Browsing by Author "Cumming, Graeme S."
Now showing 1 - 9 of 9
- Results Per Page
- Sort Options
Journal Article Applied Research for Enhancing Human Well-Being and Environmental Stewardship: Using Complexity Thinking in Southern Africa(2015) Palmer, Carolyn G.; Biggs, Reinette; Cumming, Graeme S."Humans all over the planet are struggling and aspiring to engage with the scale and scope of the challenge of achieving human well-being and environmental stewardship for all. This special feature presents the products of processes in Southern Africa that have explored the potential use of complexity approaches to tackling the substantial social-ecological challenges in the region. Although the papers composing the special feature draw mainly on South African case studies, the thinking and participation in development processes were inclusive of the broader region. A concept that emerges through the papers is the inevitable conflation of human well-being and justice, and together they point toward social and ecological justice as an expression of human well-being, founded on environmental stewardship. Over the time the constituent papers have emerged, Mark Swilling and Eve Annecke have produced a most elegantly written and argued book Just Transitions (Swilling and Annecke 2012) that foregrounds the justice theme, deepens and complements several of the perspectives collectively presented in this feature, particularly complexity-based research, and adds an important economics lens."Journal Article Assessing Future Ecosystem Services: A Case Study of the Northern Highlands Lake District, Wisconsin(2003) Peterson, Garry D.; Beard, T. Douglas; Beisner, Beatrix E.; Bennett, Elena M.; Carpenter, Stephen; Cumming, Graeme S.; Dent, C. Lisa; Havlicek, Tanya D."The Northern Highlands Lake District of Wisconsin is in transition from a sparsely settled region to a more densely populated one. Expected changes offer benefits to northern Wisconsin residents but also threaten to degrade the ecological services they rely on. Because the future of this region is uncertain, it is difficult to make decisions that will avoid potential risks and take advantage of potential opportunities. We adopt a scenario planning approach to cope with this problem of prediction. We use an ecological assessment framework developed by the Millennium Ecosystem Assessment to determine key social and ecological driving forces in the Northern Highlands Lake District. From these, we describe three alternative scenarios to the year 2025 in which the projected use of ecological services is substantially different. The work reported in this paper demonstrates how scenarios can be developed for a region and provides a starting point for a participatory discussion of alternative futures for northern Wisconsin. Although the future is unknowable, we hope that the assessment process begun in this paper will help the people of the Northern Highlands Lake District choose the future path of their region."Journal Article Change and Identity in Complex Systems(2005) Cumming, Graeme S.; Collier, John"Complex systems are dynamic and may show high levels of variability in both space and time. It is often difficult to decide on what constitutes a given complex system, i.e., where system boundaries should be set, and what amounts to substantial change within the system. We discuss two central themes: the nature of system definitions and their ability to cope with change, and the importance of system definitions for the mental metamodels that we use to describe and order ideas about system change. Systems can only be considered as single study units if they retain their identity. Previous system definitions have largely ignored the need for both spatial and temporal continuity as essential attributes of identity. After considering the philosophical issues surrounding identity and system definitions, we examine their application to modeling studies. We outline a set of five alternative metamodels that capture a range of the basic dynamics of complex systems. Although Holling's adaptive cycle is a compelling and widely applicable metamodel that fits many complex systems, there are systems that do not necessarily follow the adaptive cycle. We propose that more careful consideration of system definitions and alternative metamodels for complex systems will lead to greater conceptual clarity in the field and, ultimately, to more rigorous research."Journal Article Habitat Shape, Species Invasions, and Reserve Design: Insights from Simple Models(2002) Cumming, Graeme S."Species invasions have become a major threat to global biodiversity. We currently lack a general theory of species invasions that allows us to make useful predictions about when and where invasions will occur, whether they will be successful, and whether they will alter ecosystem function in invaded habitats. One line of inquiry in developing such a theory is to focus on the characteristics of successful invaders. A second, complementary approach is to examine habitats of interest more closely and ask how the properties of the habitat that is being invaded affect the likelihood of invasion success. In this paper, I consider the importance of habitat shape (also termed 'habitat topology' or 'habitat geometry') as a variable affecting the dispersal and abundance of invasive populations. I use two well-established simulation modeling approaches, namely, a cellular automaton model and a reaction-diffusion model, to mimic species invasions in hypothetical habitats that cover a range of linear, branching, rectangular, and