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1 Introduction

This paper revisits the ’tragedy of the commons’ (Hardin, 1968; Brander and Taylor,
1998) when agents have different capabilities in both production activities and encroach-
ment activities, and can allocate their time between these two activities. Although ex-
isting societies have equipped themselves with various institutions that help deal with
appropriation failure, no institution suppresses the problem entirely so that, despite its
caricatured simplicity, our model addresses a pervasive issue.

Role choices, i.e. individual decisions on the allocation of time between production
and encroachment, are endogenous. In equilibrium, the waste associated with encroach-
ment appears to vary enormously from one economy to the next one, more than differ-
ences in individual capabilities or differences in such institutions as property rights and
enforcement explain at first sight.

The tragedy of the commons generally has been modelled as a problem arising from
non exclusion. However non exclusion does not necessarily imply common production.
In the model presented in this paper, the act of production is individual; but output is,
to some extent, common because of an appropriation failure: other individuals encroach
on private output. In fact, individual expected income depends both on individual pro-
duction or, more precisely, on that part of production which is not robbed away from the
individual by others, and on the booty derived by the individual from his encroachment
activities. Productive abilities and abilities in encroachment differ between individuals
in any given society. For identical individuals, encroachment abilities may vary from
one society to the next because of differences in property rights and/or property rights
enforcement. Since the proportion of his own production that an individual is able to
appropriate himself depends on the level of encroachment activities by others, this de-
fines a game similar to the games studied in the literature on private provision of public
goods (Bergstrom et al., 1986). Such collective action games (Olson, 1965) are charac-
terized by the fact that the gain of each agent depends on his action and on the actions,

usually the sum of the actions, of all agents.



Our game is described in Section 2; it is more complex than the standard collective
action game because it exhibits increasing returns once the indirect effect of individual
actions is taken into account. Although the direct effect of individual actions is linear,
the payoff to each player is convex with respect to his actions whatever the actions of
other players. This property gives our version of the tragedy of the commons a definite
Ricardian flavor: individuals typically specialize into either encroachment activities, or
production activities, according to their comparative advantages. As a result a society of
many different individuals organizes itself in equilibrium into two homogeneous, special-
ized, groups. Unlike the Ricardian model, however, this property does not necessitate
constant direct returns to individual actions.

Collective action games are pervasive in the literature. For example, contest games,
reviewed by Nitzan (1994) and also in a recent special issue of the Furopean Journal of
Political Economy (1998), have been applied in a variety of contexts such as rent-seeking,
labor economics, conflict theory, political economy, etc.. In market games, the emphasis
is on externalities resulting from market power and strategic behavior (Shapley, 1976;
Gabszewicz and Grazzini, 1998). Closer to our context are the various forms of tragedy
of the commons games (Weitzman, 1974; Ito et al., 1995; Sandler, 1992; Roemer and
Silvestre, 1993), common property games (Lueck, 1994; de Meza and Gould, 1992),
environmental or pollution games (Chander and Tulkens, 1997), to mention just a few.

The literature has privileged concave models almost exclusively. As Krugman (1991),
we believe that this may have as much to do with mathematical convenience as with
modeling realism. We argue that convexity is a robust and important property of many
collective action games and deserves investigation. In a standard static tragedy of the
commons game, producers, rather than focusing on marginal product, increase efforts
as long as the net value of average product is non negative. This gives rise to a concave
game under standard assumptions on the technology. In our variant of the tragedy
of the commons game, the emphasis is on the appropriation issue. Production is not
collective and each producer has complete control over marginal product. However an

agent appropriates himself only a share of his own production; furthermore, his predatory



activities encroach on other agents’ outputs, which are entirely distinct from his own
output. As we show in Section 3, this gives rise to a convex-payoffs game, with properties
that are quite distinct from the properties of the standard tragedy of the commons game.

Standard collective action games admits a unique equilibrium; a game with convex
payoffs may admit several equilibria. In our context, these equilibria arise according to
the degree of heterogeneity of the agents in the economy. One possible equilibrium is
the Pareto optimum, where all individuals are producers; another type of equilibrium is
the Ricardian equilibrium just mentioned, which involves two specialized groups; finally
there is the extreme version of the tragedy of the commons, an equilibrium where no-
one produces. We discuss in Section 4 how these equilibria are affected by changes in
property right enforcement.

