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ABSTRACT. Small-scale fisheries (SSFs) are social-ecological systems that play a critical role in terms of food security and
poverty alleviation in Latin America. These fisheries are increasingly threatened by anthropogenic and climatic drivers acting
at multiple scales. We review the effects of climate variability on Latin American SSFs, and discuss the combined effects of
two additional human drivers: globalization of markets and governance. We show drastic long-term and large-scale effects of
climate variability, e.g., sea surface temperature anomalies, wind intensity, sea level, and climatic indices, on SSFs. These
variables, acting in concert with economic drivers, have exacerbated stock depletion rates in Latin American SSFs. The impact
of these drivers varied according to the life cycle and latitudinal distribution of the target species, the characteristics of the
oceanographic systems, and the inherent features of the social systems. Our review highlights the urgent need to improve
management and governance systems to promote resilience as a way to cope with the increasing uncertainty about the impacts
of climate and globalization of markets on Latin American SSFs.

RESUMEN. Las pesquerías artesanales son sistemas sociales-ecológicos que desempeñan un papel clave en términos de
seguridad alimentaria y la mitigación de la pobreza en América Latina. Estas pesquerías se encuentran cada vez más amenazadas
por las presiones antropogénicas y climáticas que actúan a múltiples escalas temporales y espaciales. En este trabajo se ha
evaluado la relación entre la variabilidad climática y los recursos pesqueros como una aproximación para comprender los posibles
efectos a corto y largo plazo del cambio climático sobre las pesquerías artesanales en América Latina, teniendo en cuenta el
efecto combinado de dos factores de estrés humanos adicionales: la globalización de los mercados y la gobernanza. En base al
análisis cuantitativo de las extensas bases de datos utilizadas y empleando el enfoque de casos de estudio, este trabajo demuestra
que se están produciendo efectos dramáticos a largo plazo y a gran escala de la variabilidad climática, que actuando de manera
concertada con factores bioeconómicos, han exacerbado las tasas de depleción de los stocks en América Latina. En particular,
hemos identificado dos principales factores del cambio global: (1) la variabilidad del clima a través de las anomalías de
temperatura superficial del mar, de la intensidad del viento, del incremento del nivel del mar y del uso de índices climáticos, y
(2) el aumento en los precios unitarios en las pesquerías artesanales que se encuentran altamente integradas en el mercado
mundial de productos de la pesca. Los resultados también indican que el impacto de estos factores varía según el ciclo de vida
y la distribución latitudinal de las especies objetivo, las características intrínsecas de los sistemas oceanográficos y las
particularidades inherentes de los sistemas sociales. Nuestros resultados ponen de manifiesto la necesidad urgente de desarrollar
instituciones sólidas, mejores sistemas de gobernanza y regulaciones de gestión eficaces para promover la resiliencia como una
manera de hacer frente a la creciente incertidumbre sobre el impacto futuro del cambio climático y la globalización de los
mercados internacionales sobre las pesquerías artesanales de América Latina.
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INTRODUCTION
Small-scale fisheries (SSFs) are embedded in social-
ecological systems (SES) that include biophysical and social
subsystems operating through interdependent feedback
relationships (Ostrom 2009, Perry et al. 2010, Hall 2011). SSFs
play critical roles in developing countries, in the context of
food security and poverty alleviation (Berkes et al. 2001,
Chuenpagdee et al. 2006, Jentoft and Eide 2011), accounting
for 90% of some 120 million direct and indirect fisheries
livelihoods that support more than 500 million people (FAO
2012). The resilience of SSFs is frequently low (Pauly 2006,
Bueno and Basurto 2009) given their vulnerability to local and

global external drivers that affect the resources per se and/or
the social structure of the system (Hall 2011, Jentoft and Eide
2011). Indeed, the coastal systems in which SSFs are
developed exhibit high climatic and oceanographic variability
(Chavez et al. 2003) and are particularly vulnerable to
perturbations produced by extreme natural events and climate
change trends. 

