemma 3 to fisher 
2. First note that Lemma 2 implies that el is fisher I's unique dominant strategy, so 
there can be no (0, 0) equilibrium. It remains only to show when fisher 2 will choose 
a2 = 0 or a2 = e.. The condition that (G - 1)F > Gel is equivalent to stating that 
(ei/E)G(F - aj) (expression (2)) exceeds eiF/(ei + aj) (expression (3)), where i = 2 and 
al-el; then fisher 2's best response is a2 = 0, by Lemma 3. Meanwhile, fisher 2 will 
choose a2 e2 iff (G - 1)F < Gel. 

For case (iii), consider first the (0, 0) equilibrium. Fisher i's best response to aj = 0 is 
ai = 0 if and only if either ei < F (Lemma 3, case (a)) or ei > F and (ei/E) GF > F (Lemma 3, 
case (b)). If ei < F for i = 1, 2, then (given the assumption that si < 0 for i = 1, 2) it follows 
that (0, 0) is an equilibrium. If, however, for at least one of the fishers j, ej > F, then fisherj's 
best response to ai = 0 is aj = O as long as (ej/E) GF > F, which simplifies to ej > E/G; but this 
is equivalent to the assumed slope condition s, < 0. 

The condition for the (el, e2) equilibrium in case (iii) follows from Lemma 3; el is a 
best response to e. if and only if el > F - e. and 

eG(F -e.) < F 
E E 

(substituting (a,, a2) = (el, e&) into expressions (2) and (3) of Lemma 3). This 
expression simplifies to G(F - e.) < F, which is equivalent to the second inequality 
in case (iii) of the Proposition. 
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It remains to show that there are no equilibria of the form (ei, 0) in case (iii). If 
(el, 0) is an equilibrium, then Lemma 3 implies that el > F and 

-GF < e-F = F. 
E el 

Consequently, el < E/G, which, in turn, implies that si > 0, a contradiction. 

Proof of Corollary 2 If the condition of the corollary (ei > E/ G, Vi) is met, then 

si <0, Vi, and we are in case (iii) of Proposition 1: (0,0) is always an equilibrium. The 
commons-dilemma assumption (1), E > GF, implies that (G - 1)F < E. Meanwhile, the 
condition in the corollary can be stated as E < Gei. Therefore (G - 1)F < Get; by case (iii) 
of the Proposition, full depletion is an equilibrium outcome when (G - 1)F < Gei. 

Proof of Proposition 2 

(a) If (al = a2 = 0) is an equilibrium under e', then under e' the game's parameters 
correspond to case (iii) of Proposition 1, and from Corollary 1, et > E/ G, Vi. e' is 
a mean-preserving spread of e, so for one fisher (say fisher 2, with no loss of 
generality), e; > e2, and for the other, ej < el. Given that ej < el and el > E/G, 
then el > E/ G. Given that e' is a mean-preserving spread of e and fisher 2's 
wealth increased, it must have been that eQ > el. Given that el > E/ G, it must be 
that e2 > E/G. Thus (al = a2 = 0) is an equilibrium under e. 

(b) If (ai = a2 -0) is an equilibrium under e, then from Corollary 1, ei > E/G, Vi. 
Then redistribute wealth away from one fisher j until ej < E/ G; this is a mean- 
preserving spread of e such that full conservation is no longer an equilibrium. 

Proof of Proposition 3 Given (el, e) = (E,0), then si < 0, s2 > 0, and (G- 1)F > 0, 
so that by Proposition 1, (0, e2) is the unique equilibrium. 

Proof of Proposition 4 Let us restrict attention, without loss of generality, to the case 
where fisher 1 is the larger fisher. Say that fisher 2's endowment is c, and assume 
furthermore that e < F. If fisher 2 plays his full capacity in period 1, then fisher l's 
payoff from full conservation is 

E-,E 
G(F- 

(9) 
E 

and his payoff from playing his full capacity in period 1 is 

E- 
E F. (10) 
E 

The amount (9) is larger than (10) if 

e < G F. 