Games with convex payoffs are characterized by ’all or nothing’ decisions, i.e. by
choices on the boundaries of the action spaces. An individual who is a full time pro-
ducer must not only be sure that his choice is a local optimum; he must also verify that
the alternative of being a full time encroacher is inferior. This alternative being remote
from his current situation, this requirement imposes a heavy informational burden and
thus raises the issue of bounded rationality. With a concave payoff, a local verification
would suffice. It is easy to believe that an individual - normally a part-time encroacher
and a part-time producer - evaluates without difficulty the consequences of small activity
changes around his current position. It is more difficult to believe in the assumption, im-
plied by rationality when payoffs are convex, that he fully apprehends the consequences
of such drastic life changes as moving from one social group (e.g. full-time encroachers)
to the group at the other end of the social spectrum (full-time producers). With this
in mind, we define in Section 5 the concept of local Nash equilibrium of a game as a
Nash equilibrium where, by assumption, agents do not consider deviations beyond an
g—neighborhood from their current situation.

While local Nash equilibria coincide with regular Nash equilibria in concave games
(games where each payoff function has a unique maximum when other players play an

equilibrium strategy), convex games normally admit more local Nash equilibria than



regular Nash equilibria. Some of these equilibria Pareto dominate others. Few societies
may claim to be completely read of any appropriability problem, so that the tragedy of
the commons is always an issue. Multiple equilibria help rationalize the puzzling obser-
vation that societies with similar endowments may end up in widely different situations
that seem to owe much to history. We conclude in Section 5 by raising some issues
for further research such as the role of justice institutions, education, immigration, or

income redistribution in alleviating tragedy of the commons problems.

2 Returns, payoffs, and individual differentiation

Let us consider an economy made up of I individuals who allocate their time, one unit
each, between production and encroachment. Individual capabilities in both activities
differ but are characterized by constant returns. Precisely, agent i is characterized by
b;, his 'productivity’ in encroachment per unit of time, and by #;, his output per unit
of time spent in productive activities. Someone who spends ¢;, ¢; € [0, 1], units of time
in productive activities and 1 — e; encroaching, produces ¢; = 0;e; and has a booty of
b; [1 — e;] = b;—3;q; from encroachment activities, where 3; = 2t is the relative advantage
of types 7 in encroachment.

Encroachment amounts to a tax on production. Let « represent the proportion of
individual production that is taken away (stolen) from a producer; « is endogenous be-
cause it depends on the level of encroachment activities in the economy. We assume
that all producers are affected in the same way by encroachment, so that, on average,
individual 7 appropriates himself (1 — «) ¢; from his own production. Consequently indi-

vidual expected income, the sum of individual encroachment and expected appropriated

individual production!, is y; = b; — Bigs + [1 — o] ¢;.

B

o where B is aggregate

The proportion « is determined at the aggregate level as a =

encroachment and () is aggregate output, with B constrained not to exceed (). Assuming

'We assume that encroachment activities are not affected by encroachment by others; this is not
crucial an assumption.



this constraint met,

o= Elelngl :q?iqi) (1)

Substituting (1) into the expression for y; gives

1 —

(2)

Yi (¢, 9-:) = b — Bigs +

Derlbi = Big) |
Zje[ d; &

Individuals are assumed to be risk neutral?; thus they choose ¢; so as to maximize
;, taking others’ decisions q_; as given and subject to the constraint that they have one
unit of time to allocate between production and encroachment, so that 0 < ¢; < 6;. The

first and second derivatives of y; with respect to ¢; are respectively

Wi _ l1—2] o + 8]

0q; @
Py g | a+ 5
o ll - @] Q ®)

The aggregate constraints that ¢; < @) for all 7 and B < (Q are satisfied if ¢; < #; and
0 < a <1, which will be imposed throughout. Under these constraints, the second

derivative is positive, implying that the optimal production choice is a corner solution.

Theorem 1 At the individual optima, the economy is divided into at most two special-

ized groups: encroachers (qf = 0) and producers (g = 0;).

It should be emphasized that 9%y, /dq? is strictly positive so that our result is not
a limiting case allowed by the linearity of the individual production and encroachment
technologies. Constant return production and encroachment technologies produce the

strictly convex (in ¢;) revenue function y; (¢;,q-—;) for any q_; (see Figure 1).