In Latin America, about 2500 small-scale fishing communities
and several million people are directly or indirectly engaged
in the activity (Defeo and Castilla 2005, Salas et al. 2011).
These SSFs are developed in inshore coastal waters, aimed for
sale and/or subsistence, by one fisher or a small group of fishers
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that employ different fishing gears to extract a wide diversity
of coastal resources (Defeo and Castilla 2005). Management
tools and institutional arrangements also differ among
fisheries (Begossi 2010, Salas et al. 2011). Latin American
SSFs are increasingly threatened by human and climatic
drivers acting at multiple temporal and spatial scales,
including uncontrolled fishing intensity, interdependencies
with industrial fisheries, sea-level rise, hurricanes, and other
climatic events (Bovarnick et al. 2010, Defeo and Castilla
2012). Consequently, SSFs are being degraded rapidly,
suffering underemployment, income reduction, and reduced
access to marine food (Defeo and Castilla 2012).  

As the number and magnitude of global change drivers
increase over time, there is an urgent need to understand how
the performance of SSFs is being affected by climate
variability and human drivers. Even though climate change is
currently receiving most attention, others are acting
simultaneously, and their combined effects should be analyzed
(Perry et al. 2010, McCay et al. 2011). In this paper we review
the effects of climate variability on SSFs in Latin America,
considering also the combined effects of two additional human
drivers: globalization of markets and governance. To show
potential combined effects of these drivers, emphasis is placed
on case studies for which long-term information is available
for both the biophysical and social subsystems of SSF.

EFFECTS OF CLIMATE VARIABILITY ON LATIN
AMERICAN SSFs

Shellfisheries
Sedentary and sessile shellfishes are susceptible to rapid
environmental changes. Owing to their strict association with
sedimentological variables (Defeo and McLachlan 2011),
several shellfishes are unable to adapt their distribution to
compensate for warming temperatures and other climate
change consequences, such as ocean acidification and sea level
rise (Defeo et al. 2009, Heath et al. 2012, Narita et al. 2012).
These drivers could affect habitats and biophysical processes
and thus could alter shellfish demography, dispersal patterns,
life history traits, and interaction strength with other species
(Stenseth et al. 2002, Rouyer et al. 2008, Mellin et al. 2012).
Potential impacts resulting from climatic drivers can be related
to the Atlantic Multidecadal Oscillation (AMO), the Pacific
Decadal Oscillation (PDO), and the El Niño Southern
Oscillation (ENSO), which account for major variations in
weather and climate around the world (Stenseth et al. 2002).
This variability influences currents and water mass properties
(Delworth and Mann 2000) and affects ecosystems, including
species targeted by SSFs (Montecino and Lange 2009).  

Changes in climatic drivers might directly favor certain
species over others, based on their latitudinal distribution and
the oceanographic features of the area (Badjeck et al. 2009).
Indeed, a recent evaluation of the surf clam (Mesodesma
donacium) in the Pacific (distribution range from 5ºS to 42º

S) suggested that warm ENSO (El Niño) events negatively
affected landings in Peru and northern Chile (Fig. 1A), but
favored landings in southern Chile (southernmost edge of the
species distribution), showing a positive correlation with
increasing sea surface temperature anomalies (SSTA; Ortega
et al. 2012). Particularly in Peruvian beaches, the strong
1982/1983 and 1997/1998 El Niño events caused mass
mortalities of surf clam (Arntz et al. 1987). The same
differential response to extreme events was observed for the
artisanally harvested Peruvian bay scallop (Argopecten
purpuratus): in the north of Peru, strong El Niño events
drastically increased floods and river discharges, causing a
decrease in scallop biomass, whereas increasing temperatures
in the south produced a positive effect on stock size (Badjeck
et al. 2009). During the 1997/1998 El Niño event,
Independence Bay (14ºS, Peru) showed a 10ºC increase in sea
surface temperature (SST), high oxygen concentrations, and
diminished phytoplankton concentrations. Many benthic
species were affected, e.g., macroalgae, portunid crabs, and
polychaetes, whereas others benefited, e.g., scallop, sea stars,
and sea urchins, particularly A. purpuratus, whose biomass
increased 50-fold (Taylor et al. 2008). Castilla and Camus
(1992) also showed declining shellfish landings in northern
Chile after the 1982/1983 El Niño, in concurrence with high
exploitation levels of the gastropod Concholepas concholepas 
and the kelp Lessonia nigrescens. Nevertheless, Defeo and
Castilla (1998) described a dramatic increase in Octopus
mimus landings and density, by a factor of 100, in northern
Chile, during and after the 1982/1983 El Niño. Increasing SST
enhanced recruitment and availability of octopus prey items
(Castilla and Camus 1992). 

