Browsing by Author "Peringer, Alexander"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Journal Article A Contextual Analysis of Land-Use and Vegetation Changes in Two Wooded Pastures in the Swiss Jura Mountains(2013) Chételat, Joël; Kalbermatten, Michael; Lannas, Kathryn S. M.; Spiegelberger, Thomas; Wettstein, Jean-Bruno; Gillet, François; Peringer, Alexander; Buttler, Alexandre"This study examines the effects of land-use policies and natural events on the evolution of two wooded pastures in the Jura Mountains in Switzerland between 1934 and 2000. The socioeconomic context and the local conditions were seen as major driving forces influencing land management practices which in turn redefined land-use policies. We studied the dynamics of the Jura Mountains’ wooded pastures, combining a thorough knowledge of the historic context with aerial image analysis. Besides pointing out general milestones in the evolution of Swiss land policy, we compiled chronicles on the management for both study sites on the basis of archives and interviews. Aerial images taken at time intervals of approximately 15 years were chosen to identify land-cover changes. The method used to analyze them relied on a structural classification of phytocoenoses, thus allowing the determination of four categories of tree-cover densities ranging from unwooded pastures to ungrazed forest. We reported overall aerial changes for each tree density class as well as spatial transitions from one category to another. The combination of spatial statistics with qualitative data depicting the evolution of the historic context gives a better understanding of the land-use changes and their rationale. The most important changes in tree density occurred during World War II and resulted in a more open landscape. The intensive use of wooded pastures during the war was the consequence of a high demand for wood and food resources. Postwar protectionist regulations, agricultural subsidies, and technical improvements maintained considerable pressure on wooded pastures. Storms and drought episodes further exacerbated this process in some areas. The trend then reversed from the 1970s onwards because of the limitations put on milk production and the falling price of wood. This resulted in a more extensive use of pastures, leading to tree encroachment. However, remote sites were more impacted than pastures closer to inhabited areas, which exhibited a trend towards more segregation between grassland and densely wooded pastures. With both extensification and segregation of land use, the complex vegetation mosaic and the landscape diversity that characterize wooded pastures are threatened but still offer good economic opportunities that call for differentiated management strategies."Journal Article Past and Future Landscape Dynamics in Pasture-Woodlands of the Swiss Jura Mountains Under Climate Change(2013) Peringer, Alexander; Siehoff, Silvana; Chételat, Joël; Spiegelberger, Thomas; Buttler, Alexandre; Gillet, François"Silvopastoral systems are traditional components of the landscape in the Swiss Jura Mountains, and are promising approaches for the sustainable management of mountain areas worldwide. Due to complex vegetation dynamics, pasture-woodlands are very vulnerable to the currently occurring land use and climate changes. Therefore, management requires integrative long-term predictions of successional trends. We present a refined version of the spatially explicit, dynamic simulation model WoodPaM with improved climate sensitivity of simulated vegetation. We investigate pasture-woodland dynamics by applying an innovative combination of retrospective simulations starting in the Middle Ages with prospective simulations following two climate change scenarios. The retrospective simulations demonstrate the strong dependency of the landscape mosaic on both climate and management. In high elevation mountain pastures, climate cooling during the Little Ice Age hindered simulated tree regeneration and reduced forage production of grasslands. Both led to an increase in open grassland and to a structural simplification of the landscape. In turn, climate warming afterwards showed the opposite effect. At lower elevations, high cattle stocking rates generally dominate simulated succession, leading to a slow development of quite homogenous landscapes whose structures are hardly affected by historical climate variability. Aerial photographs suggest that logging and windstorms critically shaped the current landscape, both homogenizing mosaic structures that emerge from selective grazing. Simulations of climate change scenarios suggest delayed but inevitable structural changes in the landscape mosaic and a temporary breakdown of the ecosystem service wood production. The population of currently dominating Norway spruce collapses due to simulated drought. Spruce is only slowly replaced either by beech under moderate warming or by Scots pine under extreme warming. In general, the shift in tree species dominance results in landscapes of less structural richness than today. In order to maintain the mosaic structure of pasture-woodlands, we recommend a future increase in cattle stocking on mountain pastures. The (re-) introduction of mixed herds (cattle with horses, sheep, and goats) could mitigate the simulated trend towards structural homogenization of the forest-grassland mosaic because diverse browsing effects selectively control tree regeneration and would counteract simulated forest encroachment. This could prevent the loss of species-rich open grasslands and forest-grassland ecotones. Forest management should respect forest-grassland mosaics and ecotones by following the traditional selective felling of single trees instead of large clear-cutting. Additionally, beech regeneration should be promoted from now on in order to smoothen tree species replacement with warming and to ensure the continuous provision of forest ecosystem services."