PLEASE INSERT FIGURE 1 HERE

2In Lasserre and Soubeyran (1998), we study a similar model under risk aversion.



In the Appendix, we show that the same result - a convex revenue function - may
obtain when production and/or encroachment exhibit decreasing returns. Precisely,
instead of using linear production and encroachment technologies, we assume that in-
dividual output is ¢; = 0;f (e;) and individual encroachment is b;g (1 — e;) where the
functions f and g are both concave. Some straightforward substitutions yield that in-
dividual income is y; = b;h (g—i) + [l — a] ¢; where h is a non negative, decreasing,
and concave function that reflects the production and encroachment technologies. We

establish that

Py . 4 2 / Lb
= (17 5) (Gl + ) W

which is positive provided the term involving h” < 0 is not too large.

Thus convexity, implying the formation of strongly differentiated groups in an econ-
omy, is not an anecdotal possibility. Clearly it is also possible for the income function to
be convex for some individuals, and concave for others, implying that some individuals
specialize in production or encroachment, while others allocate part of their time to both
roles. Allowing for such additional complexity would complicate the exposition without

providing any additional insights.

3 (Global equilibria, tragedy of the commons, and

Pareto optimality

Theorem 1 implies that, in equilibrium, the set of all individuals Z is divided into a
group P of producers and a group B of encroachers, with Z =P UB and PNB =P. The

convexity of the revenue functions implies that extrema may occur only at ¢; = 0; or at



¢; = 0. A Nash equilibrium is thus defined as a partition of Z, N' = {(P, B)} such that

yi (05,9-) > v (0,q-),i€P

yi (0i,9-5) < v:(0,q5),i€B (5)

We call global equilibrium such a Nash equilibrium in order to distinguish it from the
local equilibrium introduced in Section 5. Let (b*,0*) be encroachment and productivity
parameters ensuring that the second condition holds with equality for the partition

(P, B); using (2), equality requires that

:
where (% = z_*’ or

Zjeb’ bj

Ejep gj <6)

g=1-

Furthermore it follows that 3; > §* if and only if i € B, and ; < 8* if and only if i € P.
Thus the partition must obey a criterion of relative advantage without any consideration
for absolute abilities.

Let us arrange the 3’s by order of magnitude: 3 < By < ... < 37 where J is the
total number of different values of 3. Let n; be the number of individuals corresponding

to B;; let 7=max {7, i € P} and j = min {j, j € B}. Then
Lemma 1 The game has the consecutive property:
i € P=1ieP, i <iand <%

j € B=jeB j>jandg >

7 = 141



> jennibi

e _ 1 _ € e __
where 3¢ =1— a® and of = S

Proof. i € P & wi(0i,q) > %(0,q4) & [ <p5j€Bey(lhq.) <
y:(0,9-;) & 05 > 5° It follows that 3 < f < ... < [ < 3° < foy1 < ... < (. [
Theorem 2 below follows directly from the lemma and the definition of a Nash equi-

librium.

Theorem 2 Any global equilibrium may be described by some critical value (3¢, such

that qf = 0; if B; < 3%, ¢ = 0 of 3; > B°.

This theorem greatly simplifies the definition of an equilibrium: the criterion is uni-
dimensional and all types are ranked on the [ interval. The theorem is very reminiscent
of the Ricardian theory of comparative advantage. Here too, individuals with two-
dimensional characteristics end up being classified along a single characteristic. This
result makes the study of existence which follows much easier. Before turning to that
issue, one notes that the unique Pareto optimum allocation is an allocation where all
agents are producers. Any equilibrium with B # @ is sub-optimum and illustrates more
or less serious an instance of the tragedy of the commons.

Does a Pareto optimum equilibrium exist? Let 57° correspond to an allocation where

every individual is a producer:

po _ | _ 0 _
pr=1 Zjejnjej -
Then the Pareto optimum allocation is an equilibrium if and only if, Vi, 53; < 1: the
Pareto optimum producers equilibrium exists if and only if, absent any encroachment,
no-one is more productive in encroachment than in production. If it exists, the Pareto
optimal equilibrium does not necessarily materialize; in fact, as we show now, it is never
the sole equilibrium.