square shapes. The results suggest that invasions in more geometrically complex habitats will occur faster and may ultimately produce a higher abundance of the invasive species. Differences in invasion rates are not a simple consequence of differences in overall connectivity, as shown by a comparison of habitats with identical connectivities but different spatial arrangements of cells. Ultimately, if combined with other modeling approaches, these methods may be useful in generating recommendations for managers about the vulnerability of particular habitats and reserve networks to invasion."Journal Article Predators on Private Land: Broad-Scale Socioeconomic Interactions Influence Large Predator Management(2016) Clements, Hayley S.; Cumming, Graeme S.; Kerley, Graham I. H."The proliferation of private land conservation areas (PLCAs) is placing increasing pressure on conservation authorities to effectively regulate their ecological management. Many PLCAs depend on tourism for income, and charismatic large mammal species are considered important for attracting international visitors. Broad-scale socioeconomic factors therefore have the potential to drive fine-scale ecological management, creating a systemic scale mismatch that can reduce long-term sustainability in cases where economic and conservation objectives are not perfectly aligned. We assessed the socioeconomic drivers and outcomes of large predator management on 71 PLCAs in South Africa. Owners of PLCAs that are stocking free-roaming large predators identified revenue generation as influencing most or all of their management decisions, and rated profit generation as a more important objective than did the owners of PLCAs that did not stock large predators. Ecotourism revenue increased with increasing lion (Panthera leo) density, which created a potential economic incentive for stocking lion at high densities. Despite this potential mismatch between economic and ecological objectives, lion densities were sustainable relative to available prey. Regional-scale policy guidelines for free-roaming lion management were ecologically sound. By contrast, policy guidelines underestimated the area required to sustain cheetah (Acinonyx jubatus), which occurred at unsustainable densities relative to available prey. Evidence of predator overstocking included predator diet supplementation and frequent reintroduction of game. We conclude that effective facilitation of conservation on private land requires consideration of the strong and not necessarily beneficial multiscale socioeconomic factors that influence private land management."Journal Article Resilience Management in Social-Ecological Systems: A Working Hypothesis for a Participatory Approach(2002) Walker, Brian H.; Carpenter, Stephen; Anderies, John M.; Abel, Nick; Cumming, Graeme S.; Janssen, Marco A.; Lebel, Louis; Norberg, Jon; Peterson, Garry D.; Pritchard, Rusty"Approaches to natural resource management are often based on a presumed ability to predict probabilistic responses to management and external drivers such as climate. They also tend to assume that the manager is outside the system being managed. However, where the objectives include long-term sustainability, linked social-ecological systems (SESs) behave as complex adaptive systems, with the managers as integral components of the system. Moreover, uncertainties are large and it may be difficult to reduce them as fast as the system changes. Sustainability involves maintaining the functionality of a system when it is perturbed, or maintaining the elements needed to renew or reorganize if a large perturbation radically alters structure and function. The ability to do this is termed 'resilience.' This paper presents an evolving approach to analyzing resilience in SESs, as a basis for managing resilience. We propose a framework with four steps, involving close involvement of SES stakeholders. It begins with a stakeholder-led development of a conceptual model of the system, including its historical profile (how it got to be what it is) and preliminary assessments of the drivers of the supply of key ecosystem goods and services. Step 2 deals with identifying the range of unpredictable and uncontrollable drivers, stakeholder visions for the future, and contrasting possible future policies, weaving these three factors into a limited set of future scenarios. Step 3 uses the outputs from steps 1 and 2 to explore the SES for resilience in an iterative way. It generally includes the development of simple models of the system's dynamics for exploring attributes that affect resilience. Step 4 is a stakeholder evaluation of the process and outcomes in terms of policy and management implications. This approach to resilience analysis is illustrated using two stylized examples."Journal Article Scale Mismatches in Social-Ecological Systems: Causes, Consequences, and Solutions(2006) Cumming, Graeme S.; Cumming, David H. M.; Redman, Charles L."Scale is a concept that transcends disciplinary boundaries. In ecology and geography, scale is usually defined in terms of spatial and temporal dimensions. Sociological scale also incorporates space and time, but adds ideas about representation and organization. Although spatial and temporal location determine the context for social and ecological dynamics, social-ecological interactions can create dynamic feedback loops in which humans both influence and are influenced by ecosystem processes. We hypothesize that many of the problems encountered by societies in managing natural resources arise