In the southwestern Atlantic Ocean, long-term trends in
abundance of the yellow clam (Mesodesma mactroides) were
negatively affected by a combined effect of increasing SSTA
and fishing intensity (Ortega et al. 2012). SSTA was positively
correlated with AMO variations and both indices were
inversely correlated with yellow clam abundance (Fig. 1C),
meaning higher abundance during cold periods. The AMO
shifted after 1994 from a cold to a warm period (Goldenberg
et al. 2001), probably triggering yellow clam mass mortalities.
Indeed, mass mortalities that decimated populations of M.
mactroides (Atlantic) and M. donacium (Pacific) along their
geographic ranges had been associated with increasing
temperatures (Arntz et al. 1987, Fiori et al. 2004, Riascos et
al. 2009). In M. mactroides, mass mortalities sequentially has
occurred in a north-south direction since 1993 (southern
Brazil) to 2002 (Argentina; Fig. 1D). These mortalities were
mainly observed between late spring and early summer, when
these cold-water clams are more sensitive to diseases (Fiori et
al. 2004, Herrmann et al. 2011). The systematic increase in
SSTA, associated with a southward migration of a critical
warm isotherm, has exacerbated the negative influence of
warm waters.  
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Fig. 1. (A) Long-term variations in the surf clam (Mesodesma donacium) landings and Pacific Decadal
Oscillation (PDO) index for northern Chile. The shaded bar indicates a climate shift that occurred in 1977,
according to Fiedler (2002) and Chavez et al. (2003). See the drastic decline in landings and PDO during
the 1997/1998 El Niño. (B) Long-term trends in landings and unit prices for the surf clam fishery in Chile.
(C) Long-term trends in abundance of the yellow clam (Mesodesma mactroides) in a Uruguayan beach and
Atlantic Multidecadal Oscillation (AMO) index. See the match in the regime shift from a cold to a warm
period that took place between 1994 and 1995 (Goldenberg et al. 2001) and the occurrence of mass
mortalities. (D) At a large scale, these mortalities sequentially occurred in a north-south direction from
1993 (southern Brazil) to 2002 (Argentina). For illustration purposes, sea surface temperature for the year
2006 is shown. Data source: Ortega et al. (2012).

The effects of climate variability, in addition to unregulated
fishing, have swamped management measures directed to
rebuild stocks. In Peru, adverse climate effects on clams were
exacerbated by unsustainable harvest levels and weak
governance, i.e., open access. After the 1997/1998 El Niño
event, the surf clam almost disappeared and the fishery was
closed in 1999. The species has not recovered, and the fishery
is still closed (Ortega et al. 2012). On Atlantic coasts, mass
mortalities have determined fishery closures for almost two
decades, without evidence of recovery of the harvestable stock
(Fiori and Defeo 2006). The lack of response of stocks to long-
term fishery closures suggests that these systems exceeded
critical thresholds or tipping points (Scheffer et al. 2009),
shifting from one state to another that included drastic
variations in community composition. Indeed, Mesodesma 
clams, formerly dominant in terms of biomass, were replaced
by their subordinate competitors for food and space, the
bivalves Donax spp and sand crabs Emerita spp in Pacific

(Arntz et al. 1987) and Atlantic (Defeo 2003) sandy beach
ecosystems. Mass mortalities were also observed in intertidal
and shallow subtidal shellfish, e.g., oysters, pen shells, clams,
spiny lobsters, of the Gulf of California, where coastal fisheries
comprise some 70 species, for an annual catch of nearly
200,000 tons (Lluch-Cota et al. 2007). ENSO events (El Niño
and La Niña) and associated climate-driven hypoxia affected
the abundance and distribution of these resources in a
differential way (Micheli et al. 2012). 

