WEORKEHOP I POLINICIAL THEORY

" POLICY ANALYSI®

o 513 NORTH PARK

O NDIANAUNIVERSTTY

BLOOMINGTON, INDIANA 474053186
MN\ wh Bl

INCENTIVE STRUCTURE OF A COMMON-POOL RESOURCE SITUATION
A DYNAMIC GAME-THEORETIC MODEL OF IRRIGATION SYSTEM

Preliminary, Partial Draft

This paper was prepared for

Myungsuk Lee

presentation at the Fall Semester Colloquium,
Workshop in Political Theory and Policy Analysis,

Indiana University,
Bloomington, November 30, 1992



Introduction

The incentive structure of common-pool resources (CPRs) situations has
often been modeled as the prisoner’s dilemma (PD) game in which the dominant
strategy is of mutual defection (Wade 1988; E. Ostrom 1990; Tang 1992). Even
though the PD game can give us useful insights with which we can understand
the basic social dilemma problems in CPR situations, this line of logic is
misleading since it ignores several important facts.

First, the incentive structures of CPR situations are not egual so that
a single game model cannot explain all incentive structures of CPRs
(Bloomguist, Schlager and Tang 1991). Even the appropriators of the two same
kind of chs can face completely different incentive structures, If no one
person’s contribution is sufficient to gain a collective benefit but both
person’s contribution will produce the joint benefit, the incentive structure
of this CPR dilemma can be best described by a Assurance game rather than by a
PD game. And if (i) there is a minimum amount of work which must be done and
{ii) either individual alone c¢an do it all but (iii) each person prefers to
the other to do all the work, then the incentive structure of this CPR dilemma
can be best portrayed by a Chicken game rather than a PD game (for more
detail, see Runge 1984; Taylor 1987; Isaac, Schmidtz, and Walker 198%;
Gardner, Ostrom, andVWalker 1990).

Second, people using CPRe face two kinds of collective action problems -
"appropriation problem” and "provision problem". Appropriation problem refers
to how to use CPRe efficiently, whereas provision problem refers to how to
maintain CPRs well (E. Ostrom 1986b; Gardner, Ostrom, and Walker 1950; E.
Ostrom 1990; Ostrom, Gardner and Walker 1992). It is because almost all CPRs
have two aspects -- flow and stock aspects. In appropriation problems, we
focus attention on the flow aspect of the CPR, whereas in provision problems
we concentrate on the stock aspect of the CPR. In other words, solving
appropriation problems focuses on the allocation of the flow of a resource,

and solving provision problems focuses on the creation or maintenance of the



stock of a resources (Gardner, Ostrom, and Walker 1990; E. Ostrom 19%0).
Provision problema are more important in the cases of man-made resources than
in the cases of natural resources. This is why provision problems have been
ignored and appropriation problems have been treated as the only problems in
CPRs problems. Provision problem, however, can also be of great importance
even in the cases of natural resources if CPRe are renewable so that
maintenance works are required. Notice that these two collective action
problems are highly inter-dependent. The incentive structure of the action
situation of appropriation problem is to be affected by the ocutcomes of the
action situation of provision problems, and vice versa. Thus, without
considering the interaction between the two, it is difficult to understand the
incentive structure of CPR situations.

Third, people will consider the effects of their decisions on future
paycffs, as well as on present payoffs, at least to some extent. More
important, appropriators’ present behaviors can affect future payoff structure
itself. This implies that the situation where appropriators interact with
each other is time-dependent. Repeatéd game approach represents the former
aspect by assuming that (i) game will be repeated over time; and (ii) players
will maximixe the sum of.the paycffs over time (Axelrod 1981; Taylor 1987).
This approach is however still time-independent since the payoff structure of
the game does not change over time (Friedman 1986). In repeated game models,
past strategies do matter nét because they affect the present and future
payoff functions themselvea but because they influence the current and future
strategies of other players (Fundenburg and Tireole 1991}. That is, the
changes in the "physical environment" or the "payoff function™ are not
congsidered at all in time-independent game models. Instead, they are simply
assumed to remain the same, no matter whether the game is repeatedly played or
not.

A dynamic game-theoretic model of one particular CPR - ﬁhe irrigation
system - is developed here to depict these facts. In this model, (i)

appropriators are assumed to make decisions about both appropriation and



provision problem; and (ii)‘“physical environment®” and "payoff function"
themselves are allowed to change over time, unlike in repeated game-theoretic

model.

The Model: A Hypothetical Irrigation System

Let us assume that there exist a canal irrigation system with no storage
capacity and n (n>0) appropriators are entitled to get irrigation water from
that system. The appropriators are composed of two types of players —- head-
enders (j=1,...,m) and tail-enders (k=m+l,...,n), where nzm. These two types
of players differ from one another, that is there is an asymmetry between
head~-enders and tail-enders. For simplicity, however, it is assumed that
there is no asymmetry within the two types of appropriators. That is, head-
enders are assumed to be identical to every other head-enders in all aspects,
and tail-enders are agsumed to be identical to every other tail-endérs, too.
Appropriators will try to maximize the benefits from the irrigation system by
making decisions on two variabies ~- the amount of irrigation water they
appropriate and the amount of resources they invest in maintenance. Let the
amount of irrigation water they appropriate and the amount of resources they
devote to maintenance be "u, (20)" and "m, (20)", respectively'. They are the
two control variables in our model. Within limits, appropriators decide the
values of the two control variables once in each time period, from the time
period 1 to the final time period T. Their decisions on the two control
variables determine the payoff of appropriators®.

