Browsing by Author "Fahrig, Lenore"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Journal Article Behavioral Responses of Northern Leopard Frogs (Rana pipiens) to Roads and Traffic: Implications for Population Persistence(2009) Bouchard, Julie; Ford, Adam T.; Eigenbrod, Felix; Fahrig, Lenore"A key goal in road ecology is to determine which species are most vulnerable to the negative effects of roads on population persistence. Theory suggests that species that avoid roads are less likely to be negatively affected by roads than those that do not avoid roads. The goal of this study was to take a step toward testing this prediction by evaluating the behavioral response to roads and traffic of a species whose populations are known to be negatively affected by roads and traffic, the northern leopard frog (Rana pipiens). We studied the movement patterns of northern leopard frogs during their spring migration from overwintering sites in a river to various breeding ponds that were disconnected from the river by roads. We performed short-distance translocations of migrating frogs, followed them visually, and documented their movement coordinates following each hop, both near the roads and in non-roaded areas. We found that frogs took longer to move near roads with more traffic and that their movement was quickest in areas without roads nearby. Frogs tended to deviate more from a straight-line course when they were released near roads than compared with control areas, but this response was independent of traffic volume. All frogs released near roads attempted to cross the road. On very low traffic roads (10.86 mean vehicles per hour), 94% of frogs crossed the road successfully, whereas at higher traffic roads (58.29 mean vehicles per hour) 72% were successful. Our results suggest that frog’s inability to avoid going onto roads and their slow movement combine to make them particularly vulnerable to road mortality, which likely explains the strong negative effects of roads on frog population abundance. Conservation efforts should focus on preventing frogs from accessing the road surface through the use of drift fencing and culverts."Journal Article Effects of Roads on Animal Abundance: An Empirical Review and Synthesis(2009) Fahrig, Lenore; Rytwinski, Trina"We attempted a complete review of the empirical literature on effects of roads and traffic on animal abundance and distribution. We found 79 studies, with results for 131 species and 30 species groups. Overall, the number of documented negative effects of roads on animal abundance outnumbered the number of positive effects by a factor of 5; 114 responses were negative, 22 were positive, and 56 showed no effect. Amphibians and reptiles tended to show negative effects. Birds showed mainly negative or no effects, with a few positive effects for some small birds and for vultures. Small mammals generally showed either positive effects or no effect, mid-sized mammals showed either negative effects or no effect, and large mammals showed predominantly negative effects. We synthesized this information, along with information on species attributes, to develop a set of predictions of the conditions that lead to negative or positive effects or no effect of roads on animal abundance. Four species types are predicted to respond negatively to roads: (i) species that are attracted to roads and are unable to avoid individual cars; (ii) species with large movement ranges, low reproductive rates, and low natural densities; and (iii and iv) small animals whose populations are not limited by road-affected predators and either (a) avoid habitat near roads due to traffic disturbance or (b) show no avoidance of roads or traffic disturbance and are unable to avoid oncoming cars. Two species types are predicted to respond positively to roads: (i) species that are attracted to roads for an important resource (e.g., food) and are able to avoid oncoming cars, and (ii) species that do not avoid traffic disturbance but do avoid roads, and whose main predators show negative population-level responses to roads. Other conditions lead to weak or non-existent effects of roads and traffic on animal abundance. We identify areas where further research is needed, but we also argue that the evidence for population-level effects of roads and traffic is already strong enough to merit routine consideration of mitigation of these effects in all road construction and maintenance projects."Journal Article Local vs. Landscape Effects of Woody Field Borders as Barriers to Crop Pest Movement(1998) Bhar, Rod; Fahrig, Lenore"Maintenance of woody borders surrounding crop fields is desirable for biodiversity conservation. However, for crop pest management, the desirability of woody borders depends on the trade-off between their effects at the local field scale and the landscape scale. At the local scale, woody borders can reduce pest populations by increasing predation rates, but they can also increase pest populations by providing complementary habitats and reducing movement rate of pests out of crop fields. At the regional scale, woody borders can reduce pest populations by reducing colonization of newly planted crop fields. Our objective was to develop guidelines for maximizing pest control while maintaining woody borders in the landscape. We wished to determine the conditions under which the regional effect of borders on colonization can outweigh local enhancement effects of borders on pest populations. We built a stochastic, individual-based, spatially implicit simulation model of a specialist insect population in a landscape divided into a number of crop fields. We conducted simulations to determine the conditions under which woody borders enhance vs. reduce the regional pest population size. The following factors were considered: landscape fragmentation, crop rotation period, barrier effect of woody borders, disperser success rate, and effect of woody borders on local survival. The simulation results suggest that woody borders are most likely to enhance regional control