The sustained increase in SST could accelerate sea level rise
rates, inundating many low-lying coastal and intertidal areas.
In addition, changes in the global heat balance could lead to
extreme weather events, including more frequent and severe
storms (IPCC 2007). These events could affect coastal
ecosystems, resulting in coastal squeeze, which leaves
ecosystems trapped between erosion and rising sea level on
the wet side and encroaching development from expanding
human populations on land (Defeo et al. 2009, Revell et al.
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2011). This could affect the quality and availability of species’
habitats targeted by SSFs and therefore the abundance of, and
accessibility to, fish stocks targeted by fishing-dependent
coastal communities. An example is provided by a 29-yr study
for the yellow clam M. mactroides, which is harvested by hand-
picking methods in the intertidal zone. There is a strong
correlation between SSTA and wind speed anomalies (Ortega
et al. 2013), which reach their highest values toward the end
of the study period (Fig. 2A). The increasing wind speed
anomalies are associated with faster and more frequent
onshore winds, which explain the linear increasing pattern in
swash width through time (Fig. 2B). These changes in the
intertidal habitat could negatively affect clams’ recruitment
and survival, as well as the accessibility by fishers to the
resource. Thus, economic income from fishing could be
diminished because of a decrease in the number of fishable
days through time (Fig. 2C). Consequently, unemployment
and disruption and relocation of fishing villages could be
generated. This hypothesis should be subject to future
research. 

Humans are a major force in global change, shaping ecosystem
dynamics from local environments to the biosphere as a whole
(Folke et al. 2011). Thus, managing SSFs should take into
account the interactions between drivers affecting biophysical
and social subsystems (Perry et al. 2011). In this context, the
combination of weak governance, globalization of markets,
fishing pressure, and climate change has exacerbated resource
depletion in Latin American shellfisheries, impinging on
resource sustainability and the well-being of SSF communities
(Defeo and Castilla 2012). Notably, shellfish unit price
significantly increased since the early 1980s, particularly as a
result of (Defeo and Castilla 2005, 2012, Ortega et al. 2012):
(1) incentives generated by market globalization and an
exponential increase in demand, mostly coming from
developed countries where shellfish have been previously
overexploited; (2) weak and unstable governance regimes,
which lack structures and processes needed to shape collective
actions leading to sharing power and making decisions; and
(3) uncontrolled and unsustainable harvest levels. Indeed,
deficit of supply relative to demand, coupled with low
harvesting costs and open access regimes, pushed the price up
(see Fig. 1B and Defeo and Castilla 2012) and triggered an
exponential increase in fishing effort, even under diminishing
catch rates, which have driven several shellfishes artisanally
harvested in Latin America to levels close to extinction, i.e.,
the anthropogenic Allee effect (see Courchamp et al. 2006 for
concept development). Depletion patterns of high-value
species caused a shift of fishing effort onto formerly low-value
species, causing a sequential depletion of shellfisheries during
the last three decades. Open access systems do not work, and
a way to approach this problem is by rewarding local
management with formal cross-scale governance recognition
and support. Unfortunately, Latin American regulatory

Fig. 2. (A) Long-term variations in sea surface temperature
anomalies and wind speed anomalies for the southwestern
Atlantic Ocean. Values corresponding to the beginning and
end of the time series are highlighted. (B) Long-term linear
increase in the swash width at Barra del Chuy beach,
Uruguay, where the yellow clam (Mesodesma mactroides) is
harvested. (C) Variations in the number of fishable days for
January and February (austral summer), which constitute the
months with the highest fishing activity. *** P < 0.001. A
and B: data source from Ortega et al. (2013). C: original
information.

agencies tend to respond late to the problems at hand, once
they are more difficult or even impossible to resolve. This
situation commonly occurs because many countries lack long-
term strategic planning and accountability mechanisms
(reviewed in Defeo and Castilla 2012). As SSFs in Latin
America tend to be strongly influenced by short-term
economic and political interests, they are less resilient and
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more vulnerable to the long-term challenges associated with
climate variability.