I also assume that in this hypothetical irrigation system appropriators

1 There is, of cause, an upper limit for them. This will be explained
later.

2 They are not the only control variables in natural settings, of course.

Other variables, such as choice of crops, the amount of fertilizer, also do
have impact on the payoff of appropriators who are engaged in farming. In our
model, however, all the variables other than our two contreol variables are
simply assumed to be constant so that full attention can be paid to
appropriation and provision problems.



first decide the amount of water they will appropriate during the time period
t and after appropriation, they decide the amount of investment of their labor
and resources on maintenance. This means that any single period t is composed
of tweo time spans. The first one is appropriation period and the second is
maintenance period. Time period t in this model, thus, can be understood as a
season containing an appropriation period and a maintenance period. I define
time period t this way because the product of irrigation activity is not
cbtained everyday but achieved only after a relatively longer time period,
which can be called a crop season, is completed. For this reason, it is also
assumed that (i) appropriation occurs over a appropriation period which is
more than one day; and (ii) the sum of every day appropriation during the
appropriation period determines the agricultural product of each time period,
that is the total benefit of each time period.

Another important assumption of this model is that the marginal benefit
of a unit of the irrigation water appropriated in any day is constant over the
time period t. That is, there is no seasonality of the demand for irrigation
water in this model -- in other words, appropriators can always get the same
amount of total benefit from the same amount of water everyday over the entire
time period t.

In real world settings, the above assumptions may not be fully met.
First, there may exist some asymmetries between the head-enders and the tail-
enders. By assuming more categories of the appropriators among the head-
enders and the tail-enders, we may capture the asymmetries among the two types
of players in this model. This, however, only will add complexity to the
model. For this reason I choose not to do this. It is because we need as
much eiﬁplicity as we can reascnably get in this model to get meaningful
result, for this model is a dynamic game which requires complicated solution
process.

Secondly, appropriators, of cause, do some maintenance works during the
appropriation period, as well as during the maintenance period. But most of

the maintenance works done during the appropriation period is likely to be on



their individual field canals, which are not CPRs. They also do some
emergency repairs during the appropriation period. But I ignore it in this
model, assuming that emergency repair is so urgent that every body will
participate —- That is, the incentive structure of emergency repair is far
from that of social dilemmas. '

Finally, the marginal benefit of the irrigation water of one day during
the time period t could possibly be different from that of the other day of
the same time period t, because of the seascnality of the demand for
irrigation water, In my model, however, I assume that the marginal benefit of
a unit of the irrigation water remains constant for the entire time period t.
It is because what I want to highlight in this model is not the seasocnality of
the demand and supply for the irrigation water, but the effect of the
appropriators’ choice on the amount of irrigation water and investment in the
maintenance on their payoff at the next time perjiod. This does not means that
the seasonality of the demand and supply for the irrigation water is of no
importance in the incentive structure of the appropriators. It rathér means
that we have to sacrifice the seasonality to focus on what we want to do in
this model since including both in one model will possibly make a model
intractable, or at least extremely difficult to handle. _

This hypothetical irrigation system will be helpful in understanding (i}
the interaction between appropriation and maintenance and; (ii) the time-
dependent characteristics of appropriators’ incentive structure, even though

it cannot capture all the details of the real world setting.

Game in Extensive_ Form

Next, let me explain the game appropriators in this hypothetical
irrigation system will play. ‘
(i) at period 1, all head-enders, j, choose simultaneously u;.

{(ii) Knowing the choice of all head-enders, tail-enderse, k, choose



simultanecusly u,.

(iii) All tail-enders, k, choose simultanecusly m,.

(iv) Knowing the choice of all tajil-enders, all head-enders choose
simultaneously m,.

il

{v) At period t+1,.;.,T, stages from {i) to (iv) are repeated.

