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The game theory was firstly used for description of economic phenomena and social interaction. But there are 

certain type of perfect information games (PI-games), the so-called positional game or Banach-Mazur games, 

which so far have not been applied in economy. The perfect information positional game is defined as the game 

during which at any time the choice is made by one of the players who is acquainted with the previous decision of 

his opponent. The game is run on a sequential basis. The aim of this paper is to discuss selected Banach-Mazur 

games and to present some applications of positional game. This paper also shows new theoretical example of a 

determined PI-game, based by theoretical overview. All considerations are pure theoretical and based by logical 

deduction. 
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Introduction 

One of the most prominent games of perfect information (called PI-games) is a two-player strategy board 

game played on a checkered game board, otherwise known as chess. For many years the principles of chess 

were unintentionally laying foundations for the development of the latest software. Perfect information refers to 

the fact that at each time only one of the players moves. The game depends exclusively upon their unrestricted 

choices, they remember the past decisions, and in principle they know all possible futures of the game. The first 

published paper devoted to general infinite PI-games is due to Gale and Stewart (1953), but the first interesting 

theoretical infinite PI-game was invented by Mazur about 1935 in the Scottish Book (The Scottish Book, 1941; 

Mauldin, 1981). Positional games were created in 1940’s by a remarkable range of Polish mathematicians, 

belonging to the Lwow School of Mathematics. Owing to the authors’ names they are otherwise known as 

Banach-Mazur games. 

Research Subject and Design 

Research Subject 

The subjects for the present study are PI-games. This paper aims to address the most common versions of 

Banach-Mazur games, their modifications, and their possible applications. 
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Research Framework 

This study will establish the theoretical framework by the logical deduction, based on certain types of 

PI-games otherwise known as Banach-Mazur games. This paper demonstrates some definitions and theorems, 

which are connected with those games. It also attempts to present some applications of the PI-games and 

illustrates a new theoretical example based on Steinhaus’ puzzle. 

The Banach-Mazur Games and Their Applications 

The relevant issue in the area of competitiveness is the game displaying an infinite number of strategies. 

The overwhelming majority of dilemmas related to the above games were defined in the period ranging from 

1935 to 1941 and incorporated into the so-called Scottish Book. The Scottish Book referred to a notebook 

purchased by a wife of Stefan Banach and used by mathematicians of the Lwow School of Mathematics (such 

as Stanisław Mazur, Stanisław Ulam, and Hugo Steinhaus) for jotting down mathematical problems meant to 

be solved. The Scottish Book used to be applied for almost six years. Many problems presented therein were 

created in previous years and not all of them were solved. After the World War II, Łucja Banach brought the 

Book to Wrocław, where it was handwritten by Hugo Steinhaus and sent in 1956 to Los Alamos (USA) to 

Stanisław Ulam. Ulam translated it into English, copied at his own expense and dispatched to a variety of 

universities. The book in question proved to enjoy such a great popularity that it was soon published and 

edited—mainly in English (Mauldin, 1981). The Scottish Book presents the following game No. 43 elaborated 

by Stanisław Mazur (The Scottish Book, 1941). 

Example 1. (Mazur) 

Given is a set E of real numbers. A game between two players I and II is defined as follows: Player I 

selects an arbitrary interval d1, player II then selects an arbitrary segment (interval) d2 contained in d1; then 

player I in turn selects an arbitrary segment d3 contained in d2, and so on. Player I wins if the intersection d1, 

d2, ..., dn,... contains a point of set E; otherwise he loses. If E is complement of a set of the first category, there 

exists a method through which player I can win; if E is a set of the first category, there exists a method through 

which player II will win. 

Problem. It is true that there exists a method of winning for player I only for those sets E whose 

complement is, in certain interval, of first category within a certain interval; similarly, does a method of win 

exist for player II if E is a set of first category (Kuratowski & Mostowski, 1978)? 

Addendum: Mazur’s conjecture is true. 

Modifications of Mazur’s game are as follows. 

Example 2. (Ulam) 

There is given a set E of real numbers. Both players select in turn one of the digits: 0 or 1. Player I wins if 

the number formed by those digits in a given order (in the binary system) belongs to E. Which E will allow 

player I (or player II) to win? 

Example 3. (Banach) 

There is given a set of real numbers E. The two players I and II in turn give real numbers which are 

positive and such that a player always gives a number smaller than the last one given. Player I wins if the sum 

of the given series of numbers is an element of the set E. The same question is as for example 2. 
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Example 4. (Some Popular Modification of Banach-Mazur Game) 

Two players choose alternatively one digit from the set 0, 1, …, 9. Their choices generate an infinite 

sequence of digits, e.g., 5791… Such a sequence may be denoted by the number 0.5791…[0, 1]. Before the 

game begins, a subset X of the section [0, 1] is to be defined. Player I will win provided that the mutually 

generated number belongs to the set concerned. Player II wins if the number at issue does not fall within the set 

in question. 