Negative and positive effects of El Niño: Galápagos as a
case study
The Galápagos Islands, Ecuador, represent a unique place to
assess the potential impacts of climate variability on marine
species because of their location on the Equatorial Pacific
Ocean, the main influence area of ENSO. Long-term analysis
indicates that shallow reef habitats across the central
Galápagos archipelago experienced major transformations
during the 1982/1983 El Niño event (Edgar et al. 2010 and
references therein). The removal of large lobsters and fish
predators by SSFs probably magnified 1982/1983 El Niño
impacts through a cascade of indirect effects involving
population expansion of grazing sea urchins. Thus, heavily
grazed reefs with crustose coralline algae, “urchin barrens,”
replaced former macroalgal and coral habitats, resulting in
declines in biodiversity (Edgar et al. 2010). Wolff et al.
(2012a) evaluated the dynamics of subtidal communities and
marine vertebrates during the period 1994–2009, based on a
trophic mass balance model of the Bolivar Channel ecosystem,
the most productive area of the archipelago. These authors
showed that SST increased by 7°C during the 1997/1998 El
Niño, when phytoplankton concentration decreased by 46%
and 33%, respectively, and the ecosystem size (total energy
throughput) was reduced by 70%. This was reflected in the
reduction of pelagic and demersal fish, seabirds, reptiles, and
marine mammals. Wolff et al. (2012a) suggested that bottom-
up effects largely control the system during El Niño events.  

Not all species are affected negatively by El Niño events. For
example, the biomass of spiny lobsters (Panulirus penicillatus 
and P. gracilis) and sea cucumbers (Isostichopus fuscus)
increased after the 1997/1998 El Niño. The production
(landings) of these two iconic Galápagos shellfisheries could
be related to variations in SST in general (Fig. 3A, C), and
particularly during El Niño events (Fig. 3B, D). The strongest
impact is associated with the 1997/1998 El Niño event, which
represents the most intense climatic event recorded in the last
30 years. Two and five years after this event, the spiny lobster
and sea cucumber registered maximum historic production
levels (85 tons of tail and 8.3 million individuals, respectively).
The significant linear relationship between the lagged
production (catch series linearly detrended from 1994 to 2011
to account for the effect of fishing) and SST explained 36%
and 49% of the annual production registered for the spiny
lobster and sea cucumber fisheries, respectively (Fig. 3B, D).
 

The high production levels registered for the sea cucumber
SSF in 2002 have been the combined result of two main factors
(Hearn et al. 2005, Castrejón 2011, Wolff et al. 2012a): (1) a
strong recruitment pulse triggered by the 1997/1998 El Niño
that led to unusually high stock densities during years 2000–

2003; and (2) an increase in fishing effort that resulted from
the opening of the sea cucumber artisanal fishery in 1999. Sea
cucumber recruits increased in density by a factor of 20 in the
west part of the archipelago (Hearn et al. 2005). Such pulse
was reflected in the catch composition, where the proportion
of juveniles increased from 9% in 1999 to 56% in 2002
(Murillo et al. 2002). The same factors, combined with a low
predator abundance, e.g., demersal fish, and high prey
abundance, e.g., sea urchins, after the 1997/1998 El Niño,
could explain the high production of spiny lobsters in 2000
(Bustamante et al. 2002, Hearn and Murillo 2008, Wolff et al.
2012b). However, conclusive scientific evidence is still
needed to support this hypothesis. After 1998, warm anomalies
associated with ENSO have been mostly confined to the
central Pacific Ocean (Lee and McPhaden 2010). Thus,
Galápagos experienced an extended cool regime during the
last decade, which together with overfishing might be
responsible for the low levels of sea cucumber recruitment
(Wolff et al. 2012a). The combined effects of poor recruitment
and high fishing levels have severely affected this SSF, leading
to its closure in 2006, 2009, 2010, and 2012.