We can understand the way the game is played more easily by representing
this game in extensive form. For simplicity let us assume that there are one
head-ender and one tail-ender. This game is shown in figure 3.1. At the
first node (node 1 hereafter), the nature will pick the values of parameters
in this game, including the initial values of the state variables’. Given
that, head-ender (player 1) will choose the amount of the irrigation water
appropriated at time period 1 (u,), then tail-ender (player 2} will choose the
amoﬁnt of the irrigation water appropriated at time period 1 (u,). These two
happen at the nodes 2 and 3. Notice that the upper limit on y; is determined
by the amount of water at the source and the initial efficiency of water
delivery. These two are external to this game. Also notice that the
information condition at the node 3 implies that tail-ender knows what the
head-ender choosesa. This is the case at the nodes 4 and 5, where tail-ender
and head-ender choose the amount of investment in the maintenance at time
pericd 1, my and m,;, respectively. The information condition at node 3 is
unnecessary since it is also the player 2 who chooses at the previous node.
The information condition at nede 5 implies that tail-ender decides first and
head-ender knows what the tail-ender does at the node 4. I assume this
because I think this will depict the strategic disadvantage of the head-ender.
That is, it is possible that the head-ender even has to do the whole
maintenance work without tail-ender‘s help when the tail~ender‘s has no

incentive to invest in the maintenance since there is no enough water for

3 They are the reliability of water supply and water delivery efficiency.

They will be fully discussed later in this paper.
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him/her. I will, however, see what happens when head-ender does not know what
the tail-ender does. This is.the end of the first time period. Playvers get
the payoffs of the first time period II,.

This is, however, not the end of the game. And, from the second time
period, the payoff structure is affected by the choices made at the previous
time period. This happens at the nodes & and 7'. Here, the values of
reliability and efficiency at time period 2 are determined. They are, notice
that, not external to the game any more. They are determined indirectly by
the players' decisions at the previous t;me pericd. And they will determine
the payoff structure at time period 2. They will change the total benefit
curve and the upper limit on the amount of water available to the players.

We, therefore, need to represent this procese in the extensive form game.
Since they are not under the direct control of the players, however, there is
no standard way of representing it in“extensive form game. For this reason, I
simply use the square symbol to represent this process at nodes 6 and 7. From
the node 8, the proceas I explained so far will be repeated until the final
-tiﬁe period. The payoffs for the players will be the sum of the discounted
payoffs from peried 1 to the final period.

What happens if we model this situation as a static game? The solution
of this misspecified model will be the myopic one. This solution assumes that
appropriators will appropriate and invest until the marginal benefit of each
time period equals the marginal cost of each time period, without considering
the existence of the effects of their choice on state variables. This
solution is roughly parallel to the prediction of the PD game. That is, PD
game assumes that appropriators have no foresight. But, if appropriators act
with foresight, the assumption of myopic behavior will lead to an
overstatement of the benefit loss resulting from management of irrigation
gystem without central contrel. It is possible that the result of the long-

term individual rationality is far from that of the short term individual

4 It does not matter here which one is decided first.
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rationality, and very close to that of social optimality. Then the static
game model will be the "wrong way of simplification” (McGinnis 1991). This is

why I employ a dynamic game approach.

Payoff functions

Benefit Component

Now, let us discuss the functional form of the payoff function of this
model. For convenience, I will explain the benefit component and cost
compénent separately. First, I assume that the total benefit of irrigation
water ie given by the area under a linear demand curve for irrigation water
with negative slope’. This implies that the marginal benefit or "marginal
value product” (Sparling 1990) is a diminishing function of the supply of
irrigation water to the appropriator. The marginal benefit function of
irrigation water use for individual apprepriator i at time t can be expressed

as:

{1) MB, = q - r*u, ©i=l,...,n, t=1,...,T

q,r > 0

This is shown in Figure 3.2. Given this function, the total benefit of
irrigation water is a quadratic function of the supply of the irrigation water
to the appropriators. 1t can be easily obtained by simply integrating the
marginal benefit function in equation-(1l). By integrating eguation (1), we

can have a total benefit function:

(2) P = g*u, - .S*rrud.

This assumption is common in most previous models of irrigation water

use. For examples, see Gotsch (1975), Kahn and Young (1979}, Dixon (1989,
1581), Feinerman and Knapp (1983), Howe (1990), and Sparling (1990).
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. where m® = the benefit of water use of individual i at time t.

This is shown in Figure 3.3. Notice that the shadowed area under a
linear marginal benefit curve in figure 3.2 is identical to TB, in figure 3.3.

They both represent the total benefit of u, irrigation water.

Cost Comgonenté

Next thing teo think about is the cost components. First, let us think
about the appropriation cost. The appropriation cost will increase as
appropriators obtain more water. For simplicity, let's assuﬁe that the
appropriation cost is the amount of water appropriated times some constant,
say e. This means that we can write the appropriation cost as 'e*uy,’. This
seems, however, unsatisfactory. It is because the appropriation cost for an
individual i is also affected by the behaviors of other appropriators who can
appropriate the irrigation water before he does or at least at the same time
when he does. That means, the appropriation behavior of the tail-enders will
not affect the head-enders’ appropriation costs, whereas the appropriation
behavior of the head-enders will affect the tail-enders' appropriation costs.
It may become more and more difficult and costly to appropriate, as the amount

of water appropriated by others increases. This can be summarized like this;

(3) mAC = e*Lugru, for head-enders
A = ex (Zufuy,) *u, = e*lu,*u, for tail-enders
, where wA° = the appropriation cost for individual i at time t,
e (»0) = costs coefficients.
Another cost component is the maintenance cost, 'my'. The amount of

resources appropriators invest in maintenance is the maintenance cost.
Maintenance work is done after appropriators appropriate the irrigation water.
S0, the maintenance work cannot add any positive utility to the benefit for an

appropriator at time t. It can only add positive utility to the benefit for



an appropriator at time (t+l). Under this assumption, the maintenance cost

for an individual i at time t is;

{4) e = m,.