An extreme version of the tragedy of the commons is an economy where no-one pro-

duces. Let 3T correspond to the allocation where every individual prefers encroachment



to production:
gor g - Rl

0

Then the encroachers equilibrium exists if and only if, Vi, 3 > A7 = —oo: this
condition is always satisfied.

Other possible global equilibria, which we call interior global equilibria, involve the
simultaneous existence of a group of producers and a group of encroachers. In fact,
since 7 = max {7, i € P}, Theorem 2 implies that 7 and j, as well as the corresponding
number of individuals n; and n;, are functions of 3°. Using the definition of 3¢ and the

lemma, it follows that

nj(ﬁe)bj(ﬁe) —|— —|— TLJbJ

e _ 1—
ﬂ n181 —I— —I— nf(ﬁe)ef(ﬁe)

F () (7)

Thus (3¢ satisfies the fixed point property. Alternatively, this expression may be written

as

= F(5) (8)

where B () = ) 8,28 n;b; is the aggregate bounty from encroachment when the group
of encroachers satisfies 3; >  and Q (3) = Z@»qﬁ n;0; is the corresponding aggregate
production. Thus the function I’ (/3) represents the proportion of output that remains to
producers when the group of encroachers is such that §; > 3; we call it the appropriation
rate function. Since B () decreases from ng] n;b; to zero, and @ () rises from zero to
ng] n;0;, as 3 rises from its minimum to its maximum, the function I has the general
shape presented in Figure 2.2 It is truncated below the horizontal axis because of the
condition that B () cannot exceed @ () in equilibrium, so that F' is non negative.
Panels a) and b) give two typical alternative configurations; interior global equilibria

occur when the F' () curve intersects the g curve.

3We have not represented F as a step function in order to make drawing easier; this does not affect
the analysis in any significant way.



Let [ﬂmin,ﬂm“} be the interval spanned by 3. If, as in panel a), g™ < 1 < g™
there is an even number of global equilibria. Since the shape of the F' curve reflects
the distribution of types, that number may be two, as drawn, as well as any even
number including zero*. If there is a high proportion of low 3’s, individuals who have a
comparative advantage in production, then the F' curve is shifted to the left, so that at
least two interior global equilibria exist. In the opposite case (too many encroachers),
the F' curve lies more to the right, so that it does not intersect the (3 line and there
is no interior global equilibrium. In that case, it is easily shown that the sole global
equilibrium is the extreme tragedy of the commons described earlier.

The two equilibria represented in panel a) have different stability properties. Jf is
unstable: ask the individuals whose comparative advantage is the highest 3; such that
B; < 35 to become encroachers rather than producers; then the proportion of output that
producers appropriate themselves diminishes to 1 — %Z—f%, a proportion at which the
i types indeed find it preferable to encroach: 1— %Z—j% G < 1—F (f%).° Similarly,
it is easy to see that (35 is stable, and that both the encroachers equilibrium (g; = 0 Vi)
and the producers equilibrium (g; = 6; Vi) (if it exists), are stable.

If, as in Panel b), g™ < #ma < 1 the existence of at least one interior global
equilibrium is certain; however, if there is only one such equilibrium, it is unstable,
as in the example drawn. In fact the economy represented in Panel b) may be less
problematic than the economy represented in Panel a): when g™ < 1, the Pareto

optimum allocation is an equilibrium, which is not the case when g™ > 1.

Finally an interesting special case arises when all individuals are characterized by

. . gmax 8
“In the contlpuous version of the model, Q (§) = f@ ()¢ ()dl and B(8) = f@min b(l)¢(l)d,
where f™#* (5™?) is the upper (lower) bound of the 3 interval and ¢ is the density of types. Then it

may be shown that F’(5) = é(—ﬁ%ﬁ (8) {ZJ(% + g(%ﬂ which reduces to é(ﬁlﬁ (8°) at the equilibrium.

Within the class of rising functions satisfying the specified bounds, F' may assume just about any shape
according to the density. If that density gives more weight to low 6 ’s, then I is larger at low values of
3 so that the F' curve is shifted to the left, implying that the existence of an equilibrium is more likely.