Therefore, define 

e-E- G 
IFl 

G IF) 

(Given that E > F, this distribution in fact endows fisher 1 more handsomely, as we have 
assumed.) We have shown so far that full period-I conservation is always a best reply for fisher 
1 to full-capacity fishing by fisher 2 in period 1. Note that with the distribution given by e, 
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E - > E/ G, so that by Corollary 1, full conservation is also a best reply by fisher 1 to full 

conservation by fisher 2. Then, for any redistribution of wealth away from fisher 2, fisher 1 will 

always play 0 in the first period, and thus, regardless of fisher 2's strategy, the amount of fish 

conserved until the second period will be larger. 

Proof of Proposition 5 (sketch) The proof is very simple and will not be given in full. 

If condition (c) of the proposition is satisfied, then the depleting coalition leaves some 

fish to regenerate between periods; if (c) is not satisfied, then the only equilibrium 

outcome is full depletion in period 1. Say that the fishers in I C I fish to capacity in 

period 1, and condition (c) is satisfied. Then a fisher j not in I receives payoff 

e G (F- ei) (11) 

from conserving, and fishing to capacity in period 1 yields him 

Ej 
(F E e-e,) + ej. (12) 

Now (11) is at least as large as (12) if and only if ej > E/ G. By similar logic, if a fisher 

k nominally in I is unilaterally deciding between conserving or depleting, the condition 
for staying in I is that ek < E/G. 

Proof of Proposition 6 In each case that follows, consider a transfer from fisher j to 

fisher k. If k E I, then fisher k will always conserve regardless of the choices made by 

other fishers. To see this, consider fisher k's choice. Say that all other fishers fish to 

capacity in period 1, and that E---EZi#k ei is the sum of wealth held by all other fishers. 

Furthermore, assume that E-k < F. Then if fisher k chooses to conserve, his payoff is 

ek G(F-E_k) (13) 
E 

while if fisher k fishes to capacity in period 1, his payoff is (ek/E)F. Now (13) is at 

least as large as (ek/E)F if 

E-k < (G ) (14) G 

now since ek = E - Ek, (14) is equivalent to 

ek =E-E-k > E- ( 
- 

) (15) 
-G 

But (15) always holds by fisher k's inclusion in 1. Thus for any fisher with wealth 

sufficiently great to be in I conservation is a dominant strategy. 
Now consider an unequalising wealth transfer to such a fisher k. The result of such 

a transfer is that the fisher j who loses wealth must reduce first-period fishing one-for- 

one with his wealth reduction; fisher k waits to deploy his wealth, including the 

transfer from fisher j, until the second period. Thus period-1 fishing is strictly 
decreased and equilibrium efficiency is strictly increased. 

We must also consider unequalising transfers j e J to fishers k not in I. If k c J, 
then ek < E/G. After the transfer r1 > 0, fisher j's period-1 fishing is decreased by y. If 
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ek + r1 > E/ G, then fisher k could choose to conserve and equilibrium efficiency would 
strictly increase. If ek + q <E/ G, fisher k will increase his period-I fishing by q and 
aggregate period-I fishing (and thus equilibrium efficiency) is unchanged. Suppose 
finally that fisher k is neither in J nor I. As before, fisher j will decrease his period-I 
fishing by r1 after the transfer. If fisher k conserves in equilibrium before the transfer, 
he will continue to do so after the transfer; aggregate period-I fishing is decreased by 
q. Even if fisher k did not conserve before the transfer, he could now find it optimal 
to do so, and equilibrium efficiency would increase. If fisher k did not conserve before 
the transfer, and still chooses not to after the transfer, his increased fishing exactly 
offsets fisher j's reduction and equilibrium efficiency is unchanged. 

Proof of Proposition 7 Assumptions (5) and (6) together imply that condition (4) is 
satisfied as an equality for fisher i at two points: where ei = 0, and where ei = e* for 
some e* > 0. Moreover, for values of wealth such that 0 < ei < e*, condition (4) does not 
hold, while for values of wealth such that ei > e*, it does. Consider two cases. 

(i) Full conservation is an equilibrium outcome under e. Then it must be that both 
fishers have wealth greater than e*. Then transfer, from one fisher to another, 
an amount such that the first's wealth is now below e*. Then, for the first fisher, 
condition (4) no longer holds, and conservation is no longer an equilibrium 
outcome. 

