hidden
Image Database Export Citations

Menu:

Effect of Tidal Stream Power Generation on the Region-Wide Circulation in a Shallow Sea

Show simple item record

dc.contributor.author Shapiro, G.I.
dc.date.accessioned 2011-01-12T15:58:07Z
dc.date.available 2011-01-12T15:58:07Z
dc.date.issued 2010 en_US
dc.identifier.uri https://hdl.handle.net/10535/6743
dc.description.abstract "Ocean tides are deemed to become a stable source of renewable energy for the future. Tidal energy has two components, the first is the potential energy due to sea level variations and the second comes from the kinetic energy of the tidal streams. This paper is concerned with the backward effect on the ocean currents by a tidal stream farm located in the open shallow sea. Recent studies in channels with 1-D models have indicated that the power potential is not given purely by the flux of kinetic energy, as has been commonly assumed. In this study, a 3-D ocean circulation model is used to estimate (i) maximum extractable energy at different levels of rated generation capacity of the farm, (ii) changes in the strength of currents due to energy extraction, and (iii) alterations in the pattern of residual currents and pathways of passive tracers. As water flow is influenced both by tidal and non-tidal currents, the model takes into account wind-driven and density-driven currents generated by meteorological forcing. Numerical modelling has been carried out for a hypothetical circular farm located in the Celtic Sea north of Cornwall, an area known for its high level of tidal energy. Modelling results clearly indicate that extracted power does not grow linearly with the increase in the rated capacity of the farm. For the case studies covered in this paper, a 100-fold increase in rated generation capacity of the farm results only in 7-fold increase in ex- tracted power, this loss of efficiency is much greater than was estimated earlier with 1-D models. In case of high rated capacity of the farm, kinetic energy of currents is altered significantly as far as 10–20 km away from the farm. At high levels of extracted energy the currents tend to avoid flowing through the farm, an effect which is not cap- tured with 1-D models. Residual currents are altered as far as a hundred kilometres. The magnitude of changes in the dispersion of tracers is highly sensitive to the location. For the drifters analysed in this study, variations in the end-to-start distance due to energy extraction range from 13% to 238%." en_US
dc.language English en_US
dc.subject energy en_US
dc.subject water resources en_US
dc.subject oceans en_US
dc.title Effect of Tidal Stream Power Generation on the Region-Wide Circulation in a Shallow Sea en_US
dc.type Journal Article en_US
dc.type.published published en_US
dc.type.methodology Case Study en_US
dc.subject.sector Water Resource & Irrigation en_US
dc.identifier.citationjournal Ocean Science Discussions en_US
dc.identifier.citationvolume 7 en_US
dc.identifier.citationpages 1785–1810 en_US


Files in this item

Files Size Format View
Effect of tidal stream power generation.pdf 6.505Mb PDF View/Open

This item appears in the following document type(s)

Show simple item record