5Dealing with steps in the F function complicates the analysis without bringing up any new light;
therefore we do not provide a formal proof. See the example below for an explicit discrete treatment of
the fixed point argument.
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the same relative efficiency in encroachment, 5. Then the 8 = 3 curve reduces to
the point (ﬂ_ , B) so that no interior equilibrium exists. In such an economy, Ricardian
specialization into a single group normally obtains (i.e. all agents are either producers
or encroachers).

The results about equilibrium existence and stability are summarized in the next
theorem. For reasonable parameter configurations, several global equilibria exist, which
may help explain the variety of outcomes found in societies whose individuals do not

differ widely.
Theorem 3 Three types of global equilibria are possible.

1. The encroachers equilibrium, where everyone is an encroacher and aggregate pro-
duction is null, always exists; it is stable. If 3; > 1 Vi, then the encroachers

equilibrium s the unique global equilibrium.

2. The producers equilibrium, where everyone produces and aggregale encroachment
s null, is the sole Pareto optimal equilibrium, it exists if and only iof 5; < 1 Vi; It

15 stable.

3. Interior global equilibria, involving both producers and encroachers, exist if the
proportion of low (’s in the economy (f; < 1) is high enough. Let m > 0 be
the number of interior global equilibria. If ™™ < 1 < (™2 then m is even
(possibly null) and there are % stable global equilibria and % unstable ones. If

m—1

gmin < gmax 1 then m is uneven; there are 1 4+ max (0, T) unstable global

equilibria and max (0, mTfl> stable ones.

An example: the two group case:

Suppose that there are only two groups of agents with different 3; : (1 < (5. The
fixed point argument works as follows. Let us locate (3¢ with respect to §; and (. If
01 < Py < %, B=P and P = Z. All agents are producers, so that a® = 0. This
is the Pareto optimum equilibrium. If 3¢ < 8; < By, B=7 and P = ®. All agents

11



are encroachers and the economy fails to materialize. If §; < (3¢ < [, there exists an

equilibrium where agents of type 3, are producers while type (3, agents are encroachers:

B={1}, P ={2}, and

This case is possible if and only if ¢, [% — é} < Z—f < % [01 — b1] with 6; > by. Thus
the relative size of the two groups matters for the existence of the interior equilibrium.

Irrespective of group sizes, the encroachers equilibrium always exists and the producers

equilibrium exists only if by < 6.

4 Effects of changes in property rights

It is natural to interpret the ability to encroach as reflecting the existence of property
rights and the quality of their enforcement. It is not our purpose to study how these
characteristics are determined; see, e.g. Fender (1999) for a treatment under complete
information, or Lasserre and Soubeyran (2000) for an agency setting. However, we are
interested in how property rights affect role choices and equilibrium production.

Thus let A be an index of property right quality such that the individual productivity
in encroachment per unit of time is now Ab;. The analysis presented sofar remains valid
if we substitute Ab;, A > 0, for b; everywhere; in particular, 3; is redefined as % An
improvement in property right enforcement reduces 3 for every agent, but does not affect
individual ranking according to comparative advantage. The analysis sofar has taken A
to be unity. Setting A < 1 means an improvement in property right enforcement and
A > 1 reflects a degradation in property rights.

The implications are quite obvious. An improvement in property rights (A < 1)
does not affect the range of F' but shifts its domains to the left: Af™® < gmin and
A < gmex - In Figure 2 a), this means that the curve F' is shifted to the left while

the 3 = 3 line (now A = A\() is unchanged, implying that the new equilibrium cutoffs

12



AGS and A5 (not represented) involve a higher proportion of individuals choosing to
produce rather than encroach. The reduction in A may furthermore involve a shift from
a situation such as panel a) where Pareto optimality is impossible in equilibrium to
a situation described by panel b): the economy moves from the inefficient equilibrium
corresponding to 35 in Panel a) to the Pareto optimal equilibrium corresponding to 5™
(now AS™2) in Panel b).

Changes in property rights may have more dramatic effects in case of multiple equi-
libria. In Figure 3, we represent an initial situation that may be called an institutional
trap equilibrium: although a good equilibrium A exists, the economy is stuck at the
stable equilibrium B. Here an increase in property right enforcement, by shifting the
F (AB) curve and both the A™" and the A3™* limits to the left, may have the mirac-
ulous effect of putting the institutional trap equilibrium out of existence, causing the
economy to move to the good equilibrium A’. However, similarly, a slight degradation
in institutions may have a catastrophic effect of sending the economy to the extreme

tragedy of the commons equilibrium C’.

