Scaling of Natal Dispersal Distances in Terrestrial Birds and Mammals

dc.contributor.authorSutherland, Glenn D.en_US
dc.contributor.authorHarestad, Alton S.en_US
dc.contributor.authorPrice, Karenen_US
dc.contributor.authorLertzman, Kenen_US
dc.date.accessioned2009-07-31T14:55:57Z
dc.date.available2009-07-31T14:55:57Z
dc.date.issued2000en_US
dc.date.submitted2008-12-01en_US
dc.date.submitted2008-12-01en_US
dc.description.abstract"Natal dispersal is a process that is critical in the spatial dynamics of populations, including population spread, recolonization, and gene flow. It is a central focus of conservation issues for many vertebrate species. Using data for 77 bird and 68 mammal species, we tested whether median and maximum natal dispersal distances were correlated with body mass, diet type, social system, taxonomic family, and migratory status. Body mass and diet type were found to predict both median and maximum natal dispersal distances in mammals: large species dispersed farther than small ones, and carnivorous species dispersed farther than herbivores and omnivores. Similar relationships occurred for carnivorous bird species, but not for herbivorous or omnivorous ones. Natal dispersal distances in birds or mammals were not significantly related to broad categories of social systems. Only in birds were factors such as taxonomic relatedness and migratory status correlated with natal dispersal, and then only for maximum distances. Summary properties of dispersal processes appeared to be derived from interactions among behavioral and morphological characteristics of species and from their linkages to the dynamics of resource availability in landscapes. "In all the species we examined, most dispersers moved relatively short distances, and long-distance dispersal was uncommon. On the basis of these findings, we fit an empirical model based on the negative exponential distribution for calculating minimum probabilities that animals disperse particular distances from their natal areas. This model, coupled with knowledge of a species' body mass and diet type, can be used to conservatively predict dispersal distances for different species and examine possible consequences of large-scale habitat alterations on connectedness between populations. Taken together, our results can provide managers with the means to identify species vulnerable to landscape-level habitat changes such as forest fragmentation. In addition, our dispersal models can be used to predict which species in a community are likely to be the most vulnerable to loss of connectedness and allow managers to test the merits of alternative habitat conservation plans."en_US
dc.identifier.citationjournalEcology and Societyen_US
dc.identifier.citationmonthJulyen_US
dc.identifier.citationnumber1en_US
dc.identifier.citationvolume4en_US
dc.identifier.urihttps://hdl.handle.net/10535/2986
dc.subjectbirdsen_US
dc.subjectwildlifeen_US
dc.subjectpopulation studies--comparative analysisen_US
dc.subject.sectorWildlifeen_US
dc.titleScaling of Natal Dispersal Distances in Terrestrial Birds and Mammalsen_US
dc.typeJournal Articleen_US
dc.type.publishedpublisheden_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
30.pdf
Size:
1.39 MB
Format:
Adobe Portable Document Format

Collections