In sum, the payoff for an appropriator can be expressed by the above
three equations {(2), (3), and (4). That is, the payoff for an individual i at

time t in the default situation is;

MC
.

DF _ . B _
(5) Ty T Wy e T My

Rule-Following Component

The payoff function in the equation (5) debicts the situation where
there exists no rules concerning the appropriators' behaviors. That is, there
is no sanctioning against over-appropriaticn and under-investment. Now, let's
think about the situation where some rules exist. I assume that when we
consider only the rule-following payoff, (i) the more cooperatively a plavyer
acts, the more benefit, in whatever form, he/she can get; and (ii) the less
cooperatively he acts, the more cost, again in whatever form, he has to pay.

Formally, the rule-following payoff is;

(6) mr = - {c(u, - U) + d(¥ - m,)}.
swhere U = the amount of water assigned to a player,
M = the amount of investment in the maintenance assigned

to a player, :
c, d (>0) = penalty and monitoring coefficients®.

This assumes that both U and M will be constant across a relevant time

period. Ideally, they would be decided using dynamic optimization. That is,

S These coefficients can be thought of the probability of being caught and

sanctioned by monitors times the amount of penalty against the rule-breaking
behaviors.
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somebody or a group of people, would calculate the best time path of U and M
by dynamic optimizationrtechnique and decides the results as U, and M, which
vary over time. But, I doubt this actually happens in practice. For this
reason, I treat both U and M as a constant instead of a variable.

If a player i appropriates more water than he/she is assigned gr invests
less than he/she is assigned, then the terms in.the bracket of the equation
(6) becomes positive and, consequently the equation comes to represent
negative utility. It is because there exist sanctions against rule-breaking
behaviors. &And otherwise, that term represents positive utility’.

Notice that, however, this is the case only in terms of rule-following

payoffs. More cooperative behavior gan pay less when we consider the total
payoffs - both the sum of the default payoff (m™) and the rule-following
payceff. If an appropriator gets more than his/her share and the increase in
the default payoff is greater than the decrease in the rule-following payoff,
then he/she will appropriate more that his/her share —-- in other words gteals
water.

In addition, the enforcement of rule is not without costs. It is costly
to enforce rules. Some organization can enforce the same rule less costly
than the other organizations can do. We therefore introduce the cost of
having rules and enforcing them into our payoff function. Let this cost be a
constant €, which can vary across the irrigation systems. We, then, can have
a more general payoff function by adding rule-following payoff and enforcing
cost to the default paycff. We can say that the payoff for a player i at time

t is;
(7) n“ = n'itDF + nkR -

Since head-enders and tail-enders have different appropriation costs,

7 This is based on the agsumption that appropriators get some types of

payoff when they cocperate more than they are supposed to do. They could be
in several forms such as respect from others, altruism, etc.
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equation {7) should be re-written as:

(7") O = m + n} ~ ¢
= gty - .5ru’ - e*Rugruy, — my
- {c{y, - U) + d(M - m)} - € for head-enders
and,

]Ih = TthF + ﬂhR - €
= q* - 2 o prlyg -
q*uy, «5ruy exly, My,

- {e(u, - U) +d(M -m,)} - € for tail-enders

Players, then, will try to maximize the sum of the present value of I,
where the future payocff are discounted by discount parameter w. This present

value of II, is formally;

(8) ¥, = Lo (I

swhere ¥, = the present value of II, at time t.

The choice on the control variable has been assumed to be free from any
constraint so far. This is, however, not always the case. The choice on the
contrel variables, especially on the amount of irrigation water, will be
constrained by some exogenous factors as well as endégenous ones. This will
be discussed in detail in the following section on the water delivery

efficiency.
State Variables

The payoff for the appropriators is not determined entirely by the
appropriators' cheoices on the two control variables. It is also affected by

state variables, which change over time as they are affected by the choices on
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the two control variables. Payoffs are assumed to be influenced by two state
variables - the reliability of water supply and water delivery efficiency of

the irrigation system.

Reliability of Water Supply

First state variable in this model is the reliability of the irrigation
system. As the water-depth in the example of ground water extraction model,
reliability of the irrigation system can affect the payoffs. Ng (1988)
defines reliability of the irrigation system as "the percentage occupancy of
water level above CTL (Critical Tolerance Level)™. According to Ng,
appropriators will tolerate more water above some threshold, but not below it.
This threshold level of water is "CTL". CTL can vary over time due to the
seasonality of the demand for the irrigation water. The same amount of water
at the field canal can produce different levels of reliability as CTL changes.
In this model, however, CTL will be constant thanks to the assumption that the
marginal benefit of the irrigation water is constant during the time periecd t.