The conclusion seems inescapable that the above game has a winning strategy. One may assume that at the 

beginning the players should establish the set X taking the following form [0.1, 0.3]. Having arranged such a set, 

player I may initially select the digit 1 or 2, which strategy makes him win the game automatically. The 

selection of any other digit will result in the win of player II. 

Formally, the PI-games may be described as follows: 

Let A denote the set of strategies of player I, B—the set of strategies attributable to player II. 

 : A B   , where   ,  (  is the set of real numbers). 

This game is played as follows: 

Player I chooses a A  and player II chooses b B . Both chooses are made independently and 

without any knowledge about the choice of the other player. Then player II pays to I value ( , )a b . 

0),( ba means that II gets from I the value ),( ba . 

Idea of an infinite game of perfect information is the following: 

let 0,  1, 2... , 

there is a set P called the set of choices, 

player I chooses p P0  , next player II chooses p P1  , than I chooses p P2  , etc.. 

There is a function Pf : , such that the end player II pays to I the value ...),( 10 ppf . 

Definition 1. The triple A B, ,  is said to be a game of perfect information (PI-game) if there exists a 

set P such that A is set of all functions. 












n
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and there exists a function f P:     such that ),( ba = ...),( 10 ppf ,  

where: 

),(,),(),( ),( ),( 31420312010 ppapppbppappbpap   … (see Figure 1). 
 

 
Figure 1. PI-game. 

 

A game A B, ,  defined in this way will be denoted P f ,  or XP , . 

The sequence ...),( 10 ppp   is called a game, any finite sequence n
n Pppq   ),...,( 10  is called 

position. 
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f is a characteristic function of a set X P 
, 








 if 1)(

 if 0)(

Xppf

Xppf  

The player I wins the game if f(p) = 1 and II wins the game if f(p) = 0. 

Definition 2 (Mycielski, 1992). A game A B, ,  is called determined if: 

),(infsup),(supinf bavba
BbAaAaBb



       (1) 

where v is value of the game (common value v of both sides of this equation is called the value of the game 

A B, , ) 

Remark: A game is determined if and only if the game has a value. 

A game is not determined if: 

),(infsup),(supinf bavba
BbAaAaBb



       (2) 

Note: If the game is not determined, then the left-hand side of (1) is larger than the right-hand side of (1). 

If the game has a value v and there exists an a0 such that (a0, b)  v for all b, then a0 is called an optimal 

strategy for player I. If (a, b0)  v for all a, the b0 is called an optimal strategy for player II. 
P f ,  may be defined as a win for I or a win for the II if P f ,  has value 1 or 0, respectively. If 

Pf :  has the property that there exists an n such that f p p( , ...)0 1 does not depend on the choice pi 

with i > n, then fP ,
 is called a finite game. 

The following theorems are true: 

Theorem 1 (Mycielski, 1992): Every finite game has a value. 

Proof ((Mycielski, 1992), proposition 2.1, p. 45). 

Theorem 2 (Mycielski, 1992): There exist sets X  {0, 1} such that game < {0, 1}, X > is not 

determined. 

Proof ((Mycielski, 1992), proposition 3.1, p. 46). 

Theorem 3 (Mycielski, 1992): If the set X  P jest closed or open, then the game XP ,
 is 

determined. 

Proof ((Mycielski, 1992), proposition 3.2, p. 46). 

Theorem 4 (Mycielski, 1992): If player II has a winning strategy in Banach-Mazur game, then X is not 

countable. 

Another interpretation of Banach-Mazur games. 

Example 5. (Mycielski, 1992) 

A set S is given. Player I splits S into two parts. Player II chooses one of them. Again, Player I splits the 

chosen part into two disjoint parts and II chooses one of them, etc.. Player I wins if and only if intersection the 

chosen parts is not empty and player II wins if and only if it is empty. 

Remark: Player I has a winning strategy if and only if 02S , and player II has a winning strategy if 

0S , where S  means cardinality of set S, 0  is alef zero—cardinality of integer numbers. 

Theorem 5 (Mycielski, 1992): If player II has a winning strategy for Banach-Mazur game, then 0S . 

The proofs of above theorems have used the Axiom of Choice (Mycielski, 1992). 