Impacts of climate variability in freshwater and
estuarine SSFs
The effects of climate variability in freshwater and estuarine
systems will likely result in an increased temperature,
decreased dissolved oxygen levels, eutrophication, water level
changes, stratification, and salinization (Jeppesen et al. 2012).
The response of freshwater fish to warmer waters has been
strong and fast in recent decades, including changes in
assemblage composition, shifts toward dominance of
eurythermal species (Jeppesen et al. 2012), loss of spawning
habitats, and changes in spawning and recruitment of fish
stocks exploited by SSFs (Ficke et al. 2007). A remarkable
interannual variation in abundance and yield of freshwater and
coastal lagoon fishes targeted by SSFs has been attributed to
ENSO variability (Ficke et al. 2007) and concurrent changes
in salinity, as observed in the introduced tilapia Oreochromis
niloticus SSF in northern Colombia (Blanco et al. 2007). In
this case, favorable climate-hydrological changes during La
Niña years 1996, 1999, and 2000, promoted an increase in
fishery yields, whereas tilapia disappeared from the coastal
lagoon between 2001 and 2005, partially because of salinity
concentrations > 10 PSU. River discharge variations
associated with climatic signals (ENSO and others) could
affect ichthyoplankton retention of the whitemouth croaker
(Micropogonias furnieri), the main resource targeted by
artisanal and industrial fisheries in the Rio de la Plata estuary.
These events could regulate fish recruitment by promoting
high (low) recruitment during low (high) discharge periods
(Acha et al. 2012).  

Nonindigenous species (NIS) are extending their southern
range of distribution in Latin America (Orensanz et al. 2002,
Castilla and Neill 2009), and their abundance increased
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Fig. 3. Time series and linear regressions between mean annual sea surface temperature (SST in situ,
Santa Cruz Island) and lagged annual catch of spiny lobster (Panulirus penicillatus and P. gracilis; A, B)
and sea cucumber (Isostichopus fuscus; C, D) in the Galápagos Islands, Ecuador. Catch series from 1995
to 2011 were linearly detrended and the residuals added to the mean, to account for the effect of fishing.
Encircled triangles in B and D indicate the positive effect of 1997/1998 El Niño over spiny lobster (2000)
and sea cucumber (2002–2003) catches. El Niño and La Niña events were defined based on the Oceanic
Niño Index (ONI) estimated by the National Oceanic and Atmospheric Administration (NOAA). **: P <
0.05; ***: P < 0.001. Catch and SST time series were provided by Galápagos National Park and Charles
Darwin Foundation (2012).

exponentially during the last 20 years, partly because of the
combination of rising temperature and strong El Niño events
(Castilla et al. 2005). Particularly, NIS invasions have altered
community structure and diversity in freshwater and estuarine
ecosystems of Latin America, and negatively affected SSFs.
For example, the sustained increase of the Asiatic clams
(Corbicula fluminea and Limnoperna fortunei) and the
invasive whelk (Rapana venosa) in coastal/inshore
ecosystems of South America generated drastic ecosystem

effects that included the depletion of native species exploited
by SSFs, such as the blue mussel (Mytilus edulis platensis;
Lercari and Bergamino 2011).

DISCUSSION
Our review provides growing evidence of long-term and large-
scale effects of climate variability, and their synergy with
bioeconomic drivers, on Latin American SSFs. The impact of
different drivers varies according to the life cycle of the
species, oceanographic characteristics, and the inherent
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features of the social systems. Interactions between multiple
human-induced drivers exacerbated nonlinear responses of
ecosystems to climate change and restricted their adaptive
capacity (Ling et al. 2009). Our long-term case studies showed
that there is not a single response of SSFs to different climatic
and human drivers. In some cases the responses were only
temporary, e.g., in Galápagos ENSO triggered successful
recruitments, but weak governance led to overexploitation in
the short term. Therefore, it is difficult to isolate natural and
human-induced, e.g., market, factors that jointly alter these
SES. Methods directed to quantify the impacts of climate
change on marine ecosystems are generally hard to test,
partially because of uncertainties about the magnitude of
specific impacts on several ecosystem components (Barange
et al. 2010, Grafton 2010). It is worth highlighting that our
review is focused on Latin American SSFs, but all three drivers
analyzed here, i.e., climate variability, weak governance, and
market globalization, affect other SSFs, and also industrial
fisheries, throughout the world. Given that global fisheries
catches have already changed in a manner associated with
global warming trends (Cheung et al. 2013), the need to
consider environmental conditions when formulating
management strategies has acquired more importance than
ever. This is particularly relevant for SES threatened by
multiple drivers acting in a nonlinear manner through time and
space (Perry et al. 2010).  