It is previously assumed that u,, the sum of the irrigation water
appropriated for the time period t, determines the total benefit of time
period t, IL,. But, II, is also affected by the distribution of u, during the
appropriation period. Given that the CTL, as well as the marginal benefit of
the irrigation water, is fixed over the time period t, the total benefit of
the given amount of irrigation water (uw,) will be maximized when it is evenly
distributed over the time period t. The following example helps to illustrate
this point.

Agsume that there are two hypothetical appropriators and appropriation
period is composed of two days. Both appropriators have the same amount of
water at the source and the same amount of water at their field gate during

that time period (say, 4 units of water, 4u,)?, but they do not have the same

® This means that they have the same level of efficiency, which will be

explained in the following section. This example also will be helpful to see
the difference between the reliability of water supply and the water delivery
efficiency. .
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pattern of distribution of that amount over time for whatever reason. That
is, appropriator A has one unit (u;) for one day and 3 units (3u,) for the
other day. BAppropriator B, on the other hand, has two units (2u,) for both
days. In this example, the total benefit for the two appropriators are
different. It is because, to repéat, the total benefit of irrigation water is
a quadratic function of the supply of irrigation water. See figure 3.4. Aan
hypothetical total benefit curve for a day is shown in figure 3.4. Notice
that the total benefit curve for one day should be idéntical to that of the
other day, since the marginal benefit of irrigation water is assumed to
constant over a time period t. Appropriator A, according to Figure 3.4,
enjoys 4TB for the time period t (2TB for the one day plus 2TB for the other
day), whereas appropriator B enjoys 3TB (TB for the one day plus 2TE for the
other dayj which is only a portion of 4TB. They get different total benefit
even though they get the same amount of water at their field gates.
Appropriator who enjoys higher level of reliability can gain more total
benefits than those who enjoy lower level of reliabhility, from the same amount
of water. More precisely, appropriators can get the maximum total benefit
from the given amount of irrigation water‘when the irrigation water is
distributed evenly over time. This is always the case when the appropriation

period t is composed of two days®’. This shows that appropriators can get the

® This can be deduced from the characteristics of concavity. In my model,

the total benefit function is concave. A function "g" is defined as concave
if:

{a) g(iy+(1l-A)z) = Ag(y) + (1l-l)g(z), YVOo= 4=,

Let (i) x, ¥, and z be an amount of water such that y+z=2x and y,z#*x; and
(Li) g(x) be the total benefit function which is concave.

If 1=0.5, then the equation (a) will be:
g{.5y+.52) 2 .5g(y) + .5g{(z).
This can be re-written as:
g(.5(y+z)) = .5g(y) + .5g(z).
Since y+z=2x, It alsc can be re-written as:
g(.5*2x) =2 .5g(y) + .5g(=z).
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maximum feasible total benefit from the given amount of irrigation water for
the time period t when it is distributed evenly over the time period t. For
thig reason, appropriators will try to digtribute the irrigation water
appropriated as much evenly as they can over the time period t. And if the
water supply of the irrigation system is completely reliable, then they can
evenly distribute the irrigation water over the time period t. Therefore,
under my assumption on non-seasonality of the demand for the irrigation water,
an irrigation system is to be called "reliable" when the irrigation water is
evenly distributed over time.

For this reason, I define the reliability of water supply like this:

(9 R =1- (oM - (u/M) )/ (u/N)}, a=1,...,N§

,where u, = amount of irrigation water at day d, I, My, = u,.

Reliability lies between zero and one interval. It refers to how evenly

the irrigation water is distributed over the time period t. If it is equal to

one, it means that the water is evenly distributed over the time period t. If

it is equal to zero, it means that one day gets the total amount 6f irrigation

water available for the time period t (u,) and other days get nothing. e
Like this, the total benefit of the irrigation water depends on the

reliability of the water supply of the irrigation system. To depict this, I

This is equivalent to:

g(x) 2 .5g(y) + .59(2).
Multiply both sides with 2, then we have:

2*g(x) 2 g(y) + g(z2)} or
g(x) + g(x} =2 g(y)} + g(z).

As you see, by definition, the left hand side is always greater than or at
least equal to the right hand side if the function g is concave. Notice that
the left hand side of the equation (a) refers to the total benefit of the case
where "2x" amount of water is evenly distributed over time (x for one day and
x for the other day), whereas the right hand side refers to the total benefit
of the case where it is unevenly distributed (y for cone day and z for the
other day). Based upon this, we can say that one can maximized his total
benefit of the irrigation water when it is evenly distributed over time.
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assume that the total benefit of irrigation water use is equal to the area
under the linear marginal benefit curve shown in the équation (1) when the
water supply is completely reliable {(R=1). If the water supply is not
completely reliable, then player i cannot only get a portion of that level of
total benefit when R, equals to one. This is possible if we change the

marginal benefit function like this;
(10) MB;, = Rg - ruy.