(ii) Full conservation is not an equilibrium under e. Then it must be that at least 
one fisher's wealth lies below e*. Then, for any transfer from that fisher to the 
other, so long as the first still has positive wealth, the wealth distribution will be 
more unequal, and conservation will not be an equilibrium. 

Proof of Proposition 8 We will prove the contrapositive of the proposition: that is, 
we will show that, if under perfect inequality, full conservation is not an equilibrium 
outcome, then there exists no other wealth distribution with ei > 0, Vi under which full 
conservation is an equilibrium. Suppose that wealth is equally distributed, so that 
e = (s, s), and that full conservation is not an equilibrium. There are three possible 
cases. 

(i) lfr(ej) + min{ei, F} > (ei/E) GF for all possible values of ei, i = 1, 2. In this case, 
both fishers always prefer the exit strategy at all positive values of wealth, so 
there is no full-conservation equilibrium. Now if the condition 

0f(ei) + min{ei, F} > (ei/E) GF is not met, then given the convexity of f(.), there 
is some range of wealth levels over which 

ei GF > f(ej) + min{ei, F}. (16) 
E - 

Say that E is the lowest value of wealth for which (16) is true, and e is the 
highest level of wealth for which (16) is true. Then if under the distribution 
e = (s, s), full conservation is not an equilibrium outcome, it must be either that 
s < E or s > e. These are the two remaining cases we must consider. 

(ii) s < E: all other wealth distributions are mean-preserving spreads of e. If wealth 
is taken from fisher 1, say, and given to fisher 2, the latter's wealth could 
eventually exceed E, so that fisher 2 would be willing to conserve, conditional 
on fisher 1's conservation. But fisher 1's wealth will always be less than E, and 
given the restriction that both fisher wealth always be positive, fisher 1 will for 
all wealth less than s prefer the exit strategy. So full conservation is not an 
equilibrium for any wealth distribution other than e. 
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(iii) s > e: Then, once again, all other distributions are mean-preserving spreads of 
e. If wealth is given to fisher 2, the exit strategy will continue to dominate 
conservation for fisher 2, regardless of fisher 1's strategy. Thus under no mean- 
preserving spreads of e is conservation an equilibrium outcome. 

References 
Baland, J.-M. and Platteau, J.-P. (1996). Halting Degradation of Natural Resou-rces: Is There a Role for 

Rural Communities? Oxford: Oxford University Press. 
Baland, J.-M. and Platteau, J.-P. (1997). 'Wealth inequality and efficiency in the commons, i: the 

unregulated case', Oxford Economic Papers, vol. 49, pp. 451-82. 
Baland, J.-M. and Platteau, J.-P. (1998). 'Wealth inequality and efficiency in the commons, ii: the 

regulated case', Oxford Economic Papers, vol. 50, pp. 1-22. 
Bardhan, P. K. (1993). 'Symposium on management of local commons', Journal of Economic 

Perspectives, vol. 7, pp. 87-92. 
Bardhan, P. K. (1995). 'Rational fools and cooperation in a poor hydraulic economy', in (K Basu, 

P. Pattanaik and K. Suzumura, eds) Choice, Welfare, and Development: A Festchrift in Honour of 
Amartya K Sen, Oxford: Clarendon Press, pp. 169-81. 

Bardhan, P. K. (2000). 'Irrigation and cooperation: an empirical analysis of 48 irrigation 
communities in South India', Economic Development and Cultural Change, vol. 48, pp. 847-65. 

Bardhan, P. K. and Dayton-Johnson, J. (2002). 'Unequal irrigators: heterogeneity and commons 
management in large-scale multivariate research', in (National Research Council., eds) The 
Drama of the Commons, pp. 87-112. Washington: DC. National Academy Press. 

Bardhan, P. K, Ghatak, M. and Karaivanov, A. (2000). 'Inequality, market imperfections, and 
collective action problems', mimeo. Berkeley and Chicago: Department of Economics. 
University of California, and Department of Economics. University of Chicago. 