because of a mismatch between the scale of management and the scale(s) of the ecological processes being managed. We use examples from southern Africa and the southern United States to address four main questions: (1) What is a 'scale mismatch?' (2) How are scale mismatches generated? (3) What are the consequences of scale mismatches? (4) How can scale mismatches be resolved? Scale mismatches occur when the scale of environmental variation and the scale of social organization in which the responsibility for management resides are aligned in such a way that one or more functions of the social-ecological system are disrupted, inefficiencies occur, and/or important components of the system are lost. They are generated by a wide range of social, ecological, and linked social-ecological processes. Mismatches between the scales of ecological processes and the institutions that are responsible for managing them can contribute to a decrease in social-ecological resilience, including the mismanagement of natural resources and a decrease in human well-being. Solutions to scale mismatches usually require institutional changes at more than one hierarchical level. Long-term solutions to scale mismatch problems will depend on social learning and the development of flexible institutions that can adjust and reorganize in response to changes in ecosystems. Further research is needed to improve our ability to diagnose, understand, and resolve scale mismatches in linked socialecological systems."Journal Article Trade-Offs Across Space, Time, and Ecosystem Services(2006) Rodriguez, Jon Paul; Beard, T. Douglas; Bennett, Elena M.; Cumming, Graeme S.; Cork, Steven J.; Agard, John; Dobson, Andrew P.; Peterson, Garry D."Ecosystem service (ES) trade-offs arise from management choices made by humans, which can change the type, magnitude, and relative mix of services provided by ecosystems. Trade-offs occur when the provision of one ES is reduced as a consequence of increased use of another ES. In some cases,a trade-off may be an explicit choice; but in others, trade-offs arise without premeditation or even awareness that they are taking place. Trade-offs in ES can be classified along three axes: spatial scale, temporal scale, and reversibility. Spatial scale refers to whether the effects of the trade-off are felt locally or at a distant location. Temporal scale refers to whether the effects take place relatively rapidly or slowly. Reversibility expresses the likelihood that the perturbed ES may return to its original state if the perturbation ceases. Across all four Millennium Ecosystem Assessment scenarios and selected case study examples, trade-off decisions show a preference for provisioning, regulating, or cultural services (in that order). Supporting services are more likely to be 'taken for granted.' Cultural ES are almost entirely unquantified in scenario modeling; therefore, the calculated model results do not fully capture losses of these services that occur in the scenarios. The quantitative scenario models primarily capture the services that are perceived by society as more important-provisioning and regulating ecosystem services-and thus do not fully capture trade-offs of cultural and supporting services. Successful management policies will be those that incorporate lessons learned from prior decisions into future management actions. Managers should complement their actions with monitoring programs that, in addition to monitoring the short-term provisions of services, also monitor the long-term evolution of slowly changing variables. Policies can then be developed to take into account ES trade-offs at multiple spatial and temporal scales. Successful strategies will recognize the inherent complexities of ecosystem management and will work to develop policies that minimize the effects of ES trade-offs."Journal Article Wild Bird Movements and Avian Influenza Risk Mapping in Southern Africa(2008) Cumming, Graeme S.; Hockey, Philip A. R.; Bruinzeel, Leo W.; Du Plessis, Morne A."Global analyses of the potential for avian influenza transmission by wild birds have ignored key characteristics of the southern African avifauna. Although southern Africa hosts a variety of migratory, Holarctic-breeding wading birds and shorebirds, the documented prevalence of avian influenza in these species is low. The primary natural carriers of influenza viruses in the northern hemisphere are the anatids, i.e., ducks. In contrast to Palearctic-breeding species, most southern African anatids do not undertake predictable annual migrations and do not follow migratory flyways. Here we present a simple, spatially explicit risk analysis for avian influenza transmission by wild ducks in southern Africa. We developed a risk value for each of 16 southern African anatid species and summed risk estimates at a quarter-degree cell resolution for the entire subregion using data from the Southern African Bird Atlas. We then quantified environmental risks for South Africa at the same resolution. Combining these two risk values produced a simple risk map for avian influenza in South Africa, based on the best currently available data. The areas with the highest risk values were those near the two largest cities, Johannesburg and Cape Town, although parts of Kwazulu-Natal and the Eastern Cape also had high-risk scores. Our approach is simple, but has the virtue that it could be readily applied in other relatively low-data areas in which similar assessments are needed; and it provides a first quantitative assessment for decision makers in the subregion."