If reliability is less than one, then the marginal benefit curve will
shift downward. Consequently, the area under that curve, which is the total
benefit, will decreasem. '

Using this marginal benefit function, we can say that the total benefit

of water use is;
{11) 72 = Rg*u, - .S5ru’

.The change in the reliability of water supply over time is influenced by
geveral factors. 1In gfound water basin case, it can be affected by the amount
of water extracted in the previous period. 1In this model, however, it is
hardly affected by the amount of water extracted in the previous period. It
is because the irrigation system in this model is assumed to have no storage '
capacity which can hold the water. Instead, the reliability of the water |
supply of the canal irrigation is affected by the maintenance work done in the
previocus period. If the canals were not maintained well in the previous
preriod, then the canals cannot function well so that the reliability of the
water supply will decrease. Whether or not the irrigation system is

maintained well is determined by the minimum level of investment required to

1Y see the dotted line in Figure 3.2 and 3.3. Alsc notice that ideally,

the relationship would ke non-linear. But here I use linear approximation for
simplicity.
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congserve the previous level of reliability. If the sum of investment exceeds
that level, the reliability of a irrigation system willlincrease, but if it
dees not, then the reliability of that system will decrease.

This can be summarized by a state transformation equation which
determines the transition of state variable - the reliability of the water

supply. The transformation of the reliability of the water supply will be

determined by the equation;

(12) Ry =0 if {R - a(Ky - Imy)} < 0O,
= R - a(Ky ~ Lmy) if 0 < {R - a(K. - Imy} =1,
=1 if {R = a(Ky - Imy)} > 1
where a = coefficient
K.,; = the minimum investment required to maintain the

previous level of reliability, R/!.

We may need more investment to maintain the previous level of

reliability when the reliability is higher than it is lower. That is, K,

should also be a function of R. For simplicity, let K., be a linear function

of R;:
(13) Kau; = Y*R,.

Then egquation (12) will be rewritten as:

(14) R, =0 if {R, - a{Y*R - Imy)} < O,
=R, - a(Y*R, - Im,) if 0 £ {R - a(Y*R, - Im,)} <1,
=1 . Lif {R - a(y*R, - Imy)} > 1

(where a, y = coefficients.

1 1n case of stationary CPRs such as ground water-basin, forest products,
however, the reliability {or other indicators of the system) can be affected
by the appropriation at the previous period. 1In this case, we should add the
term (—ﬁfun) into the equation (12) to depict this. It is also the case for

the irrigation systems with storage capacity.
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In sum, the equation (7') can be re-written as:

(15) oL =m™ +m® - ¢
= Rg*uy;, - .5.1':ujl2 - E.'*I:ujt""ujl - m
= {c(u, = U) + d(M, -~ my)} - € for head-enders
and,

O, =" + n,}* - ¢

Rg*u, ~ .5ru? - e*lu*u, - m,

- {c{u, - T) + diM, - m,}} - € for tail-enders.

And the eguation (8) should be re-written as:

(16) 7. = L_To(IL,) for head-enders, and
kL

Py = Mot (L) . for tail-enders.

Hater Delivery Efficiency

Water delivery efficiency is another state variable which affects
appropriators' payoff. It affects the payoff, however, in somewhat different
way than the reliability of'water supply does. It affects the payoff through
its impacts on the gquantity of the irrigation water available to individual
appropriators. The quantity of irrigation water available to a irrigation
gsystem (Q) has been treated as a constant so far for simplicity. The amount
of the water at the source (say, Q') is, of course, is pretty much given and
beyond appropriators' control.? Therefore, unlike the reliability of water
supply, it cannot be affected by appropriators' behavior at the previous

round. But, we need to distinguish the amount of water at the source (Q°)

2 1t also can be changed when, for example, a big dam is built. This sort
cf change is, however, considered as an exogenous change in my model.
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from the amount of water available to the irrigation system at the field gate
(say, Q). They can be, of cause, identical if the irrigation system is
attached to the source so that there is no canal between the source and the |
field. They can be different, however, if there exists a canal between the
source and the field and there exists water leakage in the canal. This means
that the amount of water at the field gate at time t, Q™,, is a function of
both the amount of water at the source (Q’) and the water loses in the canal.

Let the water loses be @', then it can be written like this:
(17) %, = o - Q.

Q' can be understood more easily with the second state variable in this
model - the water delivery efficiency. With proper maintenance, appropriators
can increase tbe water delivery efficiency and reduce the water losses in the
stretch of the canal. Let the water delivery efficiency (E,) be a measure of
water losses in a stretch of canal. There may be several ways to define the
water delivery efficiency. Here, I simply define it as an index of the
efficiency of the canal which varies from zero to one. It can be "1" if the
canal is so efficient that the water loss in the canal is reduced to its
minimum. It can be "zero™ if the canal is so inefficient that the water loss
in the canal reaches its maximum®. The water loss is also affected by the
length of the canal. If the field gate is directly attached to the source of
the irrigation water, then there will be no water loss at all. But, Qf° of a
system will become smaller and smaller as the length of the canal from the
source to the field gate becomes longer and longer, even though both © and E,
are fixed. Let the length from the source to the field gate be 1, then the

water loses at time period t, Qﬂ can be written as:

B Conceptually, it can be thought of as "the proportion of water entering

the reach that is delivered to the other end" (Sparling 1990, 199) per a unit
of length. If we use this concept, Q' will be expressed as a exponential
function of E, and we will have some problems with solving our game. 8o, I
decided not to use this concept.
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(18) Q. = a*(1-E)*1,

;where a {0<a<(Q’/l)}= coefficient.

