hidden
Image Database Export Citations

Menu:

Scaling of Natal Dispersal Distances in Terrestrial Birds and Mammals

Show simple item record

dc.contributor.author Sutherland, Glenn D. en_US
dc.contributor.author Harestad, Alton S. en_US
dc.contributor.author Price, Karen en_US
dc.contributor.author Lertzman, Ken en_US
dc.date.accessioned 2009-07-31T14:55:57Z
dc.date.available 2009-07-31T14:55:57Z
dc.date.issued 2000 en_US
dc.date.submitted 2008-12-01 en_US
dc.date.submitted 2008-12-01 en_US
dc.identifier.uri https://hdl.handle.net/10535/2986
dc.description.abstract "Natal dispersal is a process that is critical in the spatial dynamics of populations, including population spread, recolonization, and gene flow. It is a central focus of conservation issues for many vertebrate species. Using data for 77 bird and 68 mammal species, we tested whether median and maximum natal dispersal distances were correlated with body mass, diet type, social system, taxonomic family, and migratory status. Body mass and diet type were found to predict both median and maximum natal dispersal distances in mammals: large species dispersed farther than small ones, and carnivorous species dispersed farther than herbivores and omnivores. Similar relationships occurred for carnivorous bird species, but not for herbivorous or omnivorous ones. Natal dispersal distances in birds or mammals were not significantly related to broad categories of social systems. Only in birds were factors such as taxonomic relatedness and migratory status correlated with natal dispersal, and then only for maximum distances. Summary properties of dispersal processes appeared to be derived from interactions among behavioral and morphological characteristics of species and from their linkages to the dynamics of resource availability in landscapes. "In all the species we examined, most dispersers moved relatively short distances, and long-distance dispersal was uncommon. On the basis of these findings, we fit an empirical model based on the negative exponential distribution for calculating minimum probabilities that animals disperse particular distances from their natal areas. This model, coupled with knowledge of a species' body mass and diet type, can be used to conservatively predict dispersal distances for different species and examine possible consequences of large-scale habitat alterations on connectedness between populations. Taken together, our results can provide managers with the means to identify species vulnerable to landscape-level habitat changes such as forest fragmentation. In addition, our dispersal models can be used to predict which species in a community are likely to be the most vulnerable to loss of connectedness and allow managers to test the merits of alternative habitat conservation plans." en_US
dc.subject birds en_US
dc.subject wildlife en_US
dc.subject population studies--comparative analysis en_US
dc.title Scaling of Natal Dispersal Distances in Terrestrial Birds and Mammals en_US
dc.type Journal Article en_US
dc.type.published published en_US
dc.subject.sector Wildlife en_US
dc.identifier.citationjournal Ecology and Society en_US
dc.identifier.citationvolume 4 en_US
dc.identifier.citationnumber 1 en_US
dc.identifier.citationmonth July en_US


Files in this item

Files Size Format View
30.pdf 1.391Mb PDF View/Open

This item appears in the following document type(s)

Show simple item record