Mycielski and Steinhaus conjecture that the Axiom of Choice is essential in any proof of the existence of 

sets X  {0, 1} such that the game < {0, 1}, X > is not determined. In the same order of ideas, theorem 5 
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shows that Continuum Hypothesis ( c02 - continuum or there is no cardinal number between 0  and 
02 ) is equivalent to the determinacy of natural class of PI games. 

Another Example Banach-Mazur Game 

While creating the original variants of Banach-Mazur games, one may apply the properties of finish sets. 

That ensures that the game in question may be deemed as determined. 

Example 6.  

Two players select by turns certain numbers from the interval [0, 1], while following a given pattern: 

player 1 picks out number x1 belonging to the interval [0, 1]. Subsequently, player 2 chooses number x2, 

keeping in mind that x1 should be contained in the first half and x2 in the second half of the interval at hand. 

Consequently, player 1 selects x3 in such a manner that x1, x2, x3 each belongs separately to one of the equal 

sections of the interval concerned. As a result, player 2 gives number x4 in such a way that each of the numbers 

x1, x2, x3, x4 falls into the scope of distinct quarters comprising the interval in question. The procedure may be 

continued without limitation. 

The game is won by the player who as the last one selects the number fulfilling the game conditions, i.e., 

for the nth-time he gives number xn, where each number establishing the sequence x1, x2, x3, …, xn belongs to 

one of separate parts of the interval [0, 1] divided into n equal sections. 

Commentary to the Solution 

The game is based upon one of the tasks presented by Steinhaus (1964) in his book One hundred problems 

in elementary mathematics. One may prove that there exists a sequence of numbers which adheres to the game 

requirements, hence the game may be deemed as completed. When applying theorem 1, the game may be found 

determined, i.e., one player may adopt a winning strategy. It is common knowledge that for n = 10 one may 

suggest several sequences of numbers x1, x2, x3, …, x10 fulfilling the game conditions. Below there are two 

examples: 

(a) 0.95 0.05 0.34 0.74 0.58 0.17 0.45 0.87 0.26 0.66 

(b) 0.06 0.55 0.77 0.39 0.96 0.28 0.64 0.13 0.88 0.48 

Numbers from the first sequence may fall into the separate sections of the interval as presented in Table 1. 
 

Table 1 

Numbers of the Parts Into Which the Interval [0, 1] Was Divided 

Parts numbers 2 3 4 5 6 7 8 9 10 

0.95 2 3 4 5 6 7 8 9 10 

0.05 1 1 1 1 1 1 1 1 1 

0.34  2 2 2 3 3 3 4 4 

0.74   3 4 5 6 6 7 8 

0.58    3 4 5 5 6 6 

0.17     2 2 2 2 2 

0.45      4 4 5 5 

0.87       7 8 9 

0.26        3 3 

0.66         7 
 



ON POSITIONAL GAMES WITH PERFECT INFORMATION AND THEIR APPLICATIONS 

 

185

The first row lists the numbers of sections into which the interval has been divided. The first column 

contains the sequence of numbers x1, x2, x3, …, x10. The intersection of a row and column indicates the interval 

part into which a given number falls upon a specific division. None of the columns contains two identical 

numbers. 

In the event of the second sequence the value of n may reach 14 (n = 14) through expanding the list by the 

following numbers: 0.19; 0.71; 0.35; 0.82, i.e., 

0.06 0.55 0.77 0.39 0.96 0.28 0.64 0.13 0.88 0.48 0.19 0.71 0.35 0.82 

Since the numbers 0.35 and 0.39 are contained between 5/15 ≈ 0.33 and 6/15 ≈ 0.4, the above example 

may not be supplemented by the 15th number while obeying the game rules. In the instant case player II is the 

winner, therefore the game may be considered finished. 

In the case of other sequences, the game may be found finished even upon the significantly lower number 

of movements. 

Several Remarks on PI Games Applications 

Banach-Mazur games used to enjoy great popularity, mainly among mathematicians. The analysis of those 

games revolved around one chief question: Is there a winning strategy guaranteed for any of the players? 

Taking into account the Axiom of Choice, already at the beginning of the 20th century it was proven that there 

were certain sets X for which neither player may adopt a winning strategy. The introduction of a new axiom to 

a set theory, known as the axiom of determination, significantly facilitated the search for a winning strategy. 

Different variants of Banach-Mazur games were analyzed in terms of the satisfaction of determination 

condition. There is a presumption that there exists a set whose subsets are assigned a non-trivial measure which 

is a countably additive extension, vanishing on points and taking the value 0 or 1. All the subsets in the set 

concerned are determined, and at least one of them has a winning strategy. 

Banach-Mazur games can be classified as infinite multi-stage games with perfect information. In practice, 

they are illustrated by the situations where the winner takes everything (compare the Colonel Blotto Game). 