With equations (17) and (18), the amount of water at the field gate at

time t can be written as:
(19) Q= @ - a*(1-E,)*1.

This is the amount of water at the head-enders' field gate!., Since the
length from the source to the field gate of tail-enders is always greater than
that of head—-enders, the tail-enders will always have less amount of water at
their field gate than the head~enders can get even when the tail-enders
appropriate nothing, due to the losses in the stretch of the canal¥. And
when the head-enders appropriate some amount of irrigation water, the amount
of water appropriated by the head-enders will also be reduced from the amount
of water at the field gate of the tail-enders. Let the amount of water at the
tail-enders' field gate and the length of canal from the head-enders field

gate to the tail-enders field gate be Q' and 1', respectively, then:
(20) Q6= @ - a*(1-E)*(1+1") - Iu.
Like the reliability of water supply, the water delivery efficiency is

also influenced only by the maintenance work done by the appropriators in the

previous time period. BAgain, whether or not the canal is maintained or not is

14 since I assume that the head-enders are identical in all respects, 1

ignore the possible difference in QfS among the head-enders. This will be
also the case for the tail-enders.

5 Also notice that the water delivery efficiency at a particular part of

canal can be different from the water delivery efficiency at another part of
canal. That is, the water delivery efficiency of the tail-enters itself can
be smaller than that of the head-enders. But, for simplicity, here 1 assume
that there is a unitary water delivery efficiency for the entire irrigation at
time t. - ‘
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determined by the minimum level of investment required to preserve the
previous level of efficiency, and it will be also a increasing function of the

level of efficiency. Thus, the state transition equation for the water

delivery efficiency is:

(21) By =0 if {E - O(y'*E, - Imy}} < O,
=E ~ O0(y'*E, - Imy) if 0 = {E, - O(y'*E, - Im,)} =1,
=1 if {E, - 8(y'*E, - Imy)} > 1
,where 8, y' = coefficients.

Affected by the investment on thelmaintenance at the previous time
period (Emmn)r the water delivery efficiency at time t influences the amount
of water available to the individual appropriators, and this amount of water,
then, affects their payoffs. Because appropriators physically cannot
appropriate what is available to them, there must be an upper limit on the
appropriators’' choice on uw,. And, we also can easily think of lower limit,
which is zerxro, since appropriators cannot get negative amount of water. If
u;, falls between these two limits, then u®, will be the choice, but if it does
not, then either one of the two limits will be the choice. This upper limit
will be a function of Of®. This function, then, will be determined by both
physical and institutional factors. If there exist 'm' head-enders and 'n-m’
tail-enders with no institutional constraint, then the maximum amount of water
available to the head-enders will be "QF/m", which is the amount distributed
evenly among them'. If (QS/m) is big encugh, then Iu’, will be smaller than
(@F%/m) and the rest will be available to the tail-enders. 1In this case, the
upper limit for the tail-enders will be {0 '/(n-m}}. If {Q%'/(n-m)} is also
greater than u”,, then the tail-enders will also be able to get as much water

as they want. But if {Q"/(n-m)} is small, it is possible that head-enders

¥ 1t is because we assume that there is no agymmetry among head-enders so
that there is no difference among then in all aspects.
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can get as much water as they want but tail-enders cannot. And it is also
possible that QF% is so small that even head-enders cannot get as much water
* 17

as they want, which is u;'. So, appropriators’ choice on the amount cof

irrigation water is subject to another set of constraints:

A
[
A

(22) c L S (QF%/m) for head-enders

{Q¢" /(n-m)} for tail-enders.

o
A
3
A

Reliability and Efficiency

The reliability of water supply and the water delivery efficiency can be
thought of as two different measures of the performance of a irrigation
system. The reliability of water supply refers to how reliable the water
supply is or, in other word, how evenly the supply of water is distributed
over time during the time period t. The water delivery efficiency, on the
other hand; refers to how efficiently the water at the source is delivered to
the field gate. Reliability is about the distribution of a given amount of
water and efficiency is about the amount of water delivered to the field gate,
If a certain crop needs less amcunt of water to grow than some other crop
dbes, then the critical tolerance level for the former will be lower than that
for the latter. 1In this case, the le#el of reliability of water supply for
the appropriator who grows the former can be higher than that for the
appropriator who grows the latter even though they all enjoy the same amcunt
of water at the field gate.