Long-term Latin America shellfish data series reviewed here
showed drastic effects of climate variability on SSFs. Most
shellfishes are structured as metapopulations defined by a
planktonic larvae and a benthic adult phase decoupled in space
and time. Large fluctuations in abundance, highly driven by
climatic drivers, have led to their description as “resurgent
populations” (McLachlan et al. 1996). In addition, most of
these stocks appear to be quasi-pulse age-class dominated
populations, where contractions/expansions in their
geographic range and changes in their population structure
vary according to environmental settings, notably SST.
Recruitment tends to occur regularly in source areas and to be
irregular or spasmodic in sink areas or marginal portions of
the habitat, i.e., the habitat favorability hypothesis (Caddy and
Defeo 2003). Successful recruitment linked to favorable
climate conditions could give rise to a fishery for one, or a
very few, age groups occupying areas where the species was
not previously abundant. These features of coastal shellfish
make them particularly susceptible to the combined effects of
fishing and climate fluctuations, going through a “boom and
bust” cycle in which landings are initially high in concurrence
with successful recruitments, and then decline to low levels
when unfavorable climatic situations lead to poor recruitment.
Thus, management of SSFs with harvest controls alone will
be ineffective if these environmentally driven variations in
abundance and habitat quality are not taken into account
(Caddy 2007). An appropriate exploitation strategy seems to

be to harvest sink areas, with populations made up of one or
two year classes, but avoiding overexploiting the “core or
source,” which could be identified by the presence of multiple
year classes that survived previous anomalous climatic
episodes (Caddy and Defeo 2003). These source areas should
be closed to fishing during favorable years that could include
El Niño events (see Fig. 3B, D), to trigger the recovery of the
stocks. However, there are no examples in which the “source-
sink” metapopulation theory has been applied to manage Latin
American shellfisheries in the context of climate variability.
Solid SSF management should also be able to recognize early-
warning signals of climate tipping points (Scheffer et al. 2009,
Lenton 2011) before populations go into rapid decline. As
overfishing reduces resilience of stocks to climate-driven
catastrophic phase shifts (Ling et al. 2009), detection
capabilities of early-warning signals previous to such shifts
are of critical importance. However, the detection of these
signals remains a challenge because (Boettiger and Hastings
2013): (1) vast amounts of data should be collected well before
the system nears a tipping point; and (2) long-term trends could
be subject to undocumented changes in data-collection
procedures, a switch in management practice, or a shift in
environmental conditions. 

The recognition of spatial patterns in population demography
and dynamics is of utmost importance for marine spatial
planning and management of stocks exploited by SSFs in Latin
America (Defeo and Castilla 2005, Castrejón and Charles
2013). In this context, matching spatial property rights and
size of the management units with scales of dispersal is
urgently needed to achieve management success (Castilla and
Defeo 2001, McCay and Jones 2011, White and Costello
2011). If this requirement is fulfilled, a combination of
spatially-oriented tools that include spatial property rights
(TURFs) and Marine Protected Areas (MPAs) strategically
sited could increase both fishery profits and abundance
(Costello and Kaffine 2010) and, at the same time, could
respond more effectively to climate change (McCay and Jones
2011). These tools could be complemented by cooperation
arrangements and quota regulations (Gutiérrez et al. 2011,
White and Costello 2011) and, if strategically sited and
distributed, could ameliorate ecosystem impacts caused by
increasing SSTA associated with global warming (Edgar et
al. 2010). Micheli et al. (2012) showed that, despite high and
widespread mass mortality events of benthic invertebrates in
Baja California, Mexico, juvenile replenishment of the pink
abalone (Haliotis corrugata) remained stable within MPAs,
because of large body size and high egg production of the
protected adults.  