Benabou, R. (1996). 'Inequality and growth', NBER Macroeconomics Annual, vol. 11, pp. 11-74. 
Benhabib, J. and Rustichini, A. (1996). 'Social conflict and growth', Journal of Economic Growth, vol. 1, 

pp. 125-42. 
Bergeret, A. and Ribot, J. C. (1990). L'arbre Noumicier En Pays Sahelien. Paris: Editions de la Maison 

des sciences de l'homme. 
Bergstrom, T. C., Blume, L. and Varian, H. (1986). 'On the private provision of public goods', 

Journal of Public Economics, vol. 29, pp. 25-49. 
Bliss, C. and Nalebuff, B. (1984). 'Dragon-slaying and ballroom dancing: the private supply of a 

public good', Journal of Public Economics, vol. 25, pp. 1-12. 
Dutta, P. and Sundaram, R. K. (1993). 'The tragedy of the commons? A characterization of 

stationary perfect equilibrium in dynamic games', Economic Theory, vol. 3, pp. 413-26. 
Freudenberger, K S. (1991). 'Mbegue: the disingenuous destruction of a Sahelian rainforest', 

International Institute for Environment and Development Paper no. 29. London: Interna- 
tional Institute for Environment and Development. 

Itaya, J., de Meza, D. and Myles, G. D. (1997). 'In praise of inequality: public good provision and 
income distribution', Economics Letters, vol. 57, pp. 289-96. 

Johnson, R. N. and Libecap, G. D. (1982). 'Contracting problems and regulation: the case of the 
fishery', American Economic Reviezv, vol. 72, pp. 1005-22. 

Khwaja, A. (2000). 'Can good projects succeed in bad communities? Collective action in the 
Himalayas', mimeo. Cambridge, MA: Harvard University. 

Laurent, P. J., Mathieu, P. and Totte, M. (1994). Migrations et acces d la terre au Burkina Faso. Paris: 
CIDEP. 

Levhari, D. and Mirman, L. J. (1980). 'The great fish war', Bell Journal of Economics, vol. 11, 
pp. 322-44. 

Olson, M. (1965). The Logic of Collective Action. Cambridge, MA: Harvard University Press. 
Ostrom, E. (1990). Governing the Commons: the Evolution of Institutions for Collective Action. New York: 

Cambridge University Press. 
Shanmugaranam, N., Vedeld, T., Mossige, A. and Bovin, M. (1992). 'Resource management and 

pastoral institution-building in the West African Sahel', Discussion Paper no. 175. Washington, 
DC: The World Bank. 

Tornell, A. and Velasco, A. (1992). 'The tragedy of the commons and economic growth: why does 
capital flow from poor to rich countries?', Journal of Political Economy, vol. 100, pp. 1208-31. 

? Royal Economic Society 2002 


	Article Contents
	p. 577
	p. 578
	p. 579
	p. 580
	p. 581
	p. 582
	p. 583
	p. 584
	p. 585
	p. 586
	p. 587
	p. 588
	p. 589
	p. 590
	p. 591
	p. 592
	p. 593
	p. 594
	p. 595
	p. 596
	p. 597
	p. 598
	p. 599
	p. 600
	p. 601
	p. 602

	Issue Table of Contents
	The Economic Journal, Vol. 112, No. 481 (Jul., 2002), pp. 459-703
	Front Matter
	The Fiscal Theory of the Price Level: A Critique [pp. 459-480]
	Informal Family Insurance and the Design of the Welfare State [pp. 481-503]
	The Effect of Individual Retirement Accounts on Household Consumption and National Saving [pp. 504-538]
	Reputation and the Allocation of Ownership [pp. 539-558]
	An Economic Theory of Church Strictness [pp. 559-576]
	Inequality and Conservation on the Local Commons: A Theoretical Exercise [pp. 577-602]
	Technological Distance, Growth and Scale Effects [pp. 603-624]
	On Tariff Preferences and Delegation Decisions in Customs Unions: A Heckscher-Ohlin Approach [pp. 625-648]
	A Geometry of Specialisation [pp. 649-678]
	Some Experimental Evidence on the Evolution of Discrimination, Co-operation and Perceptions of Fairness [pp. 679-703]
	Back Matter