5 Local equilibria and limited rationality

An important characteristic of equilibrium behavior in our model is the fact that optimal
individual activities are corner solutions: individuals choose to be full-time encroachers
or full-time producers. A person who considers a deviation from the current equilibrium
position not only must examine local changes - doing some production for an encroacher,
stealing occasionally for a producer - but also must consider the drastic life change
involved in a full switch from production to encroachment or vice-versa.

It is easy to believe that individuals evaluate the effects of small changes around their
current position accurately; it is more difficult to imagine that they fully apprehend the
consequences of decisions that would take them all the way to the opposite end of the
social spectrum. Thus the presence of non convexities in the model quite naturally raises

the issue of bounded rationality.
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A natural way to introduce bounded rationality in the model consists in assuming
that changes by more than £ in the allocation of time are prohibitively costly, while
any feasible deviation from the current allocation of the time unit in the neighborhood
of that allocation is possible at no cost. Consider Figure 1; such an assumption would
imply that the local maxima at both ends of the income curve might be admissible while
not necessarily being global maxima.

The concept of local equilibrium introduced now is based on these ideas. It could
be used in many games, where players choose corner solutions in equilibrium as in the
present time allocation game. Let Y; =Y (a;,a_;) be the payoff to player i when i plays
action a; and other players choose a_;. The set of feasible actions for agent i is A;, a

closed, convex subset of R™.

Definition 1 (Convez payoff game) A game has convezr payoffs if and only if all payoff

functions Y; (a;,a_;), i =1,...,n are conver in a; ¥V a_; € I1; ,A;.

Definition 2 (Local Nash equilibrium of a game) The action vector a* = (af,...a,) is a

local Nash equilibrium if and only if
Y (ai,a*;) > Vi(as,a";) Va; € ANN ()

where N () = {a; € R™ | d(a;,a}) < &} is the ball of radius ¢; around a} in R™.

Note that the concept of local Nash Equilibrium does not differ from the standard
Nash equilibrium in concave games, where local optima are also global. In the current
context, a; = ¢;, A; = [0,0;], and Y; (a;,a ;) = v;(g;,9_;). Consider a partition of
Z into P and B such that ¢ = 0, ¢ € B and ¢ = 0;, i« € P. Then by the above

definition, given the convexity of y; in ¢;, (¢}, q ;) is a local Nash equilibrium if and only

Oy;(0:.a” . 9y; (0.a” . .. .
ifﬂﬁZ >0, Vi€ P and AE;—ZZ < 0, V1 € B. This is equivalent to

ﬂi< —a,1€P (9)

Q
Q—0;

14



and
Gi>1—a,i1€B (10)

with a = % < 1 in equilibrium and @ = ), 5 0;. The local maximum at 6;
represented in Figure 1 is now admissible given «. Since the concept of local equilibrium
is less demanding than the global concept, one expects an increase in the number of
equilibria relative to the previous section.

Perhaps more surprisingly, comparative advantage does not necessarily govern role
choices in equilibrium; absolute advantage also plays a role. Indeed, for a given level
of comparative advantage, measured by 3; = Z—Z, condition (9) may be satisfied for
individual i, whose absolute advantage is measured by #;, while that condition may
be violated for another individual with the same comparative advantage but different
absolute capabilities: 3; = 3; but 0, # 0,.

Also, the two conditions (9) and (10) that define the local equilibrium are not mutu-
ally exclusive. Thus, unlike the standard (global) equilibrium, two identical individuals
may be choosing opposite positions in equilibrium, one being an encroacher and the
other a producer. Local equilibrium allows unequal behavior of identical individuals. If
0; is small relative to aggregate equilibrium output, only individuals in a narrow range of
# will meet conditions (9) and (10) simultaneously; on the contrary, if ¢; is a significant
contribution to aggregate output,

whether because there are few different types or because few types produce in equi-
librium, then the range of (3; compatible with both occupations is broader. In either
case, for a level of relative efficacy compatible with encroachment, i.e. compatible with
(10), a person with a high level of absolute productivity is more likely also to meet
condition (9) for being a producer.