A species’ vulnerability to climate change depends on its
exposure and sensitivity to climate variability, its resilience to
recover from perturbations, and its potential to adapt to change
(Williams et al. 2008). These vulnerability criteria require
behavioral, physiological, and genetic data (Doney et al. 2012,
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Huey et al. 2012), which is needed for species targeted by
SSFs in Latin America. This is particularly important for
coastal shellfisheries, where exploitation is increasingly
constrained by the accumulation of toxins associated to
harmful algal blooms, which can render them unsafe for
human consumption (Defeo et al. 2009). The budget for real-
time monitoring, control, and surveillance of these events is
insufficient in Latin American countries, and the risk of
diseases for consumers is high. Vulnerability assessment to
climate change requires a multidisciplinary effort to develop
adaptive management frameworks directed to mitigate the
effects of climatic drivers on species and on coastal
communities’ well-being. Decision-making processes on
SSFs should also focus on implementing adaptation responses
to cope with potential bioeconomic losses (Grafton 2010,
Cinner et al. 2012a), such as the reduction in the number of
fishing days and economic revenues resulting from habitat
loss (see Fig. 2). 

Weak governance, e.g., open access, and a problematic
governability, i.e., governance capacity, have exacerbated
climate-induced changes on SSFs in Latin America. Both
issues represent major threats to the social security of Latin
American fishers (Kalikoski et al. 2010, Defeo and Castilla
2012). Governance institutions (sensu Chuenpagdee and Song
2012) have been unable to adopt proactive and effective
governing actions to deal with the combined impact of fishing
and climate variability on communities’ well-being. Weak
governance, in conjunction with erosion of traditional resource
use systems, open-access regimes, poverty, lack of alternative
employment, and easy access to stocks with low investment
and operating costs, has promoted overfishing and increased
the vulnerability of SSF communities to climate change in
Latin America (Kalikoski et al. 2010). Defeo and Castilla
(2012) recently categorized the issues highlighted above as
“wicked fishery problems” (sensu Jentoft and Chuenpagdee
2009) that undermine SSF governance systems. Some local-
scale solutions to these governance and governability
problems include self-imposed governance with spatial
property rights, internal rules, and comanagement (Basurto
2005, Defeo and Castilla 2005, 2012, Gelcich et al. 2010).
Adaptive comanagement in self-organized communities is
able to create ways to develop mechanisms to cope with the
influence of climate variability on resource abundance and
availability (Kalikoski et al. 2010), promoting flexible
adaptation responses and strengthening adaptive capacities to
different drivers (Grafton 2010, Cinner et al. 2012a). Finally,
ecolabelling programs created additional incentives for
improved management systems and stronger governance
structures (Gutiérrez et al. 2012). For example, the Baja
California rock lobster Marine Stewardship Council (MSC)
certification empowered cooperatives, promoting their
autonomy and ultimately improving the resilience of the
system (Pérez-Ramírez et al. 2012).  

At larger scales, sea-zoning for artisanal and industrial fleets,
including allocation of exclusive spatial rights to SSF
communities, mitigated governance problems in some
countries, including Chile (Castilla 2010) and Uruguay (Horta
and Defeo 2012). However, local institutions generally lack
cross-scale linkages with higher governance levels (Cinner et
al. 2012b), suggesting that formal cross-scale governance
recognition and support through the institutionalization of
fishery rights is still needed in Latin American SSFs (Defeo
and Castilla 2005, Chakalall et al. 2007). This is of the utmost
importance in highly valued transboundary resources, e.g.,
spiny lobsters, which require regional institutional
arrangements to be properly managed in Latin America. 

Unit price constitutes a key economic driver that could lead
to stock depletion in Latin American SSFs (reviewed in Defeo
and Castilla 2012). Deficit of supply relative to an
exponentially growing demand, associated with high export
prices, triggered an increase in fishing effort, which in turn
affected stock sustainability. This phenomenon is particularly
noticeable in coastal SSFs, because price values of the
exploited species largely exceed the low investment and
operating costs. In addition, illegal trade accelerated depletion
rates, taking advantage of the high intertemporal preferences
in resource use and the inadequate enforcement of
management measures (Defeo and Castilla 2012). This
highlights the need to develop solid governance fishery
systems by the consolidation of strong institutions that
promote resilience under uncertainty scenarios of biophysical
and social issues (Gutiérrez et al. 2011). Therefore, to cope
with the increasing uncertainty on the long-term impact of
climate change and globalization of international markets, we
urgently need solid institutions, better governance systems,
and effective management regulations to ensure successful,
safe, and sustainable SSFs in Latin America.

Responses to this article can be read online at: 
http://www.ecologyandsociety.org/issues/responses.
php/5971
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