Browsing by Author "Panda, Sudhanshu Sekhar"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Journal Article Application of Vegetation Indices for Agricultural Crop Yield Prediction Using Neural Network Techniques(2010) Panda, Sudhanshu Sekhar; Ames, Daniel P.; Panigrahi, Suranjan"Spatial variability in a crop field creates a need for precision agriculture. Economical and rapid means of identifying spatial variability is obtained through the use of geotechnology (remotely sensed images of the crop field, image processing, GIS modeling approach, and GPS usage) and data mining techniques for model development. Higher-end image processing techniques are followed to establish more precision. The goal of this paper was to investigate the strength of key spectral vegetation indices for agricultural crop yield prediction using neural network techniques. Four widely used spectral indices were investigated in a study of irrigated corn crop yields in the Oakes Irrigation Test Area research site of North Dakota, USA. These indices were: (a) red and near-infrared (NIR) based normalized difference vegetation index (NDVI), (b) green and NIR based green vegetation index (GVI), (c) red and NIR based soil adjusted vegetation index (SAVI), and (d) red and NIR based perpendicular vegetation index (PVI). These four indices were investigated for corn yield during 3 years (1998, 1999, and 2001) and for the pooled data of these 3 years. Initially, Back-propagation Neural Network (BPNN) models were developed, including 16 models (4 indices * 4 years including the data from the pooled years) to test for the efficiency determination of those four vegetation indices in corn crop yield prediction. The corn yield was best predicted using BPNN models that used the means and standard deviations of PVI grid images. In all three years, it provided higher prediction accuracies, coefficient of determination (r2), and lower standard error of prediction than the models involving GVI, NDVI, and SAVI image information. The GVI, NDVI, and SAVI models for all three years provided average testing prediction accuracies of 24.26% to 94.85%, 19.36% to 95.04%, and 19.24% to 95.04%, respectively while the PVI models for all three years provided average testing prediction accuracies of 83.50% to 96.04%. The PVI pool model provided better average testing prediction accuracy of 94% with respect to other vegetation models, for which it ranged from 89–93%. Similarly, the PVI pool model provided coefficient of determination (r2) value of 0.45 as compared to 0.31–0.37 for other index models. Log10 data transformation technique was used to enhance the prediction ability of the PVI models of years 1998, 1999, and 2001 as it was chosen as the preferred index. Another model (Transformed PVI (Pool)) was developed using the log10 transformed PVI image information to show its global application. The transformed PVI models provided average corn yield prediction accuracies of 90%, 97%, and 98% for years 1998, 1999, and 2001, respectively. The pool PVI transformed model provided as average testing accuracy of 93% along with r2 value of 0.72 and standard error of prediction of 0.05 t/ha."Journal Article Remote Sensing and Geospatial Technological Applications for Site-specific Management of Fruit and Nut Crops: A Review(2010) Panda, Sudhanshu Sekhar; Hoogenboom, Gerrit; Paz, Joel O."Site-specific crop management (SSCM) is one facet of precision agriculture which is helping increase production with minimal input. It has enhanced the cost-benefit scenario in crop production. Even though the SSCM is very widely used in row crop agriculture like corn, wheat, rice, soybean, etc. it has very little application in cash crops like fruit and nut. The main goal of this review paper was to conduct a comprehensive review of advanced technologies, including geospatial technologies, used in site-specific management of fruit and nut crops. The review explores various remote sensing data from different platforms like satellite, LIDAR, aerial, and field imaging. The study analyzes the use of satellite sensors, such as Quickbird, Landsat, SPOT, and IRS imagery as well as hyperspectral narrow-band remote sensing data in study of fruit and nut crops in blueberry,citrus,peach, apple, etc. The study also explores other geospatial technologies such as GPS, GIS spatial modeling, advanced image processing techniques, and information technology for suitability study, orchard delineation, and classification accuracy assessment. The study also provides an example of a geospatial model developed in ArcGIS ModelBuilder to automate the blueberry production suitability analysis. The GIS spatial model is developed using various crop characteristics such as chilling hours, soil permeability, drainage, and pH, and land cover to determine the best sites for growingblueberry in Georgia, U.S. The study also provides a list of spectral reflectance curves developed for some fruit and nut crops, blueberry, crowberry, redblush citrus, orange, prickly pear, and peach. The study also explains these curves in detail to help researchers choose the image platform, sensor, and spectrum wavelength for various fruit and nut crops SSCM."