The same types of local equilibria are possible as in the case of global equilibria.

The encroacher equilibrium (everybody is an encroacher) always exists. The producer

> ez it
et anj)fniGi

equilibrium (everybody is a producer) exists if and only if, Vi, 3; < (

15



(see (9)). This condition is less restrictive than the corresponding condition for a global
equilibrium, §; < 1 (see Theorem 3).

The conditions given in Theorem 3 for the existence of global interior equilibria are
sufficient for local interior equilibria. They are not necessary, however, for two reasons.
First Theorem 2 no longer applies. The partitioning of individuals into producers or
encroachers may be done in more complex fashions than along the [ﬂmin, ﬂmaﬂ interval;
the fixed point condition illustrated in Figure 2 is no longer necessary. Second, suppose
we look for the subset of local interior equilibria obtained by partitioning individuals
according to their 3;. Then some of these equilibria will be found by studying the
fixed points of the relation obtained by transforming (10) into an equality: this gives
(8) whose fixed points have been studied in the previous section. Some other local
interior equilibria will be found by studying the fixed points of the relation obtained by

transforming (9) into an equality:

5= _BU _ .0 (11)

It may be shown that G ((3,0;) > F (), with equality if §; = 0. Thus the existence of
one or several fixed points of the 5 = G (3, 0;) relation requires less stringent conditions
than in the case of the 3 = F' () relation studied in Figure 2.

More generally, some partitions may be drawn according to other criteria than com-
parative advantage, measured by ;. Consider the special case where comparative ad-
vantages are identical across individuals. There exists no interior global equilibrium in
that case since the admissible portion of the 8 = (3 line reduces to a point (see Figure
2). However an interior local equilibrium may exist which separates producers from
encroachers on the basis of absolute productivity. With 3; = 3 Vi, such an equilibrium
may be constructed as follows. Define a partition of Z based on absolute advantage
in production: ¢; = 0; if 6; > 0 and ¢; = 0 if §; < 0. Define Q (0), B(0), and « ()
accordingly. We look for a value 0° such that, when 6 = 6°, the partition is a local Nash

equilibrium. Let 6 be defined by writing (10) as an equality: 3 = 1—« (#). Considering
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(9) and (10), if 0° exists, then the partition is an equilibrium. Since 1 — « (¢) decreases
from 1 to zero as 0 increases from its minimum to its maximum, an equilibrium exists
if 3 < 1, as illustrated in Figure 4. Since the 1 — « () curve reaches the horizontal axis
for 6 < 6™ the groups of encroachers and producers defined by the partition are both
non empty if 3 < 1. Unlike the Ricardian trade model, specialization occurs despite the
fact that no agent has any comparative advantage over others; it is based on absolute

advantage.
PLEASE INSERT FIGURE 4 AROUND HERE

To illustrate further, consider the case of two agents. There are four candidate equi-
libria: (g1 = g2 = 0) which is always a global (and local) equilibrium; (g; = 01; g2 = 0);
(g1 = 0; go = 05); and (q1 = 61; g2 = 02). The corresponding values of ) and « to be in-

serted into (9) and (10) are respectively (@) = 0; « = 1); (Q =0; o= 92); (Q =0y =2+ );

01

(Q=10,+0y; a=0). Take by =1, by =1.26, 0y = 2, Oy = 3. Since J; = .5 > s = 42,
Theorem 2 implies that (¢ = 61; ¢» = 0) is not a global equilibrium. However, for that
allocation, (9) and (10) respectively give 3, = .5 < % — % and Jy = .42 > 1 — .63,
so that (¢, = 01; g2 = 0) is a local equilibrium, where the agent with a comparative ad-
vantage in production is an encroacher, and vice-versa. All other candidate allocations

are equilibria as well.

6 Discussion

Like its ancestor the trade model of Ricardo, our model with constant returns in both
production and encroachment implies that individuals specialize in either activity in
equilibrium. Thus societies composed of individuals that differ only slightly from each
other end up divided into strongly differentiated groups of producers and encroachers.
Unlike the Ricardian trade model, this result does not rely on constant returns.