As you see, there assumed to be no effects of the two state variables on
each other's state transition eguation. There should be such effect if Ng's
definiﬁion of reliability is used. It is because perfect reliability is

impossible if there is not enough water in the field gate and the amount of

7 phis situation may be called as a "default situation". If there exists

some rules concerning the allocation process, the upper limit may be
determined in totally different ways.
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water at the field gate is a function of the water delivery efficiency as well
as the amount of water at the source. But, when we employ the definition in
the equation (9), just as our model does, we can have a perfect reliability
even without enough water. We can have a perfect reliability whenever the
water is distributed evenly over the time period t, even though u, is smaller
than the lower critical tolerance level for one day. This definition should
be used carefully. It makes sense in our model since the marginal benefit of
the irrigation water is assumed to be fixéd over the time period t. Since the
marginal benefit of the irrigation water is fixed over the time period t,
"even distribution” always means "timely distribution" and consequently
"reliable water supply". But if the marginal benefit of the irrigation water
is not constant over the time period t, then we cannot say that even

distribution means reliable water supply.

In sum, players in our game will maximize the present value of I, in the
equation (16} subject to a set of constraints that characterize the
reliability and the efficiency of the irrigation system (equations (14) and
(21)) and the constraints on the amount of water available to the
appropriators at each time period (equation(22)). If the upper limit on the
amount of water available to an appropriator at time period t is greater than
u, maximizing ¥;, then the upper limit will be the choice at time t. And if
not, u, will be the choice at time t. The choice on the amount of resources
invested in the maintenance at time t, then, will decide the reliability of
water éupply and water delivery efficiency at time (t+1), and this will affect
the payoff functions at time (t+l). This process will be repeated until the

final time period T.

Solution of the Game

Two solution concepts are used for the dynamic game model. The first

one ig the open-loop solution. In the open-loop solution, each appropriator
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maximizes net present discounted value given the strategy paths of the other
appropriators. This solution is a Nash egquilibrium in which each player has
no incentive to deviate from his/her strategy path given the path of the other
players. This solution can capture forward-locoking behavior but this solution
assumes that each appropriator does not take into account the effect of
his/her behavior on the behavior of other appropriators. That is, this
gcolution assumes that each appropriator will not think that other
appropriators will respond to their actions and accordingly they have no
reason to alter his/her own action during the course of play.

In most situations, a more realistic assumption about appropriators
behavior is that each appropriator will adjust behavior in response to the
action of other appropriators. The outcome of this assumption is called the
closed-loop solui’:ion of a game. The term "closed-loop sclution” means a
subgame-perfect equilibrium of the game where players can observe and respond
to their opponents' action at the end df each period (Fundenburg and Tirole
1991; Dixon 19915. That is to say, the closed-loop sclution assumes that at
any point in the game, each player will respond to an action by picking the

strategy path that maximize personal payoff for the rest of the game.

I will find closed-loop solutjion of this difference game using computer
pimulation based on backward induction. The basic logic which will be used in
the computer simulation is:

(1) solve the maximization problem of stage (v} at the final round (t=T) to
get the best reaction function, mg'®;
{2) solve the maximization problem of stage (iv) to get my';

{3) substitute the specific value of mﬁf into the best reaction function my to

¥ we can only calculate the best reaction function rather than a specific

value here. It is because the tail-enders are assumed to act before the head-
enders act. This is also applied to the calculation step (4).

Alsc notice that my;" and my, will be zero. It is because there is no
future round. This is also the case when this game is played as a single-shot
game or played without a transition mechanism. This is close to the
prediction of the single-shot PD game.
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get m;'. Notice that both my and m;" are all to be expressed in terms of Rr
and Eg;
{4) solve the maximization problem of stage (iii) to get the best reaction
function uy;
(4) solve the maximization problem of stage (ii) to get uﬂﬁ
(5) esubstitute the specific value of uﬂf into the best reaction function uy, to
get u, . Notice that both u," and u;" are also to be expressed in terms of R;
and E;;
{6) rewrite I in terms of Ry and E.

This is the maximization problems at T. The maximization problem at
{T-1) will be to maximize the sum of the payoff at time (T-1) and the
discounted payoff at time T (formally, IL., + oll;). Notice that Ry and E; can
be re~writ£en in terms of R;; and E;,, respectively. That implies Ili; can be
re-~written in terms of Ry, and Ep,. And, using the stages from (1) to (6), we
can also calculate ug,, My, and IL;,, which then can be expressed in terms
of Ry, and Ep;. Repeating these stages untii t=1, we can get the time path ofi
R, and E,, and consequently u,, m, and II,. They all can be expressed in terms
of the initial values of R, and E,. This is the closed-locp sclution. HNotice
that this solution is subgame-perfect equilibrium. This process is very
simple in the light of its logic but very complicated in the light of its
actual calculation. For this reason, I will analyze my game model by

parameterizing and running computer simulation.

Parameterization and Simulation
Conclusion

These two sections are not finished yet.
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Figure 3.1: Game in Extensive Form
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fiqure 3.2: Marginal Benefit Function
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Figure 3.3: Total Benefit Function
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Figure 3.4: Total Benefit Function for One Day
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