Moreover, the games where the win is already determined at the initial stage, rely on a first come, first served 

basis. In terms of economy, such a game corresponds to the auction where a product (item) is offered up for 

bid. In such a case the buyer who wins the auction takes everything. Analogically to many positional   

games, the first participant submitting a bid determines the course of auction. Whenever the bid does not reach 

the sale price offered by the seller, other bidders may outbid the reserve price or withdraw from the auction. 

For instance, the digit selected by the participant initiating the game may not guarantee that the number 

generated in a following sequence will belong to a given interval (compare example 4). Notwithstanding the 

type of auction the optimal strategy adopted by a bidder resides in offering such a price which will warrant the 

win (i.e., the purchase of a product), however, which does not exceed his own valuations of an item in 

question. In the event of Dutch auction the price is gradually lowered until some auctioneer is willing to 

accept the announced price—such a participant wins the auction. It is a typical example of a game based on a 

first come, first served ground. The games introduced in previous examples serve as an illustration for the 

Dutch auction. 

The most common, “finite” positional game with perfect information is chess, which laid foundations for 

artificial intelligence algorithms applied in various domains, including the construction of dynamic equilibrium 

models as well as the description of economic systems lacking the equilibrium. In 1949 the American 
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mathematician C. E. Shannon set up the guidelines for computer chess game, which were being gradually 

improved in ensuring years. In the 1950s the lion’s share of the artificial intelligence research focused 

predominantly upon the chess game basis, as they were considered a good model for human intelligence. From 

the historical angle, what may be perceived as a breakthrough point is the match held in May 1997 in the 

Manhattan district, where the chess champion Garry Kasparov was defeated by the IBM’s computer Deep Blue. 

Up to that moment the chess was deemed as one of several games in which a human being could prevail over 

the machine. The reason for that phenomenon may be explained by the fact that the number of variants 

applicable to one game composed of 100 movements amounts 10155. The computers of older generation used to 

calculate every operation and thus were not able to analyze all possible options within three permissible 

minutes. Conversely, the players aimed to select the best variants, as they were not capable of computing 

possibilities. The pivotal role was played both by their knowledge and experience. Notwithstanding the 

significant advancement of technology which facilitated the computerized data processing, the useless 

strategies were removed from the available algorithms and 600,000 chess openings as well as a considerable set 

of chess masters’ games were imprinted to the machine languages. 

Unlike the previous algorithms, the newly created methods prompted the computer to search for the move 

usually made by the top players. In 1996 Kasparov won the match in Philadelphia with a computer, where the 

score was 4:2. The match initiated a real battle against the human mind, which resulted in the further 

enhancement of computer’s strategies upon modifications reflecting the thinking process conducted by a chess 

champion while attempting to predict the consecutive moves of his opponent. One may claim that in 1997 

Kasparov was almost forced to play a game not only with a technologically modified computer, but also with 

“the spirit of his predecessors”. 

In 2011 IBM developed a smart computer named Watson, which understands questions posed in natural 

language and is able to gather as well as browse an enormous amount of information more effectively than a 

human being. Having competed against two masters of American show Jeopardy, Watson received the first 

prize. It acquires a massive amount of data extracted from medical periodicals and rapidly analyses thousands 

of particular medical cases, which skill is unattainable even by the most talented doctors. Watson presents the 

best options which lay foundations for a further diagnosis. The works aiming to develop computers of new 

generation, i.e., quantum computers which can employ a specific class of quantum phenomena and make 

independent decisions, are still underway. 

The artificial intelligence is more and more often applied in energetics—to create systems not only 

monitoring the course of specific processes, but also involved in planning and decision-making procedures. It is 

used also for the purposes of image processing, e.g., in cameras, supporting financial decisions as well as in 

many other domains of everyday life. 

It is worth mentioning one of the most fascinating personalities of sports and science, Robert James 

Fischer who was famous for his exceptionally talented and rebellious mind. He played hundreds of outstanding 

games, implemented many innovative solutions and introduced the so-called Fischer clock enabling to keep 

track of the total time each player takes for his or her own moves. Due to some personal reasons he was not 

able to play the game with the computer. Just wonder who would have won in such a competition. 

In the light of the game theory, it should be emphasized that due to its limited range of strategies the chess 

game is indeterminate, of which fact the vast majority of chess players remain unaware. 
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Conclusions 

On the basis of the PI-games, specific rules of auction may be formulated. The games concerned can serve 

as an exemplification of certain situation where the winner takes everything. A “finite” PI-game with perfect 

information, i.e., chess can be used for artificial intelligence algorithms. 
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