As is normal in games involving externalities, our model admits a multiplicity of

equilibria in general. The extreme case of tragedy of the commons - no-one produces -
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always exists. The Pareto optimal allocation is an equilibrium when all individuals are
relatively productive; if some individual have high encroachment abilities, then there
exists no Pareto optimal equilibrium. Despite the fact that individuals differ both in
their abilities to encroach and in their productivities, the global Nash equilibria rank
individuals by order of comparative advantage so that the equilibria are relatively easy
to characterize.

The convexity of payoff functions leads one naturally to question the assumption
of rationality. Indeed, in our model rational individuals must consider deviations that
take them all the way from one end to the other end of the activity spectrum. The
computational and informational requirements may be considered excessive. The con-
cept of local Nash equilibrium introduced in the paper may be more appropriate in such
circumstances. When local equilibria are allowed, individuals still make all or nothing
decisions, but the division of society into encroachers and producers obeys more complex
criteria than ranking by comparative advantage. In the special case where comparative
advantages are identical there exists an interior equilibrium where society is divided
according to absolute productivity.

We have represented individual abilities by the production and encroachment para-
meters 0; and b;; we have represented institutions as mitigating the ability to encroach
by a factor A. The multiplicity of equilibria and the important differences between them
may explain why we observe large differences between societies whose individuals and
even institutions are not very different. Our model is also compatible with the observa-
tion that individuals who migrate often change their behavior drastically: they adjust to
a different equilibrium. Similarly, exporting institutions is rarely successful: similar in-
stitutions may give rise to very different equilibria. This also emphasizes the importance
of history and coordination in explaining observed outcomes.

Encroachment redistributes income. Does that suggest that justice institutions
should tolerate some level of encroachment or is a zero tolerance policy preferable? Our
static analysis reveals a multiplicity of equilibria. In a dynamic setup, productivities

may be affected by learning, and learning may not follow the same path in repetitions

18



of one static equilibrium as in repetitions of another equilibrium. If tolerance of some
encroachment induces faster growth in encroachment abilities and erosion in produc-
tive abilities, then this may lead to situations where the earlier equilibrium no longer
exists and the economy may suddenly experience a dramatic shock as it moves to less
productive an equilibrium or even disappears. From a more optimistic angle, a slight
improvement in institutions may precipitate an economy toward a Pareto superior equi-
librium (Figure 3).

Similar remarks apply with respect to immigration, or education. These activities
change the proportion of individuals in each type category ;. As we have illustrated
such changes (for example an increase in ny in our two type example) may cause the
disappearance of the interior equilibrium, leaving the extreme version of the tragedy of

the commons as sole equilibrium.
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Appendix: decreasing returns in production and

encroachment

Let individual output be ¢; = 6;f (¢;) and let individual encroachment be b;g (1 — ¢;)
where the functions f and g are both positive, strictly increasing, nul at zero, and con-

cave. Since f is invertible, the effort e; necessary to produce ¢; is ¢; = f 1 (%) and the
reward from encroachment is t; = b;g (1 —f ! (g_z)) Let h (%) =g (1 —f ! (g_z))
The expected income from producing ¢; is thus y; = bh (£ ) 4 [1 — o] ¢; where a =

y
Eje[ bjh ?o“

E]qu] , 0< g < 0,1 (1)

The function h (z;) is non negative, decreasing, and concave:

W) = -2 (1}1;@;(%)) _
R 1 (el L1 (VA0 Fic 3

It follows that

0y . o 4
82% . 8204 80& bl u {4
= ae i (7)
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with

da 1 A G q;
ou [@h (&)@~ S (g)]

and

Foize) 1 (B v (¢ o N
o~ w o (7)e-sen [ (3) -]
L B n(a ) [ G
= —|=h | = — 260" | = 2
Q? [Qz‘ <9z> O <9z> " a]
Some straightforward substitutions yield
0y; g\ 2 ¢\ 1o
=(1—-—=1]— — B.h 1— L) 222
7= (1-5) 5w+ (1-5) 37

which is expression (4), where the first term is strictly positive, and the second term is

non positive. Under constant returns, h (z) =1 — z and A" (2) = 0 so that % > 0.
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Figure 1: Individual income as a function of individual production
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a) No Pareto optimal equilibrium b) Pareto optimal equilibrium exists

Figure 2: Existence and stability of equilibria
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Figure 3: Institutional trap, miracle, and catastrophy
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Figure 4: Local equilibrium with identical comparative advantages
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