Journal Article
Permanent link for this collectionhttps://hdl.handle.net/10535/5
Browse By
Browsing Journal Article by Subject "AGENT-BASED COMPUTATIONAL ECONOMICS"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Journal Article Adaptation Strategies and Collective Dynamics of Extraction in Networked Commons of Bistable Resources(2021) Schauf, Andrew; Oh, Poong"When populations share common-pool resources (CPRs), individuals decide how much effort to invest towards resource extraction and how to allocate this effort among available resources. We investigate these dual aspects of individual choice in networked games where resources undergo regime shifts between discrete quality states (viable or depleted) depending on collective extraction levels. We study the patterns of extraction that emerge on various network types when agents are free to vary extraction from each CPR separately to maximize their short-term payoffs. Using these results as a basis for comparison, we then investigate how results are altered if agents fix one aspect of adaptation (magnitude or allocation) while letting the other vary. We consider two constrained adaptation strategies: uniform adaptation, whereby agents adjust their extraction levels from all CPRs by the same amount, and reallocation, whereby agents selectively shift effort from lower- to higher-quality resources. A preference for uniform adaptation increases collective wealth on degree-heterogeneous agent-resource networks. Further, low-degree agents retain preferences for these constrained strategies under reinforcement learning. Empirical studies have indicated that some CPR appropriators ignore—while others emphasize—allocation aspects of adaptation; our results demonstrate that structural patterns of resource access can determine which behavior is more advantageous."Journal Article Effects of Uniform-allocation Constraints in Networked Common-pool Resource Extraction Games(2022) Schauf, Andrew; Oh, Poong"Communities that share common-pool resources (CPRs) often coordinate their actions to sustain resource quality more effectively than if they were regulated by some centralized authority. Networked models of CPR extraction suggest that the flexibility of individual agents to selectively allocate extraction effort among multiple resources plays an important role in maximizing their payoffs. However, empirical evidence suggests that real-world CPR appropriators may often de-emphasize issues of allocation, for example by responding to the degradation of a single resource by reducing extraction from multiple resources, rather than by reallocating extraction effort away from the degraded resource. Here, we study the population-level consequences that emerge when individuals are constrained to apply an equal amount of extraction effort to all CPRs that are available to them within an affiliation network linking agents to resources. In systems where all resources have the same capacity, this uniform-allocation constraint leads to reduced collective wealth compared to unconstrained best-response extraction, but it can produce more egalitarian wealth distributions. The differences are more pronounced in networks that have higher degree heterogeneity among resources. In the case that the capacity of each CPR is proportional to its number of appropriators, the uniform-allocation constraint can lead to more efficient collective extraction since it serves to distribute the burden of over-extraction more evenly among the network’s CPRs. Our results reinforce the importance of adaptive allocation in self-regulation for populations who share linearly degrading CPRs; although uniform-allocation extraction habits can help to sustain higher resource quality than does unconstrained extraction, in general this does not improve collective benefits for a population in the long term."