of crop pests if (1) the woody borders are very effective in reducing insect movement from one crop field to another, and (2) crop rotation is on a very short cycle. Based on these results, our preliminary recommendations are that woody borders should contain dense, tall vegetation to reduce insect movement, and crops should be rotated on as short a cycle as possible. These conditions should ensure that woody borders can be maintained for their conservation value without enhancing crop pest populations. The results are encouraging because the two most important factors are not sensitive to details of pest habitat use; the recommendations should apply across most pest species."Journal Article Mechanisms Affecting Population Density in Fragmented Habitat(2005) Tischendorf, Lutz; Grez, Audrey; Zaviezo, Tania; Fahrig, Lenore"We conducted a factorial simulation experiment to analyze the relative importance of movement pattern, boundary-crossing probability, and mortality in habitat and matrix on population density,and its dependency on habitat fragmentation, as well as inter-patch distance. We also examined how the initial response of a species to a fragmentation event may affect our observations of population density in post-fragmentation experiments. We found that the boundary-crossing probability from habitat to matrix, which partly determines the emigration rate, is the most important determinant for population density within habitat patches. The probability of crossing a boundary from matrix to habitat had a weaker, but positive,effect on population density. Movement behavior in habitat had a stronger effect on population density than movement behavior in matrix. Habitat fragmentation and inter-patch distance may have a positive or negative effect on population density. The direction of both effects depends on two factors.First,when the boundary-crossing probability from habitat to matrix is high, population density may decline with increasing habitat fragmentation. Conversely, for species with a high matrix-to-habitat boundary-crossing probability, population density may increase with increasing habitat fragmentation. Second, the initial distribution of individuals across the landscape: we found that habitat fragmentation and inter-patch distance were positively correlated with population density when individuals were distributed across matrix and habitat at the beginning of our simulation experiments. The direction of these relationships changed to negative when individuals were initially distributed across habitat only. Our findings imply that the speed of the initial response of organisms to habitat fragmentation events may determine the direction of observed relationships between habitat fragmentation and population density. The time scale of post-fragmentation studies must, therefore, be adjusted to match the pace of post-fragmentation movement responses."Journal Article Patch Size and Population Density: The Effect of Immigration Behavior(2002) Bowman, Jeff; Cappuccino, Naomi; Fahrig, Lenore"Many habitat fragmentation experiments make the prediction that animal population density will be positively related to fragment, or patch, size. The mechanism that is supposed to result in this prediction is unclear, but several recent reviews have demonstrated that population density often is negatively related to patch size. Immigration behavior is likely to have an important effect on population density for species that do not show strong edge effects, for species that have low emigration rates, and during short-term habitat fragmentation experiments. We consider the effect that different kinds of immigration behaviors will have on population density and we demonstrate that only a minority of possible scenarios produce positive density vs. patch size relationships. More commonly, these relationships are expected to be negative. Our results demonstrate the importance of considering autecological mechanisms, such as immigration behavior, when developing the predictions that we test in habitat fragmentation or other experiments."Journal Article Quantifying the Road-effect Zone: Threshold Effects of a Motorway on Anuran Populations in Ontario, Canada(2009) Eigenbrod, Felix; Hecnar, Stephen J.; Fahrig, Lenore"The negative effect of roads on wildlife is recognized as a major contributor to the global biodiversity crisis, with anurans being among the most vulnerable groups overall. The 'road-effect zone,' i.e., the extent of significant ecological effects from the edge of a road, has important management implications, but has never been quantified for anurans. In the first study of its kind, we measured the extent and type of relationship underlying the road-effect zones of a motorway with a high proportion of heavy-truck traffic, particularly at night (Highway 401) for anuran species richness and relative abundance. We surveyed 34 ponds located 68-3262 m from the edge of the motorway, and used piecewise and linear regressions to determine if road-effect zones were clearly delineated by ecological thresholds. We found road-effect zones of 250-1000 m delineated by ecological thresholds for four of seven species and species richness, and road-effect zones of well beyond 1000 m best described by linear regressions for two species. The negative effect of Highway 401 was unexpectedly strong for four of seven species suggest that, in addition to road mortality, very high nighttime truck traffic can actually lead to reduced use of breeding habitat near the motorway either by acting as a barrier to forest habitat on the other side of the highway and/or because of traffic noise. Our results show that most anurans are likely to have reduced abundances near motorways, but that both the extent of the effect of this type of road and the underlying relationship vary considerably between species. Furthermore, the noise and/or barrier effect of very high nighttime traffic volumes can lead to negative effects of motorways even on species that are relatively unaffected by direct road mortality."